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ABSTRACT

Materialisation is often used in RDF systems as a preprocessing step

to derive all facts implied by given RDF triples and rules. Although

widely used, materialisation considers all possible rule applications

and can use a lot of memory for storing the derived facts, which can

hinder performance. We present a novel materialisation technique

that compresses the RDF triples so that the rules can sometimes

be applied to multiple facts at once, and the derived facts can be

represented using structure sharing. Our technique can thus require

less space, as well as skip certain rule applications. Our experiments

show that our technique can be very effective: when the rules are

relatively simple, our system is both faster and requires less memory

than prominent state-of-the-art RDF systems.
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1 INTRODUCTION

Datalog [4] is a prominent knowledge representation language that

can describe an application domain declaratively using ifśthen rules.

Datalog applications typically require answering queries over facts

derived from knowledge bases (KBs) encoded on the Web using the

RDF [10] data model. Modern datalog-based RDF systems, such as

graphDB [5], Oracle’s RDF Database [17], VLog [16], and RDFox

[14], derive and store all implied facts in a preprocessing step. This

style of reasoning is commonly called materialisation and is widely

used since it enables efficient query answering. Despite its popu-

larity, however, such an approach exhibits two main drawbacks.

First, deriving all implied facts requires considering all possible

inferences (i.e., applications of the rules to facts). The number of

inferences can be very large (i.e., worst-case exponential in the

number of variables in the rules), so materialisation can take a long

time when the KB is large. Second, the rules can derive a large num-

ber of facts, which can impose significant memory requirements

on datalog systems.
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In this paper, we present a novel technique for materialising

datalog rules over RDF datasets, which aims to address both of these

problems. We observed that the facts in KBs often exhibit a degree

of regularity. For example, facts denoting similar items in a product

catalog of an e-commerce application are likely to be similar. This

often leads to regular rule applications: rules are usually applied to

similar facts in similar ways, and they produce similar conclusions.

We exploit this regularity to address both sources of inefficiency

outlined above. To reduce the memory usage, we represent the

derived facts using structure sharingÐthat is, we store the common

parts of facts only once. This, in turn, allows us to apply certain

rules to several facts at once and thus skip certain rule applications.

We borrow ideas from columnar databases [9] to represent facts.

For example, to represent RDF triples ⟨a1, P,b1⟩, . . . , ⟨an, P,bn⟩,

we sort the triples and represent them using just one meta-fact

P(a, b), wheremeta-constants a and b are sorted vectors of constants

a1, . . . ,an and b1, . . . ,bn , respectively. Columnar databases can

efficiently compute joins over such a representation [1, 2, 11, 12].

However, these techniques address only a part of the problem since,

during materialisation, join evaluation is constantly interleaved

with database updates and elimination of duplicate facts (which is

needed for termination). The VLog system was among the first to

use a columnar representation of facts, and it optimises application

of rules with one body atom. However, on complex rules, VLog

computes joins and represents their consequences as usual.

We take these ideas one step further and present algorithms that

(i) can handle arbitrary joins in rule bodies, (ii) aim to represent the

derived facts compactly, and (iii) can efficiently eliminate duplicate

facts. We have implemented our techniques in a new system called

CompMat and have empirically compared it with VLog and RDFox

on several well-known benchmarks. Our experiments show that our

technique can sometimes represent the materialisation by an order

of magnitude more compactly than as a ‘flat’ list of facts, thus al-

lowing our system to handle larger KBs without additional memory.

Moreover, our prototype could often compute the materialisation

more quickly than existing highly-optimised RDF systems.

2 PRELIMINARIES

Datalog knowledge bases are constructed using constants, variables,

and predicates, where each predicate is associated with a nonnega-

tive integer called arity. A term is a constant or a variable. An atom

has the form P(t1, . . . , tn ), where P is an n-ary predicate and each ti
is a term. A fact is a variable-free atom, and a dataset is a finite set

of facts. A (datalog) rule r has the form B1 ∧ · · · ∧ Bn → H where

n ≥ 0, H is a head atom, Bi are body atoms, and each variable in H

occurs in some Bi . A (datalog) program Π is a finite set of rules.

A substitution σ is a mapping of variables to constants, and

dom(σ ) is the domain of σ . For α a logical expression, ασ is the re-

sult of replacing each occurrence in α of a variable x ∈ dom(σ )with

σ (x). For I a dataset and r = B1 ∧ · · · ∧ Bn → H a rule, the result of
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applying r to I is given by r [I ] = {Hσ | {B1σ , . . . ,Bnσ } ⊆ I }; anal-

ogously, for Π a program, Π[I ] =
⋃

r ∈Πr [I ]. Given a dataset E of

explicitly given facts, let I0 = E, and for i ≥ 1 let Ii = Ii−1 ∪ Π[Ii−1].

Then, mat(Π, E) =
⋃

i≥0Ii is the materialisation of Π w.r.t. E.

RDF [10] can represent graph-like data using triples ⟨s,p,o⟩

where s , p, and o are constants. Intuitively, a triple says that a

subject s has a property p with value o. An RDF graph is a finite

set of triples. In this paper, we apply datalog to RDF using vertical

partitioning [3]: we convert each triple ⟨s,p,o⟩ to a unary fact o(s) if

p = rdf :type, and otherwise to a binary fact p(s,o). Due to this close

correspondence, we usually do not distinguish facts from triples.

3 OUR APPROACH

Our main idea is to represent the derived facts compactly using

structure sharing. Presenting the full details of our approach re-

quires quite a bit of notation, so we defer the presentation of all

algorithms to Appendix A, and in this section we present only the

main ideas on a running example. Assume we are given an RDF

graph containing the following triples.

⟨ai , P,d⟩ for 1 ≤ i ≤ 2n

⟨a2i , rdf :type,R⟩ for 1 ≤ i ≤ n

⟨bi , P, ci ⟩ for 1 ≤ i ≤ m

⟨d,T , ei ⟩ for 1 ≤ i ≤ m

Using vertical partitioning described in Section 2, we convert

the above triples into a dataset E containing explicit facts (1)ś(4).

P(ai ,d) for 1 ≤ i ≤ 2n (1)

R(a2i ) for 1 ≤ i ≤ n (2)

P(bi , ci ) for 1 ≤ i ≤ m (3)

T (d, ei ) for 1 ≤ i ≤ m (4)

Finally, let Π be a recursive program containing rules (5) and (6).

P(x,y) ∧ R(x) → S(x,y) (5)

S(x,y) ∧T (y, z) → P(x, z) (6)

Instead of computingmat(Π, E) directly, we compute a compressed

representation of E, and then we compute the materialisation over

this representation to reduce the number of rule applications and

the space required to store the derived facts. We next describe the

general framework, and then we discuss key operations such as

rule application and elimination of duplicate facts. Note that both

rules in Π contain more than one body atom, so both RDFox and

VLog would evaluate the rules as usual.

Representation and Framework. All of our algorithms require

an arbitrary, but fixed total ordering ≺ over all constants. Typically,

a natural such ordering exists; for example, many RDF systems rep-

resent constants by integer IDs, so ≺ can be obtained by comparing

these IDs. In our example, we assume that a1 ≺ · · · ≺ a2n ≺ b1 ≺

· · · ≺ bm ≺ c1 ≺ · · · ≺ cm ≺ d ≺ e1 ≺ · · · ≺ em holds.

Our compressed representation of facts draws inspiration from

columnar databases. For example, we represent facts (3) using a sin-

gle fact P(b, c), where b represents a vector of constants b1 . . .bm
and c represents c1 . . . cm . To distinguish P(b, c) from the facts

it represents, we call the former a meta-fact. Meta-facts are con-

structed like ordinary facts, but they use meta-constants (e.g., b and

c), which represent vectors of ordinary constants. We maintain a

mapping µ of meta-constants to the constants they represent; thus,

we let µ(b) = b1 . . .bm and µ(c) = c1 . . . cm .

This representation is thus far not inherently more efficient than

storing each fact separately: although we use just one meta-fact

P(b, c), we must also store the mapping µ so the combined storage

cost is the same. However, this approach allows structure sharing.

For example, consider applying rule P(x,y) →W (x,y) to our facts.

A conventional datalog system would derivem new facts, whereas

we can represent all consequences of the rule by just one meta-

factW (b, c) and thus reduce the number of rule applications and

the space needed. This case is simple since the rule contains just

one body atom. In this paper, we generalise this idea to rules with

several body atoms. To support efficient representation and join

computation, we introduce a richer way of mapping meta-constants

to constants. For a meta-constant a, we allow µ(a) to be (i) a vector

of constants sorted by ≺, or (ii) a vector of meta-constants. Meta-

constant a can thus be recursively unfolded into a sorted vector of

constants that it represents. Since it is sorted by ≺, this unfolding is

unique. For example, if µ(a) = g.h, and µ(g) = a1.a3 . . . a2n−1 and

µ(h) = a2.a4 . . . a2n , then a1.a2 . . . a2n is the unfolding of a. More-

over, repeated constants can be stored using run-length encoding

to reduce the space requirements: we use d ∗n to refer to constant d

repeated n times. Finally, we define the notion of meta-substitutions

analogously to substitutions, with a difference that variables are

mapped to meta-constants rather than constants.

Now we are ready to discuss how to generate a set of meta-facts

M and a mapping µ for our example dataset E. For unary facts such

as (2), this is straightforward: we simply sort the facts by ≺, we

define µ(h) as the vector of (sorted) constants a2.a4 . . . a2n , and we

produce a meta-fact R(h). For binary facts, it is not always possible

to generate one meta-fact per predicate since one may not be able

to sort binary facts on both arguments simultaneously. For example,

sorting facts (1) and (3) on the first argument produces a sequence

P(a1,d) . . . P(a2n,d) P(b1, c1) . . . P(bm, cm ), which is not sorted on

the second argument due to ci ≺ d . Thus, we convert these facts

into meta-facts by sorting the facts lexicographically; we consider

the argument with fewer distinct values first to maximise the use

of run-length encoding. Facts (1)ś(3) have fewer distinct values

in the second argument, so we sort on that argument first. Then,

we iterate through the sorted facts and try to append each fact

to existing meta-facts, and we create fresh meta-facts when it is

impossible to find an appropriate such meta-fact. In our example,

we thus obtain the following meta-facts and mapping µ.

P(a, d) P(b, c) R(h) T (e, f) (7)

µ(a) = a1.a2 . . . a2n µ(b) = b1 . . .bm (8)

µ(c) = c1 . . . cm µ(d) = d ∗ 2n (9)

µ(e) = d ∗m µ(f) = e1 . . . em (10)

µ(h) = a2.a4 . . . a2n (11)

With this set of meta-facts M , mapping µ, and program Π, we

use a variant of the seminaïve algorithm [4] to compute the materi-

alisation overMÐthat is, we keep applying the rules of Π toM until

no further facts can be derived. To avoid applying a rule to a set of

facts more than once, we maintain a set ∆ of meta-facts derived in

the previous round of rule application, and, when applying a rule,

we require at least one body atom to be matched to a meta-fact

in ∆. In each round of rule application, we evaluate rule bodies

as queries, where join evaluation is accomplished using two new



semi-join and cross-join algorithms. Moreover, to correctly maintain

∆, we apply duplicate elimination at the end of each round. Note

that this is critical for the termination of materialisation: without

duplicate elimination, a group of rules could recursively derive the

same facts and never terminate. We next run the above process over

our example and discuss each round of rule application in detail.

First Round. Set M initially does not contain a meta-fact with

predicate S , so rule (6) does not derive anything. To apply rule (5),

we note that all variables of atom R(x) are contained in the variables

of atom P(x,y), so we evaluate the rule body using a semi-join,

where x-values from R(x) act as a filter on P(x,y). We first identify

a set of substitutions that survive the join, and then we reorganise

the result so that it can be represented using structure sharing.

Matching atom P(x,y) in rule (5) produces meta-substitutions

σ1 = {x 7→ a,y 7→ d} and σ2 = {x 7→ b,y 7→ c}, and match-

ing R(x) produces σ3 = {x 7→ h}. Since the unfolding of each

of the meta-constant is sorted w.r.t. ≺, we can join these meta-

substitutions using amerge-join. Thus, we initialise a priority queue

F to contain the substitutions obtained from σ1 and σ2 by replacing

each meta-constant with the first constant in the unfolding; thus, F

initially contains {x 7→ a1,y 7→ d} and {x 7→ b1,y 7→ c1}. We anal-

ogously initialise a priority queue G with σ3 to contain {x 7→ a2}.

Our queues F and G also record the meta-substitutions that the

respective substitutions come from. To perform the join, we itera-

tively select the ⪯x -least substitutions from F andG and compare

them; if two substitutions coincide on the common variables x , we

add the substitution from F to the result set S ; and we proceed

to the next substitutions from F and/or G, as appropriate. After

processing all of F and G, set S contains all substitutions that sur-

vive the join. In our running example, set S contains substitutions

{x 7→ a2i ,y 7→ d} for 1 ≤ i ≤ n.

Thus, the a2i values in the unfolding of a have survived the join,

whereas the a2i−1 values have not. To facilitate structure sharing,

we shuffle meta-constant a by splitting it into two meta-constants

g and h. We let µ(h) = a2.a4 . . . a2n to represent the constants

that have survived the join, and we let µ(g) = a1.a3 . . . a2n−1 to

represent the constants that have not survived. We redefine the

representation a by setting µ(a) = g.h; doing so does not change

the unfolding of a. Finally, we introduce a new meta-constant j and

set µ(j) = d ∗ n, so the rule conclusion can be represented as S(h, j).

No meta-facts with S predicate have been derived to this point, so

duplicate elimination is superfluous and we add S(h, j) to ∆.

The above computation on our example requires O(n) steps,

which is the same as in evaluating the rule on plain facts; however,

the space requirement is only O(1) due to structure sharing, as

opposed to O(n) for the case of normal join on plain facts.

Second Round. Set ∆ does not contain P or R meta-facts, so

rule (5) is not matched in the second round. However, in rule (6),

we can match S(x,y) to S(h, j) in ∆, and we can match T (y, z) to

T (e, f). The two sets of variables obtained from the two body atoms

intersect, but neither of them includes the other; thus, we evaluate

the rule body by performing a cross-join. As in the case of semi-

join, we construct priority queues F and G to iterate over all sub-

stitutions represented by meta-substitutions {x 7→ h,y 7→ j} and

{y 7→ e, z 7→ f}, respectively. Initially, F contains {x 7→ a2,y 7→ d}

and G contains {y 7→ d, z 7→ e1}. These two substitutions agree

on y, so we collect all substitutions represented by {y 7→ e, z 7→ f}

where y is mapped to d , and we compress the result. In our ex-

ample, all substitutions represented by {y 7→ e, z 7→ f} map y to

d . Then, we iterate through each substitution σ represented by

{x 7→ h,y 7→ j} where σ maps y to d , and we produce a meta-

substitution β representing the join between σ and {z 7→ f}.

We thus obtain {x 7→ a2i ,y 7→ e, z 7→ f}, 1 ≤ i ≤ n, where

µ(a2i ) = a2i ∗m, and so we represent the join result as P(a2i , f).

Since the set of derived facts already contains P(a, d) and P(b, c),

to remove duplicates we compare the facts represented by the newly

derived P meta-facts with those represented by the two existing

meta-facts. This is achieved by using priority queues to perform a

merge-anti-join. On our example no duplicates can be found, so we

compute ∆ as {P(a2i , f), 1 ≤ i ≤ n}.

The above computation introduces n new meta constants and

n new meta-facts, and it requires only O(n) space, as opposed to

O(n2) needed to compute the join over ordinary facts. Moreover,

producing each new meta-fact takes only O(1) steps so our cross-

join requires a total of O(n) steps, instead of O(n2). Finally, our

duplicate elimination method still requires O(n2) time since the

meta-facts must be unpacked and compared.

Termination. In the third round, we can match atom P(x,y) to

P(a2i , f) in ∆ and R(x) to R(h), and derive S(a2i , f) for 1 ≤ i ≤ n. In

the fourth round, we try to join S(a2i , f) withT (e, f), but nothing is

derived, so the fixpoint is reached. The derived meta-facts include

S(h, j), P(a2i , f), and S(a2i , f), and µ is changed as follows.

µ(a) = g.h µ(g) = a1.a3 . . . a2n−1 (12)

µ(j) = d ∗ n µ(a2i ) = a2i ∗m for 1 ≤ i ≤ n (13)

Our approach thus clearly only requires O(n) space (rather than

O(n2)) for storing the derived meta-facts and the the mapping µ.

Such saving can be significant, particularly when n is large.

4 EVALUATION

We have implemented our approach in a prototype system called

CompMat and compared it with VLog and RDFox, two most closely

related state-of-the-art systems. We considered two VLog variants:

one stores the explicitly given facts on disk in an RDF triple store,

and another reads them from CSV files and stores them in RAM;

both VLog variants store the derived facts in RAM. RDFox is purely

RAM-based. Both systems use the seminaïve algorithm.

Test Benchmarks. For our evaluation, we used benchmarks de-

rived from the following well-known RDF datasets. LUBM [8] is a

synthetic benchmark describing the university domain. We used

the 1K dataset. Reactome [6] describes biochemical pathways of

proteins, drugs, and other agents. Claros [15] is real-world dataset

describing cultural artefacts. We obtained the lower bound (L) data-

log programs from the accompanying OWL ontologies as described

by Motik et al. [13]Ðthat is, we apply the sound but incomplete

transformation by Grosof et al. [7] without explicitly axiomatis-

ing the owl:sameAs relation. In addition, the Claros lower bound

extended (LE) program was obtained by extending Claros_L with

several ‘difficult’ rules. All our test programs are recursive.



Dataset
| |E | | | |I | | Diff. | | ⟨E , µ ⟩ | | | | ⟨M , µ ⟩ | | Diff. Avg.

(M) (M) (M) (M) (M) (M) len. µ

LUBM-1KL 241.3 314.4 70.3 195.2 195.9 0.7 7992.8

ReactomeL 22.7 32.3 9.6 20.2 25.1 4.9 21.9

ClarosL 32.2 105.5 73.3 28.1 31.2 3.1 104.8

ClarosLE 32.2 1065.8 1033.6 28.1 413.9 385.8 127.1

Table 1: Dataset statistics: all numbers apart from the aver-

age length of µ are in millions.
Dataset CompMat VLog (RDF) VLog (CSV) RDFox

LUBM-1KL 266.8 1233.7 300.1 488.3

ReactomeL 47.3 44.0 27.5 53.0

ClarosL 59.1 198.4 47.0 135.9

ClarosLE 10.2 k 2869.9 2684.0 3492.1

Table 2: Performance of tested systems.

Test Setup. For each benchmark and test system, we loaded the

dataset and the program into the system and computed the mate-

rialisation. For each test run, we measured the wall-clock times

for loading plus materialisation. Both VLog and RDFox index the

data during loading. In contrast, CompMat does not perform any

preprocessing during loading, and it compresses the explicitly given

facts as part of the materialisation process.

We also used a new representation size metric to measure the

compactness of representation without taking into account any

implementation-specific issues such data indexing. This measure

counts the symbols needed to encode the facts. We can encode a

dataset I containing n predicates, each of arity ai and containingmi

facts, as a ‘flat’ list where we output each predicate once and then

list the arguments of all facts with that predicate; thus, we define the

representation size as | |I | | =
∑n
i=1(1 + ai ·mi ). Thus, | |mat(Π, E)| |

provides us with a baseline measure. In our approach, mat(Π, E) is

represented as a pair ⟨M, µ⟩ of a setM meta-facts and a mapping µ.

SinceM is a dataset, we define | |M | | as above. Moreover, we define

| |µ | | as the sum of the sizes of the mappings for each meta-constant,

each encoded using run-length encoding. That is, if µ(a) contains

m distinct (meta-)constants, the representation size of the mapping

for a is 1 + 2 ·m since we can encode the mapping as a followed

by a sequence of pairs of a (meta-)constant and the number of its

repetitions. We use just one symbol for the number of occurrences

since both (meta-)constants and number of occurrences are likely

to be represented as fixed-width integers in practice. To further

analyse our approach, we also report the average length of the

unfolding of the meta-constants in µ after materialisation.

Test Results. Table 1 shows the sizes of the ‘flat’ representation

and our compact representation before and after materialisation

and their difference, as well as information about the mapping µ.

Table 2 shows the running times (in seconds) of all systems.

As one can see, the representation size of the explicit facts is

smaller in our approach due to run-length encoding, but these

savings are generally negligible. In contrast, derived facts are rep-

resented much more compactly in all cases: the 48.8 M derived

facts in LUBM-1KL require just 0.7 M additional symbols, instead

of 70.3 M symbols needed for a ‘flat’ representation; 55 M derived

facts in ClarosL require just 3.1 M, instead of 73.3 M additional

symbols; our technique uses about half as many additional symbols

on ReactomeL ; and even on ClarosLE it is very effective and re-

duces the number of symbols by a factor of three. These results are

reflected in the structure of µ: the average mapping length in above

100 on all benchmarks apart from ReactomeL , which suggests a

significant degree of structure sharing.

In terms of the cumulative time, CompMat turned out to be

fastest on LUBM-1KL and very competitive onClarosL . On ReacomeL
our systemwas narrowly outperformed by VLog. In contrast, Comp-

Mat was considerably slower than the other systems on ClarosLE .

In all cases, we observed that our system spends most of the time

in duplicate elimination. Hence, it seems that our representation

can be very effective in reducing the number of rule applications,

but at the expense of more complex duplicate elimination.

5 CONCLUSION

We have presented a new datalog materialisation technique that

uses structure sharing to represent derived facts. This not only

allows for more compact storage of facts, but also allows applying

the rules without considering each rule derivation separately. We

have implemented our technique in a new system called CompMat

and have shown it to be competitive with VLog and RDFox. Also,

our representation was more compact than the ‘flat’ representation

in all cases, sometimes by orders of magnitude.
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A FORMALISATION AND ALGORITHMS

We now formalise the ideas from Section 3. Recall that a meta-

constant a can be recursively unfolded into a sorted vector of con-

stants that it represents. Since it is sorted by ≺, this unfolding is

unique so we can identify a constant at some integer index in the un-

folding of a. For example, if µ(a) = g.h, and µ(g) = a1.a3 . . . a2n−1
and µ(h) = a2.a4 . . . a2n , then a1.a2 . . . a2n is the unfolding of a,

and a3 is the constant at index 3.

We next introduce several useful notions. Given a meta-constant

a, we let |a| be the length of the unfolding of a, and we let tail(a) be

the last constant in the unfolding. If µ(a) is a sequence of constants,

then a is called a leaf meta-constant. The length of a meta-fact is

equal to the length of its meta-constants. A meta-substitution σ is a

mapping of variables to meta-constants such that |σ (x)| = |σ (y)|

holds for all x,y ∈ dom(σ ). Moreover, |σ | = 0 if dom(σ ) = ∅, and

otherwise |σ | = |σ (x)| for somex ∈ dom(σ ). Finally, forB a constant-

free atom with no repeated variables and M a set of (meta-)facts,

JBKM is the set of (meta-)substitutions σ such that Bσ ∈ M .

Based on these definitions, Algorithm 1 accepts a program Π

and a set E of explicitly given facts, and it computes a set M of

meta-facts and a mapping µ that represent mat(Π, E). To this end,

we first convert E into meta-facts (lines 1ś4): for each predicate

P , we retrieve all substitutions corresponding to all P-facts in E,

we use function compress to convert them into one or more meta-

substitutions (line 4), and we convert the result back into meta-facts

(line 4). Compression creates meta-constants by mapping constants

to monotonically increasing sequences: a substitution σ ∈ S is ap-

pended to a meta-substitution τ produced thus far (line 27) if, for

each x ∈ dom(σ ), constant σ (x) is larger than or equal to the last

constant in the sequence µ(τ (x)) (line 26); otherwise, we create a

fresh meta-substitution to represent σ (line 29).

We next apply the rules of Π up to the fixpoint (line 6ś23). We

use a variant of the well-known seminaïve algorithm [4] to avoid re-

dundant rule applications: we maintain a set ∆ of meta-facts derived

in the previous round of rule application, and in each round we

require each rule to match at least one body atom in ∆. To this end,

we consider rule r ∈ Π and each atom Bi ∈ b(r ) (lines 8ś20), and

we evaluate b(r ) left-to-right by matching each atom Bj before Bi
inM \ ∆, atom Bi in ∆, and each atom Bj after Bi inM (lines 12ś14).

We discuss the function match in Section A.1. During this process,

set L keeps the meta-substitutions corresponding to the matches

of atoms up to Bj . Moreover, set V keeps the variables matched

thus far. We use V to decide how to join atom Bj with L: we use

a semi-join if the variables of one side of the join are contained

in the variables of the other side (lines 16 and 17), and otherwise

we use a more general cross-join (line 18). These algorithms are

two main novel aspects of our approach, and we describe them in

detail in Sections A.1 and A.2. After processing all body atoms of

r , we convert set L into meta-facts corresponding to the head of

r (line 20). After applying all rules, newly derived meta-facts are

subjected to duplicate elimination (line 21), which we describe in

Section A.3. Finally, all meta-facts over meta-constants of length

one are removed fromM , compressed using Algorithm 2, and added

back toM (line 23). This step turned out to be critical to the perfor-

mance of our approach by reducing the number of meta-facts inM ,

which in turn improved the speed of join computation.

Algorithm 1 CMat(Π, E)

1: M ≔ ∅, µ ≔ ∅

2: for each n-ary predicate P occurring in E do

3: A ≔ P (x1, . . . , xn )

4: for each τ ∈ compress(JAKE , µ) do M ≔ M ∪ {Aτ }

5: ∆ ≔ M

6: while ∆ , ∅ do

7: N ≔ ∅

8: for each rule B1 ∧ · · · ∧ Bn → H ∈ Π and 1 ≤ i ≤ n do

9: L ≔ {σ0 } where σ0 is the empty meta-substitution

10: V ≔ ∅

11: for each 1 ≤ j ≤ n do

12: if j < i then R ≔ match(Bj ,M \ ∆)

13: else if j = i then R ≔ match(Bj , ∆)

14: else R ≔ match(Bj ,M )

15: if V ≔ ∅ then L ≔ R

16: else if V ⊆ v(Bj ) then L ≔ sjoin(L, R,V ,M , µ)

17: else if v(Bj ) ⊆ V then L ≔ sjoin(R, L, v(Bj ),M , µ)

18: else L ≔ xjoin(L, R,V ∩ v(Bj ), µ)

19: V ≔ V ∪ v(Bj )

20: N ≔ N ∪ {Hσ | σ ∈ L }

21: ∆ ≔ ElimDup(N ,M , µ)

22: M ≔ M ∪ ∆

23: Compress all meta-facts in M of length one

Algorithm 2 compress(S, µ)

24: T ≔ ∅

25: for each substitution σ ∈ S do

26: if there exists a meta-substitution τ ∈ T such that

tail(τ (x )) ⪯ σ (x ) holds for each x ∈ dom(σ ) then

27: for each x ∈ dom(σ ) do Append σ (x ) to µ(τ (x ))

28: else

29: Let τ be a meta-substitution where, for x ∈ dom(σ ),

τ (x ) is a fresh meta-constant and let µ(τ (x )) ≔ σ (x )

30: T ≔ T ∪ {τ }

31: return T

A.1 Computing Semi-Joins

Function sjoin from Algorithm 1 computes the semi-join of sets

L and R of meta-substitutions, where dom(λ) ⊆ dom(ρ) holds for

all meta-substitutions λ ∈ L and ρ ∈ R; the vector ®x contains all

variables common to the substitutions in L and R. Set L thus acts

as a filter on R: we identify a set S of substitutions represented by

R that survive the join, and we reorganise the representation so

that the result can be represented using structure sharing. We need

additional notation to formalise this idea.

Please remember that ≺ is the ordering on constants from Sec-

tion A. Then, for ®x = x1, . . . , xn a vector of variables, we define an

ordering ≺®x on substitutions such that ξ ≺®x ζ holds for substitu-

tions ξ and ζ iff there exists 1 ≤ i ≤ n such that ξ (x j ) = ζ (x j ) for

each 1 ≤ j < i and ξ (xi ) ≺ ζ (xi ). That is, ≺®x compares substitutions

lexicographically by ®x . Analogously, ξ =®x ζ holds iff ξ (xi ) = ζ (xi )

for 1 ≤ i ≤ n.

For σ a meta-substitution and i an integer, we define σ i as the

i-th substitution that σ representsÐthat is, for x ∈ dom(σ ), each

σ i (x) is the i-th constant from the unfolding of µ(σ (x)).

Finally, we use priority queues of pairs of the form ⟨σ , i⟩ where

σ is a meta-substitution and 1 ≤ i ≤ |σ |. Such ⟨σ , i⟩ represents σ i ,



but it maintains the separation of σ and i so we can enumerate

the substitutions that σ represents. For ®x a vector of variables, let

⟨σ , i⟩ ≺®x ⟨τ , j⟩ iff σ i ≺®x τ j . Given a set S of such pairs, queue®x (S)

creates a queue Q that contains S sorted by ≺®x . Moreover, Q .peek

returns a ⪯®x -smallest pair ⟨σ , i⟩ ∈ Q ; if there are several such pairs

(which is possible if ®x does not cover all variables of σ ), then one ar-

bitrarily chosen, but fixed pair is returned. Finally, Q .next removes

this pair ⟨σ , i⟩ from Q , adds ⟨σ , i + 1⟩ to Q if i + 1 ≤ |σ |, reorders

Q so it is sorted by ⪯®x , and returns ⟨σ , i⟩.

Algorithm 3 computes the semi-join of L and R. Since lines 16

and 17 pass a set of variables V for ®x , to bridge this gap we assume

that the variables of V are ordered in some way when calling sjoin.

To compute the semi-join, we initialise priority queues F and G to

contain the first substitutions represented by the meta-substitutions

in L and R, respectively (lines 32ś33). Now, meta-constants are

mapped to increasing sequences of constants w.r.t. ⪯, so σ i ⪯®x σ j

holds for each ®x , σ , and i ≤ j. Thus, we can join F and G using

merge-join (lines 35ś40): we select the ⪯®x -least pairs ⟨λ, i⟩ and

⟨ρ, j⟩ of F andG (line 36) and compare them; we add ⟨λ, i⟩ to S if λi

and ρ j coincide on the common variables ®x (line 39); and we move

to the next pair from F and/or G, as appropriate. After processing

F and G, set S contains all substitutions that survive the join.

Algorithm 4 converts S into meta-substitutions with structure

sharing. For each meta-substitution ρ in S , we compute the set

X of indexes of substitutions represented by ρ that ‘survive’ the

join (line 43). We return ρ if all substitutions ‘survive’ (line 44).

Otherwise, for each variable x ∈ dom(ρ) (line 47), we unfold µ(ρ(x))

and consider each leaf meta-constant ai encountered (line 48). We

split ai using two fresh meta-constants bini and bouti (lines 49ś51):

we define µ(bini ) as the constants of µ(ai ) at positions in X (i.e., the

positions that survive the join), we define µ(bouti ) as the remaining

constants of µ(ai ), and we redefine µ(ai ) as b
in
i .b

out
i . This keeps

the unfolding of µ(ai ) and of ρ(x) unchanged, but it allows us to

define the resulting meta-substitution σ on x as the concatenation

of all bini (line 52). Note that we can take bin
1
instead of introducing

c whenever n = 1 holds.

We finally discuss function match(B,M) from lines 12ś14 of

Algorithm 1. If atom B has no repeated variables, we just return

JBKM . Otherwise, we let B′ be an atom obtained by from B by

renaming apart the repeated variables; we compute R ≔ JB′KM ;

we identify the set S of pairs ⟨ρ, i⟩ where ρ ∈ R and ρi satisfies

variable repetition; and we return shuffle(S,M, µ). In other words,

we reshuffle the meta-facts that match B so we can represent the

matching portion using structure sharing.

A.2 Computing Cross-Joins

Function xjoin is used in Algorithm 1 to compute the cross-join of

sets L and R of meta-substitutions with common variables ®x . We

group the substitutions represented by the meta-substitutions in

R on ®x and compress them as in Section A; this allows us to avoid

repetitions in the representation when computing the join with the

substitutions represented by the meta-substitutions in L.

This is captured in Algorithm 5. As in Algorithm 3, we construct

priority queues F and G (lines 55ś56) to iterate over all substitu-

tions represented by L and R. We then use a variant of merge-join:

we iteratively select ⪯®x -least pairs ⟨λ, i⟩ and ⟨ρ, j⟩ from F and G

Algorithm 3 sjoin(L,R, ®x,M, µ)

32: F ≔ queue ®x ({ ⟨λ, 1⟩ | λ ∈ L })

33: G ≔ queue ®x ({ ⟨ρ , 1⟩ | ρ ∈ R })

34: S ≔ ∅

35: while F , ∅ and G , ∅ do

36: ⟨λ, i ⟩ ≔ F .peek and ⟨ρ , j ⟩ ≔ G .peek

37: if λi ≺ ®x ρ j then F .next

38: else

39: if λi = ®x ρ j then Add ⟨ρ , j ⟩ to S

40: G .next

41: return shuffle(S ,M , µ)

Algorithm 4 shuffle(S,M, µ)

42: T ≔ ∅

43: for each distinct ρ in S and X ≔ {j | ⟨ρ , j ⟩ ∈ S } do

44: if X = {1, . . . , |ρ | } then Add ρ to T

45: else

46: σ ≔ ∅

47: for each variable x ∈ dom(ρ) do

48: for each leaf meta-constant ai in µ(ρ(x )) do

49: Introduce fresh meta-constants bini and bouti

50: Define µ(bini ) (resp. µ(b
out
i )) as the sorted sequence

of constants of µ(ai ) whose corresponding indexes

in µ(ρ(x )) are contained (resp. not contained) in X

51: Redefine µ on ai as µ(ai ) ≔ bini .b
out
i

52: Introduce a fresh meta-constant c, define µ on c as

µ(c) ≔ bin
1
, . . . , binn , and let σ (x ) ≔ c

53: Add σ to T

54: return T

(line 59), and we advance F or G as needed if λi and ρ j do not

agree on ®x (lines 60ś61). Otherwise, we collect all ⟨β,k⟩ ∈ G such

that βk is equal to ρ j on ®x and remove the join variables (lines 64ś

65), and we compress the result (line 66) using Algorithm 2. We

finally consider each ⟨α, ℓ⟩ ∈ F such that α ℓ agrees with λi on ®x

(lines 67ś72) and, for each compressed meta-substitution β , we

produce a meta-substitution σ representing the join between λi

and all substitutions represented by β (lines 68ś72).

A.3 Eliminating Duplicate Facts

Algorithm 6 is the final component of our approach: it takes sets of

meta-facts N andM , and it returns the set ∆ of meta-facts represent-

ing all facts that are represented by N , but not byM . This is critical

for termination: datalog rules can be recursive, so facts produced by

a rule can (directly or indirectly) trigger further derivations using

the same rule; thus, if duplicate facts were not eliminated, a group

of rules could keep deriving the same facts indefinitely.

To this end, we consider each predicate P in N (line 75), and

we eliminate all duplicate P-facts by perform a merge-anti-join

between N and M analogously to Algorithm 3. In particular, we

initialise queues F andG so we can iterate over all facts represented

by N and M (lines 78ś79), and we enumerate the facts in N by

considering the corresponding ⟨λ, i⟩ ∈ F (lines 80ś87). If G is not

empty, we skip all facts inG that precede λi in ≺®x (line 84), and we

add ⟨λ, i⟩ to S if we find do not find a matching fact in G (line 85

and 86). Finally, set N can itself contain duplicate facts, so we skip

all of those that match λi (line 87). After all facts in F have been



Algorithm 5 xjoin(L,R, ®x, µ)

55: F ≔ queue ®x ({ ⟨λ, 1⟩ | λ ∈ L })

56: G ≔ queue ®x ({ ⟨ρ , 1⟩ | ρ ∈ R })

57: S ≔ ∅

58: while F , ∅ and G , ∅ do

59: ⟨λ, i ⟩ ≔ F .peek and ⟨ρ , j ⟩ ≔ G .peek

60: if λi ≺ ®x ρ j then F .next

61: else if ρ j ≺ ®x λi then G .next

62: else

63: T ≔ ∅

64: while βk = ®x ρ j for ⟨β , k ⟩ ≔ G .next do

65: Add βk restricted to the variables not in ®x to T

66: C ≔ compress(T , µ)

67: while α ℓ
= ®x λi for ⟨α , ℓ⟩ ≔ F .next do

68: for each β ∈ C do

69: σ ≔ β

70: for each x ∈ dom(λ) do

71: Introduce a fresh meta-constant ax , define µ(ax )

as α ℓ (x ) repeated |β | times, and let σ (x ) ≔ ax

72: Add σ to S

73: return S

Algorithm 6 elimDup(N ,M, µ)

74: ∆ ≔ ∅

75: for each n-ary predicate P occurring in N do

76: Let ®x ≔ x1 . . . . .xn be a vector of n distinct variables

77: A ≔ P ( ®x ), S ≔ ∅

78: F ≔ queue ®x ({ ⟨λ, 1⟩ | λ ∈ JAKN })

79: G ≔ queue ®x ({ ⟨ρ , 1⟩ | ρ ∈ JAKM })

80: while F , ∅ do

81: ⟨λ, i ⟩ ≔ F .peek

82: notDup ≔ true

83: if G , ∅ then

84: while G .peek ≺ ®x λi do G .next

85: if G .peek = ®x λi then notDup ≔ false

86: if notDup then Add ⟨λ, i ⟩ to S

87: while λi = ®x F .peek do F .next

88: for σ ∈ Shuffle(S ,M , µ) do Add Aσ to ∆

89: return ∆

considered, S represents all distinct facts fromN , so we use shuffling

from Section A.1 to efficiently represent the result.

B FULL EVALUATION RESULTS

We conducted our experiments on a Dell PowerEdge R720 server

with 256 GB of RAM and two Intel Xeon E5-2670 2.6 GHz processors,

running Fedora 27 with kernel version 4.15.12-301.fc27.x86_64.

Table 3 extends Table 1 with statistics about our datasets. In

particular, in Table 3 we also report the maximum length of the

unfolding of the meta-constants in µ, as well as the maximum meta-

constant depth: the depth of a is one if a is a leaf meta-constants,

and the depth of µ(a) = b1. . . . .bn is one plus the maximum of the

depth of each bi .

Table 4 extends Table 2 by showing separately the loading (tl )

and materialisation (tm ) times. Please note that both VLog and

RDFox index the data during loading. In contrast, CompMat does
not perform any preprocessing during loading, and it compresses

the explicitly given facts as part of the materialisation process.



Dataset
|Π | |E | |I | | |E | | | |I | | Diff. | | ⟨E , µ ⟩ | | | | ⟨M , µ ⟩ | | Diff. Avg. Max. Max.

(M) (M) (M) (M) (M) (M) (M) (M) len. µ len. µ depth µ

LUBM-1KL 98 133.6 182.4 241.3 314.4 70.3 195.2 195.9 0.7 7992.8 11.2 M 3

ReactomeL 541 12.5 19.8 22.7 32.3 9.6 20.2 25.1 4.9 21.9 703.5 k 54

ClarosL 1310 18.8 73.8 32.2 105.5 73.3 28.1 31.2 3.1 104.8 699.0 k 96

ClarosLE 1337 18.8 533.3 32.2 1065.8 1033.6 28.1 413.9 385.8 127.1 699.0 k 2268

Table 3: Dataset statistics: |Π | is the number of rules; I = mat(Π, E) is thematerialised set of facts; and |E | and |I | are the numbers

of facts before and after materialisation. All numbers apart from |Π | and the statistics about µ are in millions.

Dataset CompMat VLog (RDF) VLog (CSV) RDFox

tl tm tl + tm tl tm tl + tm tl tm tl + tm tl tm tl + tm
LUBM-1KL 198.0 68.8 266.8 1211.0 22.7 1233.7 265.0 35.1 300.1 355.0 133.3 488.3

ReactomeL 20.3 27.0 47.3 39.2 4.8 44.0 21.0 6.5 27.5 33.5 19.5 53.0

ClarosL 26.8 32.3 59.1 189.7 8.7 198.4 33.0 14.0 47.0 47.1 88.8 135.9

ClarosLE 26.8 10.2 k 10.2 k 189.7 2680.2 2869.9 34.0 2650.0 2684.0 47.1 3445.0 3492.1

Table 4: Performance of tested systems: tl and tm are loading and materialisation times in seconds.
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