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SUMMARY

Empirical systems research is facing a dilemma. Minor aspects of an experimental setup can have a
significant impact on its associated performance measurements and potentially invalidate conclusions drawn
from them. Examples of such influences, often called hidden factors, include binary link order, process
environment size, compiler generated randomized symbol names, or group scheduler assignments. The
growth in complexity and size of modern systems will further aggravate this dilemma, especially with the
given time pressure of producing results. How can one trust any reported empirical analysis of a new idea or
concept in computer science?
DataMill is a community-based services-oriented open benchmarking infrastructure for rigorous
performance evaluation. DataMill facilitates producing robust, reliable, and reproducible results. The
infrastructure incorporates the latest results on hidden factors and automates the variation of these factors.
DataMill is also of interest for research on performance evaluation. The infrastructure supports quantifying
the effect of hidden factors, disseminating the research results beyond mere reporting. It provides a platform
for investigating interactions and composition of hidden factors.
This paper discusses experience earned through creating and using an open benchmarking infrastructure.
Multiple research groups participate and have used DataMill. Furthermore, DataMill has been used for
a performance competition at the International Conference on Runtime Verification (RV) 2014, and is
currently hosting the RV 2015 competition. This paper includes a summary of our experience hosting the
first RV competition.
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INTRODUCTION

Empirical computer performance evaluation is essential for computer science and industry alike.

The empirical measurement of performance sees widespread use to guide the research of new ideas

and the development of new technologies [1]. A performance improvement of a few percentage

points may mean large savings in dollars, when applied to a large data center with billions of clients.

It is also essential, then, that computer practitioners dominate the methodology necessary to evaluate

computer performance correctly.

However, the research community [2, 3, 4, 5] has demonstrated that experimental evaluation

in computer science is difficult. As a consequence, experiment design, setup, analysis, and data
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reporting are often neglected. Results obtained from experimentation are sensitive to the experiment

design and setup. Conclusions drawn from performance experiments may vary across a combination

of hardware and software factors. Sometimes subtle changes to an experiment’s setup can have a

significant impact on its outcome [6]. The lack of rigorous performance evaluation is often blamed

on the fact that experimentation is difficult and costly [4], but those obstacles are not insurmountable.

To improve the current state of experimentation, we proposed DataMill [7, 8]. DataMill

is a distributed infrastructure for computer performance experimentation targeted at scientists,

researchers, and aspiring researchers. DataMill aims to allow the user to easily produce robust,

replicable, and reproducible results at low cost. To do so, DataMill executes the experiments on

real hardware and incorporates the results from existing research on how to design experiments

and evaluate hidden factors. For example, the infrastructure automatically varies a selection of

hardware and software factors, and therefore reduces the effort required by the user to setup and

configure the experiment while simultaneously increasing the robustness and applicability of the

experiments results to a wide range of factor levels. The user need not know the details of the

underlying mechanisms required to vary these factors and may simply take advantage of DataMill’s

infrastructure. DataMill is mainly developed by the University of Waterloo, however, several

universities (e.g., Purdue University, the University of Pennsylvania, the University of Lugano,

and the Federal University of Santa Catarina) have already joined the effort and have provided

benchmarking nodes. Over the past year, DataMill executed 641 experiments and 53 530 jobs. A

total of 908 days of computing time were spent running scripts submitted by users in experiment

packages.

Besides easing experimentation effort and cost for the user, DataMill also aims to alleviate

the problem of data availability and the reproduction of experimental setups. Based on our own

experience, few researchers responded to inquiries for experiment setup details and raw data used

in their publications. In DataMill, all experiment setup parameters and their experiment files remain

stored in the infrastructure. Users can choose to make their experiments public facilitating the

replication and reproduction of the their experimental setups and results. We believe DataMill has

the potential to watermark performance evaluation experiments by making the data publicly and

consistently available. Finally, DataMill and the public repository of repeatable experiments can

serve as a valuable tool for the education of aspiring researchers.

The contributions of this paper are, (1) The design and implementation a distributed infrastructure

for computer performance evaluation spanning multiple universities; (2) Revisiting design rationals

on the architecture and implementation with over two years of benchmarking experience and

hosting a benchmarking competition; (3) The reproduction and expansion of a previously published

experiment, confirming the existence of significant hidden factors; (4) A survey of current

performance evaluation practices in computer science publications, demonstrating the need for

more rigorous experimentation; and (5) A summary of our experiences and insights facilitating

a performance competition on the DataMill infrastructure.

BACKGROUND

In traditional experimental design [9, 10], factors are properties of an experiment that affect the

response variable; i.e., the metric of interest of that particular experiment. It is common knowledge

in statistics that the one-factor-at-a-time method (OFAT), which is a sequential exploration of a

design space (the space defined by the factor dimensions), is a poor method of experimentation.

Despite its weaknesses, OFAT is the de facto standard in computer science. One alternative to OFAT,

factorial design, attempts to ascertain the effect of all factors on the response variable at the same

time, avoiding OFAT’s “blind-spots”.

In order to illustrate the state of experimental methodology in computer science, we conducted

a survey of the recent publications to SOSP 2011, ASPLOS 2012, OSDI 2012, ATC 2012,

EuroSys 2011, and PLDI 2012 in [7]. We have updated the survey with more recent conferences,

including HiPC 2013, and ASPLOS 2014, the results are shown in Table I. The columns, in order,

show the total number of papers, the fraction that contains empirical performance evaluation, the
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Conference No.

of

Papers

Perf.

Eval

HW

Desc.

SW.

Desc.

A/B

Test

Formal

Test

Sanity

Check

Disp.

Met-

ric

Public

SW

Public

Load

Public

Data

SOSP’11 27 93% 92% 60% 91% 0% 24% 44% 4% 68% 0%

ASPLOS’11 36 61% 100% 55% 54% 0% 5% 31% 4% 82% 4%

ASPLOS’14 52 92% 75% 46% 46% 4% 29% 52% 54% 83% 0%

OSDI’10 30 93% 71% 61% 54% 0% 0% 32% 7% 39% 0%

ATC’12 40 95% 87% 58% 68% 0% 3% 32% 8% 26% 0%

EuroSys’11 22 86% 95% 74% 84% 12% 42% 47% 21% 58% 0%

PLDI’12 45 64% 90% 79% 93% 0% 37% 10% 24% 72% 0%

HiPC’13 49 80% 92% 59% 95% 0% 80% 13% 0% 0% 0%

Table I. Illustration of Experimental Rigor in Recent Scientific Publications

fraction that describes their hardware platforms and software versions, the fraction that contains

a comparison (either with a baseline or a competitor), the fraction of those that contain a formal

statistical test for that comparison, the fraction that performs the experiment under different

conditions as a sanity check, the fraction that contains a dispersion metric (standard deviations,

confidence intervals, empirical CDFs, etc.), and the fraction that published the software being

evaluated, the fraction that uses a publicly available workload (established benchmarks, input files,

etc.), and, finally the fraction that published their resulting data.

While many papers include an empirical performance evaluation, many papers do not list the

versions of the software used for these experiments. Worse, even more of these publications do not

contain an empirical comparison to a baseline or a competing approach. Out of those papers that

include such a comparison, only a small fraction formally tests that their performance figures are

different from the baseline. Only a few submissions make their experiment implementation and the

results publicly available. Although the benefits for using a dispersion metric have been reiterated

by many researchers [4, 2, 5] in the past, a number of papers that do a performance evaluation do

not use any measure of dispersion in their performance evaluation. With the conferences included in

our survey, we cannot completely isolate the effect of time on experimentation practices, although

we can get close with ASPLOS 2011/2014, where we see a substantial increase in published

experimentation software. Kalibera and Jones [11, 12] also report that many experiments from

ASPLOS, ISMM, PLDI, TACO, and TOPLAS are not repeatable or do not give enough evidence to

support performance improvement claims.

We performed an experiment to demonstrate the dangers of using a single experimental setup like

the majority we found in our survey. Figure 1 shows the performance measurements of Iperf [13],

a network performance benchmark, repeatedly running on a loopback interface (the machine was

disconnected from the network) in experiment blocks of one hour. The x-axis shows the blocks, and

the y-axis, which does not start at zero for space reasons, shows the bandwidth through the loopback

interface. For example, the boxplot graphic at block 6 comprises all of the iperf data collected during

the 6th hour of the experiment. We use a standard boxplot to characterize a block, adding a × symbol

to mark the mean. Each block contains 330 samples, and the machine reboots between blocks. While

performance is generally stable, in two out of 72 blocks the mean performance is approximately

10% better, even though everything else remained the same. To this date we have been unable to

find an evidence supported explanation for the phenomenon. Although no cron daemon was running

on the machine, because the performance change appears to be roughly periodic, and occurs every

24 hours, we can theorize that it has to do with the time of day. A “lucky” developer could mistake

the rare block for the norm, and report results that are a full 10% away from the average case.

Computer science experiments are susceptible to many hidden factors such as the one seen

above [14, 15, 6, 16, 17]. The systematic exploration of their effect on metrics of interest is a

difficult and time-consuming task. Automated hidden factor exploration is necessary, and would best

be handled by an experiment infrastructure. Many published results in computer science cannot be
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Figure 1. Iperf Performance in Blocks of 1 Hour

validated on newer platforms. Reasons include loss of data, loss of source code, loss of the original

workload, and insufficiently described experimental conditions. Automated replication and publicly

accessible setups are necessary.

Access to a wide variety of experimental setups is difficult to obtain, so experimental design

spaces are generally small, and are often comprised of just a single machine. Automated exploration

of a large design space is also necessary. Furthermore, testing an innovation on various platforms

forces one to consider more corner cases. This will overall lead to more robust innovation whose

performance is not only known on more platforms but also that works on more platforms. Specific

exploits of particular platform features only provide limited value to the research community.

It follows, therefore, that a distributed benchmarking infrastructure with the capability of varying

software and hardware factors is in order. Based on these findings, we created DataMill, an

experimentation infrastructure that addresses these shortcomings automatically. DataMill enables

users to make experiment packages, workloads, and results publicly available. DataMill collects

several performance counters available in the Linux environment and computes dispersion figures

automatically. DataMill supports experiments that contain multiple software packages to enable

a baseline comparison or a comparison with a competing approach. We believe by providing a

platform that automates the factor variation and many tasks of the experiment set up, empirical

performance evaluations will become more popular among researchers. We now present DataMill, a

world-wide open distributed performance evaluation system that aims to address the aforementioned

points and implements the lower two levels of an experiment infrastructure [2].

DATAMILL: THE USER EXPERIENCE

DataMill is a distributed computer-performance evaluation infrastructure aimed at minimizing

user effort required to get robust, reliable, and reproducible results. DataMill distributes arbitrary

benchmarks and experiments to a large number of heterogeneous worker nodes, located all over the

world, facilitating the creation of replicable results, and reducing the necessary effort to produce

robust results.

DataMill facilitates replicable results by storing details of each individual experiment

setup, allowing automated experiment reproduction. DataMill achieves robustness by varying

experimental setups across a wide set of factors, including variation of state-of-the-art known hidden

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2015)
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DATAMILL: A DISTRIBUTED HETEROGENEOUS EXPERIMENTATION INFRASTRUCTURE 5

factors. DataMill is a public-service infrastructure and available to scientists around world as long

as they donate equipment for evaluations themselves.

The user experience starts with packaging the experiment for DataMill to execute, then defining

an experiment space from an array of hardware and software factors, and, finally, collecting and

analyzing the resulting data.

Packages

Each experiment contains one or more packages. A single experiment package can quantify

performance over a wide range of setups, while experiments with more than one package permit

performance comparisons across those setups.

Each package contains,

1. the source code and any input data for the experiment,

2. auxiliary DataMill-specific scripts to set up, execute, and collect the results from the

experiment.

All package components are encapsulated in a compressed TAR file.

There is no restriction on experiment code, and users have administrator-level access to workers

during experimentation. Users can generate free-form results data in arbitrary metrics, and collect

them via compressed archives. These simple features permit performance evaluation of a wide

variety of software, ranging from user-space applications to kernel modules. Security concerns are

minimal at this point, because participating users must contribute to the infrastructure and, therefore,

are well known and trusted.

There are only two scripts that every DataMill package must contain, run.sh and

collect.sh. These are the scripts that execute and collect data from the experiment, respectively.

If the package requires a setup procedure (such as decompression, compilation, dependency

installation, etc.), it may also contain a setup.sh script, which will be executed before run.sh.

Beyond these simple requirements, the package may contain anything else the user desires.

To exemplify the construction of a DataMill package, consider benchmarking bzip2 [18]. We

run Gentoo’s emerge command to compile and install bzip2 from source. Our compiler wrapper

redirects calls to GCC during the compile phase to apply various compiler factors discussed in

Section Pluggable Software Factors. While settings for these factors are set through the web

interface, all that is required in the package setup script is show in Listing 1.

1 # ! / b i n / sh

2

3 emerge bzip2

Listing 1: Setup Script

Listing 2 shows the run.sh script that records performance data. First, the script changes into

the directory bzip2 which contains files with various binary patterns for a compression benchmark.

Next, a bzip2 archive of the files in the bzip2 directory is created and timed. The output of the time

command is recorded into the bzip2-results file. Finally, the size of the bzip2 archive is appended to

bzip2-results.

1 # ! / b i n / sh

2

3 cd bzip2 /
4 (time tar −c −−bzip2 −f tmp .tar .bz2 A10 .jpg AcroRd32 .exe \
5 FP .LOG FlashMX .pdf MSO97 .DLL english .dic ohs .doc rafale .bmp \
6 vcfiu .hlp world95 .txt ) >> bzip2−results 2>&1
7 ( echo size ‘du tmp .tar .bz2 | cut −f 1 ‘ ) >> bzip2−results 2>&1

Listing 2: Run Script

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2015)
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setup.sh

run.sh

collect.sh

bzip2/

Archive Root

...

Figure 2. Bzip2 Package Directory Structure

Listing 3 shows the script that packages the results file for collection. It simply compresses the

result file using a unique name, and echoes the final archive’s file name. This file will then be

downloadable by the user once the experiment finishes executing.

1 # ! / b i n / sh

2

3 results=/bzip2−results .tar .gz
4 tar czf $results /bzip2 /bzip2−results > /dev /null 2>&1
5 echo $results

Listing 3: Collect Script

The user must package the experiment source code, input data, and DataMill scripts in a GZipped

TAR file. All DataMill scripts should be in the root directory of this archive. For the Bzip2 package,

the file structure of the package would be as shown in Figure 2. The bzip2 folder contains various

files to be compressed in run.sh.

To facilitate package creation, DataMill provides users with a virtual machine image that mimics

a DataMill worker. Users can develop, test, and debug their packages in a local environment until

they are sure their packages are ready for production, at which point they can submit it for execution

via our experiment creation interface. Experiments submitted to the infrastructure are extensively

logged in a non-intrusive way, and results are reported to users through the DataMill web interface.

Experiment Creation

Once the package(s) are ready, the user submits them for execution through a file upload interface.

Users must then define an experiment for DataMill to execute. Experiment definition has three steps,

1. Package selection

2. Constraint definition

3. Experiment space definition

Package selection consists of choosing which packages will be executed; one or more packages

may be selected. In the constraint definition step, users inform DataMill of any limitations to their

benchmark. For example, if the experiment can only execute on the ARM9 architecture and requires

at least 2GB of RAM, the user expresses these constraints through an intuitive web interface.

In the experiment space definition step, users select which experimental setups they wish to

explore. The interface presents each dimension of the experiment space, divided in hardware and

software categories. Hardware factors are adjusted with sliders, and levels for software factors are

selected with checkboxes. With sliders, users can select a range for factors such as the amount of

memory on the machines for the experiment. Our user interface dynamically updates the visible

list of available workers as the user adjusts sliders and checkboxes for these factors. Showing a list

of eligible workers based on the factor selection gives the user an idea of the variety of machines

used for their experiment. Our user interface gives the user an overview of the workers at a glance,

showing important worker information through a tooltip as in Figure 3. Besides the pool of workers,

DataMill also calculates the number of jobs for the experiment as factors are changed. This provides

the user with an estimate of the queue priority for their experiment and for how long it might take.

By default, the sliders for hardware factors are set to cover the entire range. However for software

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2015)
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Figure 3. Tooltip for a Worker on Experiment Create Page

factors, only the default levels are selected. If the user wishes to explore the effect of a software

factor, he or she must select additional levels.

After machines are selected according to the hardware dimension settings, the software

dimensions are combined to generate each individual job. For example, if the user chose to

explore all five GCC optimization flags on a single machine, there would be one job generated

per optimization flag, all attributed to that machine. If, in conjunction with the optimization flags,

both settings of the Address Space Layout Randomization (ASLR) feature of Linux (“on” or “off”)

should be tested, then the number of jobs grows to 10 (5 flags times 2 ASLR settings). Therefore,

the number of jobs for each experiment scales with the experiment space defined by the user, and

care must be taken to avoid combinatorial explosion and an experiment with an excessive number

of jobs.

Experiment Results

After the user defines the experiment space and DataMill creates jobs, it will distribute the

experiment’s packages for execution, then collect the individual result files as they are produced.

The web interface dynamically updates experiment information as data arrives, allowing users to

monitor their experiment’s progress. This page also lists the jobs for the experiment and their status

as shown in Figure 4. During experiment execution, partial results files are available for download.

In addition to the data collected by the collect script, DataMill collects additional metrics with

minimal overhead [19], such as total execution time, and the number page faults and cache misses.

Where it makes sense, data that DataMill collects is automatically plotted and made available to the

user in a dynamically updated set of graphs. An example graph produced by DataMill for the time

taken to run the collect.sh script for an experiment is shown in Figure 5. The y-axis is the time

measured in minutes for collect.sh to execute, and the names on the x-axis are the worker hostnames

for two of the machines included in the experiment. On hovering over a box and whisker plot, the

values for the quartiles of a worker are displayed. The horizontal line across the graph marks the

average of all collect times.

Once all jobs associated with an experiment are finished, users can download the full experiment

results file. This results file contains individual results from every job. Examples of how to analyze

large datasets generated by DataMill are provided in Section Case Studies.

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2015)
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Figure 4. Example Experiment Details Page While an Experiment is in Progress

Figure 5. Collect Time of an Experiment on Three Workers

Inevitably, jobs will occasionally fail for many possible reasons. Despite the ability to test user

packages on a DataMill worker prototype, subtle differences between architectures can cause

a plethora of different issues, especially during dependency installation. Debugging problems

that occur on remote machines can be extremely difficult, but DataMill equips users as best it

can with the logging information that it provides. The output of the setup.sh, run.sh, and

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2015)
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Figure 6. Example Job Details Page

Figure 7. Example Job Factor Verification

collect.sh scripts are logged on the job details page as displayed in Figure 6. In addition

to the data collected from a given experiment, DataMill provides users with extensive logging of

performance-insensitive portions of their experiment to ease debugging effort when something goes

wrong. For example, the success of setting each factor to a level is logged with each job as in

Figure 7. In this case, frequency scaling could not be turned off on an ARM board. All the other

factors were set successfully. This kind of logging affords the user with some assurances when

they examine their results that the experiment’s trials executed as they expected. Individual failed

jobs and their logs and meta-data are also displayed the web interface. This permits convenient and

simple debugging of the majority of problems encountered during package development, testing,

and execution.

DATAMILL: THE INFRASTRUCTURE

Making the user experience described in Section DataMill: The User Experience a reality requires

considerable engineering effort. The DataMill infrastructure is composed of a master node,

responsible for the distribution of experiment trials and the collection of results, and several worker

Copyright c© 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2015)
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nodes, which execute the experiment packages provided by the users. The original design and

implementation of DataMill is reported in [7], but a great deal of the architecture has changed

in response to several challenges that we have encountered through heavy use of the infrastructure.

This section includes the highlights of the changes since the previous iteration of DataMill.

Reliability Through Factor Variation

DataMill has facilitated producing reliable results through automatic and controlled variation of

heterogeneity in user’s experiments. Although DataMill optionally provides a set of factors which

can be varied out-of-the-box for any given user’s experiment, it is crucial that we allow users to

vary factors that matter specifically to them and their experiments, even when they are outside of

the out-of-the-box factors DataMill provides.

DataMill has a generic plugin system that users can leverage to support a variety of interesting

software factors. DataMill supports this functionality by separating user’s packages into three core

tasks, experiment setup, experiment execution, and data collection. These are encapsulated in the

three experiment package scripts: setup.sh, run.sh, and collect.sh. By differentiating

between three different basic experimentation tasks, DataMill can instrument and manipulate the

environment unobtrusively during different phases of the experiment, from simple manipulation of

environment variables, to swapping out the compiler used by the package’s build system. DataMill

provides hooks for user-developed factors to run arbitrary code before and after each of the three

core phases of an experiment package.

Besides software factors, DataMill also provides heterogeneity by supporting not only new and

powerful computer hardware, but also much older legacy systems. Table VII shows a list of the

hardware of devices currently in DataMill. Repeated rows indicate that there is more than one of

the same device available for running benchmarks. Maintaining and supporting those systems is a

difficult challenge. Toward supporting a variety of different hardware, the DataMill worker software

is necessarily simple in its requirements. The most basic requirements for the worker software is

the ability to set the root filesystem for the next reboot through software. DataMill has a simple

library that sniffs for the current boot-loader and adjusts the boot-loader configuration as necessary.

Other similar testing infrastructures, such as Linaro Automated Validation Architecture (LAVA) [20]

only support platforms compatible with a particular boot-loader, and cannot support systems which

cannot boot from a remote image. Several worker features necessary for the out-of-the-box factors

that DataMill supports are machine dependent, and DataMill automatically tests workers for support

for these features when they boot. Experiments that require those features will never be scheduled

on workers that do not support them.

Keeping Machines Consistent

Each worker node is a separate machine running Gentoo Linux with kernel version 3.18.11, and

GCC 4.8.3. Gentoo Linux was chosen since it is a source-based distribution which offers several

distinct advantages for DataMill. Gentoo Linux has official support a wide variety of architectures,

nearly any architecture which has support for GCC will also support running Gentoo Linux. Having

the same distribution and tool-chain on all the machines keeps their software as homogeneous as

possible.

DataMill store the details of package versions for each experiment executed on our worker nodes

so that users can treat them as a factor during analysis if necessary. We also intend to use this data

to perform best-effort rollbacks for reproductions of previous experiments. Using a source-based

distribution allows us to avoid typical problems with package rollbacks easily, Gentoo provides

several tools for automatically detecting and resolving broken link-level dependencies which would

otherwise force us to rollback library versions and package versions in lockstep. This allows greater

isolation of performance problems, particularly when software libraries are concerned. Although

Gentoo is a source-based distribution, it does support binary packages as well. The master node acts

as a binary package mirror for the common base set of packages that are included or expected to be

used by the worker nodes, avoiding recompiling most packages redundantly.

Since DataMill workers run a source-based distribution, package updates and dependency

resolution during experiment execution can require workers to compile and link software projects.
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Some of our worker platforms are resource constrained, and do not meet the requirements of

compiling large and complex projects such as GCC. Or, if they were to build these projects, would

take a disproportionately long time to do so. The DataMill master node houses several distcc [21]

virtual machine servers and caches compiled object files, permitting resource constrained workers

access to hardware capable satisfying the requirements of demanding software projects. With this

infrastructure in place, resource constrained platforms such as the raspberry pi can effectively serve

as DataMill worker nodes.

Tolerating Failures

Worker nodes are expected to fail. We have paid special care to the design of the worker software

main-loop to ensure that failures are handled carefully. The primary objective of our failure handling

procedures is to ensure that any results produced by an experiment trial are both valid and complete.

Any experiment trial that does not proceed precisely as expected will still report any obtained results,

but the trial will be marked as a failure. The failures are reported to users, indicating that associated

results are to be analyzed with appropriate skepticism.

To respond to different possible failures caused either by poorly written experiment packages,

or unforeseen circumstances, workers are capable of some level of self-repair. Any incorrect

or unexpected states reached during experiment progression that are repeated for a certain time

threshold are escalated. Since these failures are more symptomatic of a systematic failure, rather

than a temporary or user initiated failure, they are escalated and responded to by detailed log and

diagnostic reports followed by deletion of all persistent state on that worker.

Debugging Experiments

Developing experiment packages that will run unaided and unguided on a remote machine is

challenging. DataMill’s answer is to fail as noisily as possible, producing logs of as much of the

non-performance-sensitive portions of user’s packages as possible, and providing access to these

logs from the DataMill web interface.

Although we make debugging remote experiment package execution as simple as possible, the

turn around time for these tests still leaves much to be desired. We created a virtual worker image

that is a fully capable DataMill worker node, on which users can test their packages on a local

virtual machine, and observe and modify their experiment interactively. In this way, they do not

need to spend precious worker node execution time on debugging, and can get the majority of their

experiment’s bugs solved with a much smaller turnaround time. Users have reported that this has

greatly improved their overall experience with the infrastructure.

Mitigating Long Execution Times

Once an experiment package is finished and working, it can still take weeks for a full experiment

to complete is a large set of factors are explored. This is because with each additional factor

and factor level, the size of the experiment space increases combinatorially. DataMill attempts

to and minimize the length of user’s experiments by using an optimization solver (see [7] for

implementation details) to reduce the set of trials down to what is necessary for estimating the

factor effect sizes of interest to the user, as in typical factorial experiment design [10].

Remote Workers and Network Access

Supporting remote workers proved more challenging than originally anticipated as differing

network management policies hampered our original push-style architecture. The master node

does not initiate any communication with workers, it is entirely passive. Previously it was active,

and triggered job execution on workers through secure shell, but this proved problematic when

registering remote workers where network policies were restrictive, and secure shell was not

permitted. We solved this problem by discarding our original Secure-Shell-based infrastructure

with an entirely passive centralized authority. The master node houses a simple dead-drop API

that allows workers to download their next available task, and to upload their results or error logs, or

notifications of failure or other problems. In this way, the communication between the master node
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and the worker nodes is strictly limited, and conforms with most network management policies

implemented by university and business networks.

FACTORS: ARCHITECTURE AND IMPLEMENTATION

DataMill facilitates execution of user supplied benchmarks using a wide variety of experimental

setups. Knowledge of factors that can influence performance and the details of the underlying

mechanics required to vary them are not necessary to leverage the infrastructure. DataMill currently

supports over twenty factors, and facilitates user contribution of factors through a plugin system.

These factors are categorized into software and hardware factors.

When an experiment is created, only workers which satisfy the selected hardware constraints

are scheduled for the experiment. For instance, if a user selects 512 MB to 1 GB of RAM for

their experiment the scheduler is limited to machines that satisfy the memory constraint. This may

come at the expense of also limiting the number of CPU cores since most of our machines with

more than 2 CPU cores have more than 1 GB of RAM. Hence, DataMill shows a machine pool

of eligible workers with tooltips. DataMill currently supports SPARC, ARM, Intel x86, and Intel

x86-64 architectures.

While hardware factors are applied during the scheduling stage, settings for software factors

are serialized and transferred to each worker along with the associated package. The worker nodes

unpack the configuration files sent by the scheduler, applying each configuration individually before

setup or execution. Software factors supported by DataMill include compilation flags, environment

paddings, and link orders. While some factors can be applied through the use of the proc

filesystem, other factors require a more complex implementation.

Pluggable Software Factors

Our factor plugin architecture eases the addition of new factors in two ways:

1. Automatic detection and reporting of factor level support by workers, and

2. A simple plugin format and API requiring users to implement only a simple set of methods.

All DataMill factors are implemented using the plugin API. Only three methods — for setting,

reading, and testing a factor’s level — and a constant holding the possible factor states are required

for factor plugin implementations. From this small API, a factor can be configured and tested on

worker nodes during experiment execution, or during factor level support detection, where workers

report their support for particular factors. The reported factor level support is used to schedule

experiments appropriately based on a user’s experiment’s factor configuration.

Besides the minimum required methods for a factor implementation, factors support several

hooks for manipulating an experiments environment: prepopulate, preboot, presetup, prerun, and

precollect. The prepopulate hook is executed before populating the benchmark partition, and the

preboot hook is executed before booting into the benchmark partition. The last three correspond to

the three user submitted scripts.

Several new factors are supported by DataMill since the original report on the infrastructure [7].

New factors in DataMill version 2.0 include support for altering the underlying filesystem type,

several compiler wrapper enhancements, support for the autogroup kernel parameter, support for

CPU frequency scaling, and support for altering system time.

DataMill supports modifying the underlying filesystem type during experiment execution. It

is well known that differing file system types have differing IO performance [22]. For every

benchmark job executed on a machine, DataMill reformats the benchmark partition with a particular

filesystem before installing Linux and the DataMill worker software for the upcoming experiment

trial. Currently DataMill supports btrfs, ext3, and ext4. One possible improvement to our current

approach is to take into account the disk size when testing filesystems. For example, btrfs turns on

the extrefs feature for disks of sufficient size which may impact performance.

To support modifications to binary link order and compiler optimization level, we implemented a

custom wrapper that intercepts calls to GCC/clang. This wrapper calculates the new order of objects
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according to the configuration received from the master (i.e., alphabetical, or reverse alphabetical

according to object file names), and then forwards the call to the relevant compiler using the new

object file order. Similarly it intercepts compiler flags that it recognizes and adjusts them based on

the user’s preference, all other factors are passed through without modification.

The DataMill compiler wrapper also supports compiling programs as Position-Independent-

Executables by taking advantage of the -fpie flag new in GCC 3.4. It allows executables to behave

like a shared libraries so that their base addresses are relocatable [23]. Since -fpie is only available

for GCC, only the GCC wrapper class was modified to add the flag when the Position-Independent-

Executable factor is turned on. For both GCC and clang, the -fpie flag is removed from the user’s

list of flags when calls to them are intercepted through the compiler wrapper.

When writing a new compiler-based factor, the existing compiler wrapper for GCC or clang

must be modified. This is an exception to our one file per factor plugin architecture. However, this

structure is necessary so that the compiler wrapper intercepts calls to GCC and clang transparently.

For a compiler-based factor, the factor plugin sets the factor level which is read by the compiler

wrapper on calls to GCC and clang during the execution of the experiment. If the user simply

wishes to use a custom CFLAG that is currently not supported as a factor, the flags appended

to GCC and clang calls are passed to the compiler. General-purpose transformations that are not

already implemented as factors are applied in the same way as on the user’s local computer.

Since version 2.0, the DataMill compiler wrapper transparently supports different compilers

during experiment execution. All compilers on the system point to our compiler wrapper via

symlinks, although the compiler wrapper can simply pass-through calls, or users can opt out of

the compiler wrapper entirely. For instance if both GCC and clang were selected for compilers,

calls to GCC would be redirected to clang in one experiment run and to GCC in another.

Besides compiler factors, DataMill also supports kernel parameters such as autogroup, which

is a scheduling policy that aims to reduce scheduling latency on the desktop. It groups tasks by

the terminal to improve responsiveness on an interactive system. On servers which fork processes,

disabling the autogroup feature tends to keep child processes from migrating. When an experiment

involves multiple concurrent processes, disabling and enabling autogroup may reveal a performance

effect on multi-core systems [24]. To implement the autogroup feature, autogroup scheduling is

compiled into the kernel and a boolean value in the proc filesystem is toggled to enable and disable

the autogroup scheduler.

Similarly, changing the frequency scaling governor often has an impact on performance.

Currently DataMill supports the “performance” and “ondemand” schedulers in the frequency

scaling factor. This factor implemented by calling cpufreq-set to set the governor. During

installation, the kernel is configured to enable CPU frequency scaling and the performance and

ondemand governors are built into the kernel. We chose these two governors to represent “on” and

“off” because performance keeps the CPU frequency at maximum while ondemand scales the CPU

frequency levels.

Another factor of interest is the effect of the system time on performance. Before running a

benchmark, the time is set to 2:00pm and the time of the system is saved. After running a benchmark,

the system time is restored. The time elapsed is calculated and added to the time saved before

running the benchmark.

CASE STUDIES

This section presents two case studies: we first perform a compression algorithm performance

comparison to demonstrate how easy it is to conduct a performance experiment on DataMill, then

we replicate a previously published experiment that revealed performance artifacts related to the link

order of a binary, demonstrating the utility of DataMill for the scientific investigation of computer

performance.
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Algo. Size (KB) Reduction (KB) %

None 51,900 0 100.000

bzip2 13,232 38,668 25.496

XZ 12,120 39,780 23.353

Table II. Compression Rates for Each Algorithm.

XZ vs. bzip2: Best Bang for Your Buck?

XZ [25] and bzip2 [18] are widely-used compression utilities for UNIX-like operating systems.

While XZ uses the LZMA2 compression algorithm, bzip2 uses the Burrows-Wheeler algorithm.

These two compressors will serve as stand-ins for a “baseline-vs.-proposed-approach” performance

comparison, found in the majority of computer science papers that contain empirical performance

evaluations. As bzip2 is the older of the two compressors, we will treat it as the baseline.

As described in Section DataMill: The User Experience, the only preparation step required for

this experiment is the creation of two DataMill packages, one for XZ 5.0.4 and another for bzip2

1.0.6. The scripts themselves are included in Section DataMill: The User Experience and comprise

a total of 32 lines. We use the system-wide emerge command to install both XZ and bzip2 in order

to simplify installation, precluding the need to include their source code in each package.

In addition to the DataMill scripts, the packages contain the data to be compressed. For this

experiment, we used the Maximum Compression [26] testset. This testset includes various kinds of

files (text, executable, graphics, etc.) and has been used to compare compression algorithms since

2003.

The metrics, which the collect.sh script collects, were execution time and compressed file

size. Since each compression algorithm leads to a different archive size, the metric used for the

comparison is the byte-per-second compression rate, calculated as bytes reduced/execution time.

Table II shows the uncompressed data size, the resulting archive size under each compressor, the

absolute reduction in size, and the resulting archive size as a percentage of the original file size. Note

the both compression algorithms use deterministic algorithms, so the resulting compressed files are

identical between runs and machines. Machine C, an ARMv7 that uses the ext3 filesystem, reports

file sizes 20KB larger than the ones reported by all other machines, which use ext4. This small 0.1%

discrepancy was ignored.

If absolute compression is the only metric of interest, then XZ is clearly the winner; however, if

execution time or the rate of compression are of interest, then experimentation is necessary. By using

DataMill, we can easily compare the two compressors, and measure their susceptibility to different

factors. The DataMill experiment space was configured to include all machines, all link orders, all

optimization flags, and ASLR “on” and “off”. The number of replications was set to 15 to allow

the measurement of dispersion. This led to the generation of 6300 jobs, distributed between seven

machines.† This experiment took approximately five days to complete on the slowest machine, a

600MHz ARMv7 Beagleboard xM. All other machines completed it in less time, and were free to

continue with other experiments.

Figure 8 shows an overview of the data set resulting from this experiment. This facet plot is

divided by optimization flag (top header) and machine (right-hand header). Machines are indexed

with a capital letter, followed by their clock speed and CPU model. Each subplot contains boxplots

for each of the compressors, bzip2 and XZ, where the box denotes the median, the lower quartile,

and the upper quartile, and the whisker extends to the most extreme data point that is within 150%

of the interquartile range of the data set.

The first conclusion is that bzip2 has a better compression rate for all machines under all

link orders and all optimization flags tested. This would suggest that, for users interested in

compression speed, bzip2 is the better alternative. Also of interest is the fact that bzip2 is unaffected

†Data for the “alphabetical” link order in the XZ was not generated, as that object order did not link successfully.
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Figure 8. XZ vs. bzip2, Compression Rate

by the optimization flag, which suggests it is entirely I/O-bound. XZ, on the other hand, has a

marked performance increase from -O0 to -O1, but negligible differences in performance after

that. The omitted experimental dimensions — link order and ASLR — did not significantly affect

performance, which is demonstrated by the narrow grouping of all samples in the boxplots of

Figure 8 (which contain data from multiple levels in the omitted dimensions).

We use ANOVA [27] to more formally analyze the data. ANOVA is a special-case of the F-test for

differences in variance, and allows us to separate the influence of different factors on variance into

first-order effects and interaction effects, and allows us to understand whether or not factors have

both a significant and substantial effect on our metrics of interest, compression rate, and execution

time in seconds. Although we are measuring performance on a wide variety of machines, we do not

include them as factors in our models. Since we expect different machines to behave differently,

and since it is impractical to isolate hardware internal to machines (e.g., producing otherwise

identical machines with differing amounts of memory, or differing CPU speeds), we analyze results

from different machines seperately. We conduct a multi-way ANOVA on the remaining factors,

compression type, GCC optimization flag, link order, and ASLR, and their second order interactions.

We set the sensitivity of our tests to a confidence level of 95% with a Bonferroni correction since

we block against machine (α = 0.05/7 = 0.007). Prior to computing the ANOVA table, we verified

the homoscedasticity of the data within each experiment block through a widely accepted rule of

thumb, that the largest standard deviation is less than twice the smallest standard deviation. After

computing the ANOVA table for each experiment block, model residuals were examined by hand

using Q-Q plots, each was found to be a reasonable approximation of the normal distribution.

Table III shows the ANOVA table in this experiment fitting a model with up to two-factor

interactions on the execution time data for machine F, a 3.4GHz Core i7. The tables computed

for the remaining machines are similar, as are the conclusions we were able to draw from their

analysis. We are careful to isolate our conclusions to the machine and experiment from which they

were drawn, as we are testing the same hypothesis on many different machines. Because of the
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Figure 9. Effect of GCC Optimization Flags on XZ, by Host

Factor Mean Sq. p-value

Compressor 1.617e+12 <2e-16

Opt. Flag 1.258e+11 <2e-16

Link Order 7.397e+05 0.5807

Addr. Rand. 2.572e+04 0.8907

Compressor:Opt. Flag 1.883e+11 <2e-16

Compressor:Link Order 1.924e+06 0.2347

Compressor:Addr. Rand. 1.511e+06 0.2922

Opt. Flag:Link Order 1.312e+06 0.4624

Opt. Flag:Addr. Rand. 3.791e+06 0.0257

Link Order:Addr. Rand. 2.738e+05 0.8177

Residuals 1.360e+06

Table III. Reduced ANOVA Table for XZ Execution Time on Machine F

isolation of our conclusions, we are subject to the multiple comparisons problem, and as such we

conduct a Bonferroni correction. The mean square column quantifies the change in execution time

attributable to each factor, and the p-value column shows the statistical significance of each factor in

respect to execution time. The model was a good fit, with R2 > 0.99 (i.e., the model explains more

than 99% of the variability in the data), meaning the model can be confidently used to analyze the

data. The table shows that for machine F, the compressor and optimization flags are significant in

isolation (P <0.007), but link order and ASLR are not (P >0.007). Most interestingly, we can prove

the interaction between the compressor and optimization flag through their interaction term, which

is also significant (P <0.007).

Figure 9 shows the effect of GCC optimization flags on XZ’s execution time, with the x-axis

ordering the different optimization flags. While optimization flags are not a continuous dimension,

this ordering facilitates the visualization of the data and represents the activation of various

individual GCC optimization options going from one optimization level to the next. According

to GCC’s manual, the -Os flag is located between -O1 and -O2 because it activates all options from
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-O2 that do not increase binary size, being, therefore, a middle point between the two. Data from

each worker is plotted along an individual line, with 95% confidence intervals shown in light gray

behind each curve. The plot shows a marked and general improvement in performance going from

-O0 to -O1 (as shown in Figure 8), but also reveals a more interesting point: in two of the machines,

there is a decrease in performance going from -O1 to -O2. Despite being a small decrease, this may

merit more investigation, as -O2 is the default optimization flag of several distributions.

This performance comparison demonstrates the utility of DataMill for users interested in

evaluating performance: with just 32 lines of code, 6300 jobs were executed in under a week,

exercising several dimensions that would normally be ignored, and leading to insight that would

be unattainable through manual, one-factor-at-a-time experimentation.

Perlbench: Link Order Effect

We now demonstrate the use of DataMill for users interested in the study of computer performance

evaluation. Mytkowitz et al. [6] report that the link order, the order in which object files are included

in the linking process, of a binary is correlated with runtime performance, and that the optimal

link order varies from host to host. This is generally understood to be a consequence of different

memory and cache layouts leading to different cache and page miss ratios. The authors showed that

the performance of Perlbench — part of SPEC CPU2006 [28] — can vary by more than 8% by

simply modifying the link order.

Trying to reproduce their results, we created an experiment on DataMill to explore the effect of

link order and ASLR on Perlbench performance. We encapsulated Perlbench and SPEC’s “train”

data set in a DataMill package, with scripts and environment file totaling 33 lines. As a result of

time constraints, only three link orders (default, alphabetical and reverse alphabetical) were explored

rather than the full 33 tested by Mytkowitz. Testing the full set of link orders would have extended

the length of the experiment to approximately 12 days. On top of these factors, we also varied

Linux’s ASLR feature. If ASLR is on, one would expect that the effect of link order would be

affected, since ASLR shifts the start point of the region where shared objects are placed in memory.

In other words, the link order and the ASLR factors should be highly correlated. We chose a number

of 15 replications of each configuration to calculate dispersion, generating a total of 630 jobs over

7 machines. The DataMill took approximately 27 hours to finish the full experiment.

Figures 10 and 11 show results for the different metrics for this experiment. These facet plots are

divided by ASLR (top header) and host (right header). Each subplot contains three boxplots, one for

each link order explored. Figure 10(a) shows execution time, and makes it clear that there is indeed

a change in execution time between the different link orders on most cases. An exception to this rule

is machine I, a 1.6GHz Pentium 4, where this effect is minor.

It is also clear that the link order effect does not depend on the ASLR feature of Linux being

turned off; most machines show different execution times between link orders even when ASLR is

turned on. However, machine K (shown in the bottom of Figure 10(a)) shows a link order effect

only when ASLR is turned off, contrary to the other machines.

To help understand this effect, Figure 10(b) shows the cache misses for the experiment‡. This plot

shows that there appears to be a correlation between link order and cache misses for most machines,

but they do not necessarily mirror the execution time effect seen in Figure 10(a).

Finally, Figure 11 shows that there is no apparent correlation between page faults and link order;

even in the case of the Nano X2 and the Xeon machines (top two subplots), the difference in mean

page fault counts between link orders is of less than 1%. A possible explanation for this is that the

sum of code and data for the benchmark is small enough to fit within a page, no matter the order the

object files are linked in.

We conducted a multi-way ANOVA analysis using a procedure similar to that described in

Section XZ vs. bzip2: Best Bang for Your Buck?. We use the same significance level, α = 0.007,

and are subject to the same Bonferroni correction. Table IV shows the reduced ANOVA table

‡Data is missing for the Nano X2 due to the lack of hardware performance counter support.
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(a) Execution Time

N/A N/A

(b) Cache Misses

Figure 10. Effect of Link Order on Perlbench Execution Time and Cache Misses

for machines A (R2 = 0.977) and K (R2 = 0.855). This table shows that the link order effect is

significant for both of these machines (P <0.007), but only in machine K do the ASLR factor

(P <0.007) and the interaction between ASLR and link order factors (P <0.007) play a part. We

confirmed that ASLR and link order could interact by examining how Linux’s ASLR feature shifts

the start location of linked libraries in memory. In machine A, both of these are not statistically

significant at the 99% confidence level (P >0.007 in both cases). This suggests that the effect of

ASLR, which is present in machine K but not in others, is highly dependent on the machine.

Therefore, while the presence of a cache effect and the lack of a page effect would seem to

explain the variations in execution time between link orders, the correlation between link order

and execution time still merits more investigation. DataMill is a powerful tool for researchers in

performance evaluation, since it allows the systematic variation of correlated factors, such as link

order and ASLR, and the simultaneous collection of multiple relevant metrics, such as cache misses

and page faults.

LESSONS LEARNED

The implementation of the infrastructure and the execution of the experiments detailed in

Section Case Studies, and our experiences maintaining and using DataMill over the past two years,

raised several interesting problems.

Implementation and Maintenance

We anticipated problems arising from maintaining a heterogeneous compute cluster, as each

platform may require individual attention, and experience a variety of mutually exclusive problems,
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Figure 11. Effect of Link Order on Perlbench Page Faults

Mach. Factor Mean Sq. p-value

A

Link Order 135.77 <2e-16

Addr. Rand. 0.07 0.0301

Link Order:Addr. Rand. 0.04 0.0687

Residuals 0.01

K

Link Order 1856.5 <2e-16

Addr. Rand. 1234.6 <2e-16

Link Order:Addr. Rand. 1864.9 <2e-16

Residuals 3.3

Table IV. Reduced ANOVA Table for Perlbench Execution Time on Machines A and K

but we faced several unexpected challenges while keeping DataMill maintained and running over

the course of the two years of its operation.

No matter how reliable we make our infrastructure, problems will inevitably occur, either from

lack of foresight, or from things completely out of our control. For example, even in a city with

relatively stable power-grids, power outages happen, and can cause a plethora of complex problems,

even more-so when an experiment is running. Machines must be able to boot back and self-heal to a

sane state. They also need correctly handle partial, incomplete, and tainted experiment results, and

to rerun experiment trials when necessary. Thus, we needed a policy for handling a misbehaving

worker. The most important product of DataMill are the user’s experiment results, and we must

ensure their validity, thus when a worker fails or is otherwise tainted, we need to evaluate and

ensure the validity of the results produced by that worker. The correct thing to do when incomplete

or possibly tainted results are produced is to collect as much as possible (for debugging), but mark

those results as unusable with clear warnings to the user not to use them to draw conclusions, and

to notify the administrators of the problem. DataMill has several checks in place on the controller
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partition to determining whether or not an experiment completed successfully, and when anything

unusual occurs, DataMill reports everything it can about what happened, and marks the job as failed.

Self-healing a broken or misbehaving machine is a challenging problem. The primary challenges

in creating a self-healing worker are, determining when a worker is broken, and determining how

it should work towards fixing itself. We needed to design the main-loop of the controller partition

so that it would never fail so completely that it would not be able to pick up software updates

and patches from upstream that could potentially resolve whatever issue that particular worker was

experiencing.

Exceptions are handled carefully, and any exceptions that reach the outer-loop are treated

implicitly as a trial failure. The only time that an exception is escalated to the top-level is when

the last successful return to sleep mode without any successful job completion (indicating that the

worker is in an infinite loop of exceptions) was over a certain number of days in the past. Once this

condition is satisfied, the worker does a complete self overhaul consisting of the following steps,

1. Gather and upload log files and other information such as dmesg, df, and mount output to the

master, continuing when exceptions are encountered.

2. Attempt to remove its registration on the master, continuing regardless of success.

3. Clear any persistent DataMill state present on disk.

4. Request a re-install of all DataMill worker software and its dependencies.

The master node must also detect worker failures. When a worker has not communicated for three

days, the master triggers a re-registration process for that worker if it ever reconnects. In the

majority of cases, this process is sufficient to self-heal workers when something goes amiss, and

it benefits the DataMill developers and admins by automatically collecting diagnostic information

when something goes wrong. The most frequent unhandled worker failures we encounter are on

machines which cannot boot back up after to a power outage.

Keeping software versions synced between differing architectures is sometimes challenging and

time consuming. The primary goal of DataMill is robust, reliable, and reproducible experimentation.

One of the caveats of this goal is that we need to keep the differing experimental environments as

controlled as possible. Maintaining a heterogeneous cluster of machines means uncovering many

package incompatibilities in older and newer architectures. For the SPARC architecture in particular,

we have ran into problems installing OpenJDK for user’s Java-related experiments. We attempt

to keep the base set of software installed on each machine identical. We also attempt to control

for software versioning by recording all system package versions used during the execution of an

experiment package. Although software versions are already factored out by arranging experiment

results into blocks by worker, which serves both to factor out differences in architecture and software

versions, we do not wish to confound architecture and system package version unless completely

necessary. We control and utilize our own package mirror for the purposes of keeping machines

consistent, and carefully test package updates before deploying them to all workers.

Testing DataMill worker software is an interesting challenge. It is not always obvious how each

architecture will respond to a DataMill software update, so an extensive test suite that is run against

all supported architectures is critical before pushing out a worker update. DataMill comprises

a heterogeneous cluster of machines distributed across the globe, worker updates need to be as

flawless as possible, since it is difficult and time-consuming to debug and fix problems on remote

donor machines.

Debugging packages took considerably longer than expected, especially in the case of Perlbench.

This was mainly due to the non-standard build system distributed by SPEC, which requires manual

configuration of target architecture parameters. Our experience with it led us to create a virtual

worker image on which users can debug their packages. We are currently also investigating a special

debug experiment type which would execute packages once on each available architecture to ensure

it behaves as expected.

DataMill master software is also challenging to update. Master unit and functional tests are

conducted locally during development, and then remotely on a machine identical to the master

server in every way, and which is periodically cloned from the master. This lets us test every aspect

of the master software including the deployment process itself, we have run into several problems
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related to schema migration using real user data vs fabricated sample data. We also have the benefit

of testing in an environment identical to that which is used in production, catching bugs before they

become a problem. We also have virtual worker machines that connect to our test-master and which

can run full experiments, letting us perform functional tests of the entire experimentation process.

Lessons from Community Usage

One general usage pattern we observed is that many users collect data for multiple trials of an

experiment per job. Although the workers reboot between each job to clear the cache, many

researchers ignore the effect of caches in favor of gathering research data quickly. While DataMill

supports partial results files as jobs finish, researchers who run experiments that do not reboot

between trials have asked for a live view of the results. This is because results are uploaded after

jobs finish. Jobs with multiple trials take a longer amount of time to finish, and DataMill is currently

designed to reboot for every trial.

New users of DataMill found our wiki page on getting started with DataMill helpful to learn how

to use DataMill. This page explains how to make an experiment package including the setup, run,

and collect scripts. It also gives a brief set of steps on testing an experiment package with DataMill.

To test a package, the user only needs to launch the DataMill virtual worker and type in a public

URL to download their package onto the virtual machine. To debug a package, log benchmark and

controller logs are provided in a folder. One user who benchmarked only C++ programs found that

he only needed to run the virtual worker once to get his first package working. In the process of

debugging his package with the virtual worker, he found the benchmark and controller logs helpful.

Users prefer to use DataMill over personal equipment for benchmarking, mainly due to the

different architectures and heterogeneous hardware available on DataMill. Secondly, they also favor

the quick and easy interface for submitting experiments and collecting the results. In particular,

users have found the experiment create user interface, which has sliders for hardware factors and

checkboxes for software factors, to be intuitive and effortless to for selecting and adjusting various

factors. However, researchers who only need to gather performance data for software are in a

different situation. They tend to leave the software factors as default and run their experiments

over the full range of hardware.

Lessons from the RV Competition

The Runtime Verification (RV) conference started in 2001 as an annual workshop. It is now

an international conference for researchers to share their findings in runtime verification, which

is the study of how to design artifacts for monitoring and analyzing system executions [29, 30].

Competition of Software for Runtime Verification (CSRV), first introduced in RV 2014, aims to

allow researchers to share software tools, libraries, and frameworks for the instrumentation and

runtime verification of software. A total of eleven institutions participated in CSRV 2014.

During CSRV 2014, DataMill provided the infrastructure necessary to run experiments, collect

results, and share experiment setups. Users were provided with individual accounts to a web

interface to submit their experiments. For the purposes of RV competition, DataMill executed a

total of 151 experiments with 2677 jobs for the competition. Of these jobs, 832 were executed on

a machine set aside for collecting final results. Of the 383 jobs that failed, most of them were from

packages that were not properly tested. One common mistake made in these packages was not

outputting the file to be collected for analysis at the end of the collect.sh script. As a result,

jobs would fail due to missing result files. Another common mistake made was the selection of

architectures unsupported by software used in the package. Many packages on ARM in Gentoo

need to be unmasked before they can be installed. Thus, some packages failed to compile their

necessary dependencies when ARM was selected as an architecture. All of failed jobs were soft

failures handled by our worker design. Workers recovered automatically and continued to fetch new

jobs after these failures.

The main issues encountered during CSRV 2014 came from the submission of experiments and

collection of results. As a result of the structure and organization of the competition, participants

ran experiments individually and submitted their results by hand to a spreadsheet, a manual-

labor-intensive situation which is precisely what DataMill is designed to avoid. The infrastructure
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necessary to automate the entirety of the repetitive steps needed to carry out the competition exist

in DataMill, but were not leveraged by the competition organizers at the time.

For RV 2015, the organizers decided to run the competition as a single experiment with multiple

packages after all the individual submissions are tested. This ensures that the experiments are

executed on equal footing, on the same machines with the same software environments, and blocked

and randomized automatically by DataMill. It also allows the utilization of the entire DataMill

infrastructure, and its full set of machines, providing greater confidence in the results of the

competition. Finally, running the competition in this manner completely automates the collection

and collation of results, so that no additional manual effort would be required.

RELATED WORK

Various researchers [4, 3, 31, 32, 33, 34] argue for more statistical rigor in computer science

and groups such as the Evaluate Collaboratory [35] have been created to pursue more rigorous

experimentation practices. The paper survey by Tichy et al. [5] concludes that numerous

publications in the field of computer performance evaluation show substantial flaws in experiment

design and execution. Vitek and Kalibera [14] report that in PLDI’11, a selective conference where

experimental results are commonly published, 39 of the 42 papers that published experimental

results did not report a measure of uncertainty in their data, obviating the need for more rigorous

statistical analysis in computer science. A survey conducted by Desprez et al. [2] draws similar

conclusions from a paper survey they conducted. Kalibera and Jones [15] raise a similar point,

presenting a random effects model tailored to computer experiments, while also noting that current

textbook approaches may be insufficient in the field. Georges et al. [36] argue for the use of

statistically rigorous analysis methods, however, their approach is only limited to narrow field of

statistical analysis methods.

Mytkowicz et al. [6] demonstrate that seemingly innocuous experimental setup details, such as the

UNIX environment size or the benchmark link order, can have a significant impact on performance.

Harji et al. [16] show that the Linux kernel has had a series of performance affecting issues, and

that papers that present data measured on Linux could contain incorrect results. Kalibera et al. [17]

show that random symbol names generated by a compiler leads to different memory layouts at run

time, and, consequently, random variations in performance.

Curtsinger et al. [37, 38] reports performance regressions of up to 57% as a result of manipulating

link-order, and developed a tool, STABILIZER, for combating this effect. STABILIZER improves

the robustness of computer performance measurements by randomizing the memory layout of the

stack, code, and data memory regions of a process at runtime. This affords fine control of the

effects of memory layout during execution. Further, the tool forces any memory layout effects to

approximate a Gaussian distribution, permitting the use of traditional statistical analysis techniques.

Yasugi et al. [39] have developed a method to benchmark programs that cancels code placement

effects. The problem is that code placement changes instruction addresses of otherwise equivalent

executable programs. These similar programs often exhibit different performance. Yasugi et

al. developed a proper evaluation scheme that statistically summarizes the performance effect of

several artificial programs with different code placement.

We have previously investigated the impact of memory layout factors [40] reported by

Mytkowicz, Kalibera, and others. We found that, for the set of machines and benchmarks tested,

out of ASLR and POSIX environment padding, only ASLR had a statistically significant impact on

performance, but that even in the worst-case, ASLR had a negligible effect size for most practical

purposes.

Desprez et al. [2] surveys numerous large-scale computing installations that follow a similar

objective to our cause; to create reproducible, extensible, applicable, and revisable experiments.

The authors provide a survey of experimental methodologies and survey a selection of experimental

testbeds. In contrast to our design the testbeds surveyed are often comprised of homogeneous nodes

and do not exhibit a lot of variation in the hardware used. While the computing resources are vastly

available and the installations provide support for complex experiments (i.e. including distributed
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systems), the experiment setup is described as a manual arduous process despite exposing high level

interfaces.

The infrastructures have been used to implement demonstrators for federated clouds and projects

in the field distributed systems. Most notably among the surveyed computing installations is

OpenCirrus [41]. In addition to virtualized environments they also provide access to the physical

machines. The lowest level service consists of a physical resource set (PRS). A PRS comprises a

set of VLAN-isolated compute, storage and network resources. The PRSs are dynamically allocated

and managed through a PRS service. Using the PRS paradigm different levels of abstractions can

be configured that suit research applications reaching from low level systems research (e.g., the

evaluation of OS kernel parameters) to complex distributed systems (e.g., several virtual machines

that run a distributed middleware). The reader should note, while the objective of creating create

reproducible, extensible, applicable, and revisable experiments are aligned with our cause, the focus

of the systems surveyed by Desprez et al. [2] is on distributed systems. As a result the hardware

infrastructure is decidedly homogeneous, which simplifies the experiment setup and configuration.

While testbeds like OpenCirrus [41] support access to low-level hardware features, those features

expose little variability compared to the applications we are targeting.

PlanetLab [42, 43] provides planetary-scale data services and is used by the research community

to deploy, evaluate and access planetary-scale network services. Planetlab provides so called slices

to its users that consists of distributed networked virtual machines (VMs). The VMs are hosted

on physical machines that are maintained in a communal fashion. In order to become a user

of PlanetLab, one has to dedicate some servers to PlanetLab. PlanetLab exposes an API for

provisioning the slices and has facilities to isolate the network of the individual slices. This API

is accessible through the PlanetLab shell and XMLRPC. To add nodes to his slice, the PlanetLab

website and the PlanetLab API are two options. With the XMLRPC interface, the user authenticates

with his PlanetLab username and password to add nodes to his slice. PlanetLab uses CoDeploy

to efficiently and scalably distribute software from one source to many receivers [44]. CoDeploy

requires HTTP access to a directory on the user’s local filesystem [45]. CoDeploy is designed to

push content to hundreds of PlanetLab nodes without consuming lots of bandwidth at the source

node. Once the application the user wishes to run is deployed to all nodes, CoDeploy provides a

tool called MultiQuery for the user to run a command simultaneously on a large number of nodes

via SSH [46]. In summary, PlanetLab’s infrastructure is used predominantly to evaluate and deploy

distributed systems [45], including content-distribution networks, name services, location services,

file-streaming services, fault-tolerant scalable services, peer-to-peer networks, distributed anomaly

detection, distributed research allocation, routing overlays, and resource discovery.

Because the experiment environment exposed to the user is a virtualized machine, PlanetLab is

not an optimal choice for computer performance experiments that seek to evaluate the impact of

varying hardware environment factors. This conclusion is consistent with papers listed [45]; none

of the publications include computer performance experiments. On the contrary, DataMill runs all

experiments without virtualization and even reboots machines between each job. Although DataMill

does not provide SSH access to workers, an interface for selecting the hardware and software factors

for experiments is provided.

Various other experimentation infrastructures have been proposed with similar properties to

PlanetLab. Jaffe et al. [47] describe a production platform with similar features to PlanetLab.

The project links various large data centers in an effort to provide an experimentation platform

for distributed systems. Unfortunately, the hardware chosen for the data centres is homogeneous

and does not aid in the exploration of large factor space.

CloudLab [48] is an infrastructure for researching cloud computing. In terms of hardware,

CloudLab is a distributed infrastructure with about 5000 CPU cores, 300-500 Terabytes of storage,

and 2x10 Gbps network interfaces with Software Defined Networking at each site. CloudLab

provides researchers with a state of the art environment for researching cloud computing. In terms

of software, CloudLab’s software stack is based on Emulab, which provides access to emulation,

live-internet experimentation, 802.11 wireless, and Software-Defined Radio. Although emulation

gives the user root access, it is not suitable for running benchmarks.
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HTCondor [49] is a distributed job scheduler designed for computation-intensive distributed

workloads. HTCondor shares some of DataMill’s characteristics — such as having users prepare

packages and submit them for execution — but since it it geared toward maximizing a cluster’s

computing throughput, it is not well suited for clean-room performance evaluation.

Open Curation for Computer Architecture Modeling (OCCAM) [50] is a project for

computer architecture experimentation that aims to make experiments reproducible. OCCAM

proves infrastructure components such as standardized simulators and benchmarks for computer

architecture researchers. OCCAM aims to allow researchers to more quickly and easily show that

their techniques improve the state-of-the-art. Experiments in OCCAM are created with a workflow

builder that allows researchers to connect various objects together. OCCAM provides tools to

build, debug, and deploy these objects including simulators, benchmarks, and tracers. The workflow

builder contains forms for configuring simulators and a GUI for connecting objects together.

LAVA from Linaro is an open source software QA and validation system for ARM boards that

shares a few similarities with DataMill. Like DataMill, LAVA is a distributed and heterogeneous

experimentation infrastructure, it has master and worker nodes. Jobs from the master node are

distributed to workers. The two infrastructures differ in that LAVA is a validation lab for hardware,

and DataMill is a platform for performance evaluation. As a result, their main feature sets also

differ as shown in Table V. For example, LAVA results are reported as pass or fail whereas results in

DataMill are specified by the user. DataMill allows researchers to select hardware and software

factors, and LAVA only partially supports the selection of hardware factors through specifying

boards in the test definition. LAVA offers a diverse selection of ARM boards, a commandline XML-

RPC interface, and testing of U-boot images. LAVA requires the use of either a KVM switch or

devices that support PXE-boot to run tests on targets [51], but DataMill supports any device that

can run Linux and connect to a network. For debugging software packages, LAVA offers the LAVA

test shell, which is an SSH session, while DataMill provides a virtual machine with the same set of

software on workers. Furthermore, in LAVA test definitions are written in JSON and commands to

run inside the test are written in YAML [52]. Contrarily, DataMill only requires the run and collect

BASH scripts.

LAVA Datamill

VM for testing benchmark

packages

No Yes

Selection of hardware factors Partial (boards only) Yes

Selection of software factors No Yes

Commandline XML-RPC

interface

Yes No

Testing of U-boot images Yes No

OpenID login Yes No

Web interface to submit jobs Yes Yes

Types of tests Pass/Fail unit tests User specified

Debugging benchmark

packages

Test shell Virtual machine

Table V. LAVA feature comparison with DataMill

FUTURE WORK

As part of our future work we consider various improvements to the existing system architecture.

Huang et al. [53] have shown that maintaining security and accountability in a distributed

experiment execution framework is challenging. Our current architecture was geared towards

providing a proof-of-concept prototype. As part of our future work we want to implement a
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centrally managed security policy. This would add accountability for individual job executions and

transparency to maintainers of remote workers such that the impact of malicious attacks on the

infrastructure is minimal.

While our current prototype monitors basic performance metrics of user’s submitted experiments,

users must ultimately analyze to analyze their experiment-specific results. In the medium-term we

want to provide an application interface for distributed data-analysis tools (i.e., Hadoop [54]), and

services (i.e., Amazon Web Services [55]) to facilitate the analysis of experiment data. Our plan

is to provide a template engine for various standard benchmarks that can be easily customized by

users.

LAVA and DataMill share many similarities which we plan to leverage. LAVA’s architecture

is similar to the architecture of DataMill, and it is conceivable that features currently unique to

DataMill could be implemented as specific test images in the LAVA infrastructure. We plan to

experiment with using LAVA images as a starting point for installing Gentoo on ARM boards. In

particular, the availability of a working kernel alleviates the problem of finding a working kernel tree

and configuration. Further more, we plan to contribute DataMill worker images for x86 machines

which would report results to the master node, allowing LAVA users to collect more complex results.

CONCLUSION

In this paper we discuss DataMill version 2.0. DataMill provides services to set up and execute

robust, replicable, and reproducible experiments. DataMill enables researchers to publish their

experiment software, setup, and results. In this way experimental results can be reproduced

easily. Many aspects of complex performance experimentation are automated by DataMill enabling

users to set up performance experiments easily. Due to its support for many different hardware

platforms and automated factor variation, DataMill can cover a larger experiment space than

typically considered by most researchers. For example, we have shown that a complex performance

experiment consisting of 6300 jobs that span various factors can be set up by configuring a package

with just 32 lines of shell code. We believe that DataMill can serve as a watermark for experiments

conducted for performance-oriented conferences. DataMill can be accessed and utilized through its

web interface here [8].
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APPENDIX

ApacheBench http://httpd.apache.org/docs/2.2/programs/ab.html

Emacs http://www.gnu.org/software/emacs/

CLAPACK http://www.netlib.org/clapack/

CoreMark https://www.eembc.org/coremark/

GFortran https://gcc.gnu.org/wiki/GFortran

Himeno http://accc.riken.jp/2444.htm

Iozone http://www.iozone.org/

JavaLinpack http://www.netlib.org/benchmark/linpackjava/

GCC https://gcc.gnu.org/

clang http://clang.llvm.org/

JFlex http://jflex.de/

LAME http://lame.sourceforge.net/

Libgcrypt http://www.gnu.org/software/libgcrypt/

libMicro https://java.net/projects/libmicro

MiBench http://wwweb.eecs.umich.edu/mibench/

NUMA-bench http://code.compeng.uni-frankfurt.de/projects/numabench/

PgBench http://www.postgresql.org/docs/devel/static/pgbench.html

pipebench http://www.habets.pp.se/synscan/programs.php?prog=pipebench

Postmark http://www.filesystems.org/docs/auto-pilot/Postmark.html

SPECCPU2006 https://www.spec.org/cpu2006/

SPECjvm2008 https://www.spec.org/jvm2008/

SQlite https://www.sqlite.org/

X264 http://www.videolan.org/developers/x264.html

Table VI. Software and Benchmarks Tested with DataMill
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CPU architecture Number

of

CPU

cores

CPU

model

CPU

fre-

quency

(MHz)

RAM

size

(KB)

RAM type

Intel(R) Atom(TM) CPU E3845 4 x86 64 1909 1949348 DDR3

Intel(R) Atom(TM) CPU E3845 4 x86 64 1909 1949348 DDR3

Intel(R) Atom(TM) CPU E3845 4 x86 64 1909 1949348 DDR3

Intel(R) Atom(TM) CPU E3845 4 x86 64 1909 1949348 DDR3

AM37x ARM Cortex-A8 1 armv7l 797 500932 LPDDR

Intel(R) Pentium(R) M processor 1 i686 1694 901048 SDRAM

Intel(R) Pentium(R) 4 CPU 2 i686 2993 892688 DDR

Intel(R) Pentium(R) 4 CPU 2 i686 3200 900992 DDR

Intel(R) Pentium(R) 4 CPU 1 i686 2400 900968 DDR

Intel(R) Pentium(R) 4 CPU 1 i686 1595 253236 SDRAM

Quad-Core AMD Opteron(tm) Processor 8378 16 x86 64 2411 32963948 DDR2

Intel(R) Pentium(R) 4 CPU 2 i686 2998 892800 DDR

Intel(R) Pentium(R) 4 CPU 2 i686 2993 892800 SDRAM

Intel(R) Pentium(R) 4 CPU 2 i686 3200 900992 DDR

Intel(R) Pentium(R) 4 CPU 2 i686 2793 900964 SDRAM

Intel(R) Pentium(R) 4 CPU 1 i686 1614 901048 DRAM

Intel(R) Pentium(R) 4 CPU 2 i686 3198 900992 DDR

Intel(R) Pentium(R) D CPU 2 x86 64 2993 2054624 DDR

Intel(R) Pentium(R) 4 CPU 2 i686 3200 900992 DRAM

Intel(R) Xeon(R) CPU E5-2699 v3 36 x86 64 2301 16337272 Other

Intel(R) Xeon(R) CPU 5160 2 x86 64 3000 2826628 DDR2

Intel(R) Core(TM) i5-4300U CPU 4 x86 64 1900 3706100 DDR3

Intel(R) Core(TM) i5-4300U CPU 4 x86 64 1900 3706108 DDR3

Intel(R) Core(TM) i5-4300U CPU 4 x86 64 1900 3706100 DDR3

Intel(R) Core(TM) i5-4300U CPU 4 x86 64 1900 3706108 DDR3

Intel(R) Xeon(R) CPU E5-2690 v2 20 x86 64 3001 8148976 DDR3

Intel(R) Xeon(R) CPU E5-2640 v2 16 x86 64 2001 8149428 DDR3

Intel(R) Core(TM) i7-2600K CPU 8 x86 64 3401 8094688 DDR3

ARMv7 Processor rev 10 (v7l) 4 armv7l 791 896568 DDR3

ARMv7 Processor rev 10 (v7l) 4 armv7l 791 896568 DDR3

ARMv7 Processor rev 10 (v7l) 4 armv7l 1988 896568 DDR3

ARMv7 Processor rev 10 (v7l) 4 armv7l 1988 896568 DDR3

Intel(R) Core(TM) i5-2500 CPU 4 x86 64 3301 8150896 DDR3

AMD G-T56N Processor 2 x86 64 1650 1647368 DDR3

AMD G-T56N Processor 2 x86 64 1650 1647368 DDR3

Freescale i.MX 6 ARM Cortex-A9 Quad core 4 armv7l 1024 1025472 DDR3

Freescale i.MX 6 ARM Cortex-A9 Quad core 4 armv7l 1024 1025472 DDR3

Freescale i.MX 6 ARM Cortex-A9 Quad core 4 armv7l 1024 1025472 DDR3

Table VII. Hardware Platforms Currently Active in DataMill
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