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ABSTRACT

In our current society, unobtrusive sensing has become an impor-

tant tool to monitor the physical world, as it is easy to use and

privacy-aware. Remote sensing is a new and heavily researched

technology based on the analysis of radio signals. A particular field

research in this area is the analysis of channel state information

with the raw signal, as this contains the most information. While

most research focuses on analysis of individuals or clustered data,

little to no research has gone into the analysis of channel state

information of multiple people over multiple days for different and

comparable activities. This dataset contains data of nine different

participants over three different days, with an two participants

repeating the activities over an additional three days. The dataset is

available at the 4TU.ResearchData under the CC BY-NC-SA license

[4].

CCS CONCEPTS

· Computer systems organization → Sensor networks; · Net-

works→Wireless local area networks; ·Human-centered com-

puting → Ubiquitous and mobile computing.
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1 INTRODUCTION

There is an increasing demand to monitor and control the world

unobtrusively. This is supported by evolving technologies; enabling

smaller and smarter solutions with better performance than cur-

rent solutions. These techniques are often applied to humans; be it

for security, safety or health reasons. This is not exclusive to hu-

mans either, as animals and structures are continuously observed
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through these pervasive systems. One could think of structural or

vehicle health monitoring for preventive maintenance, the tracking

of animals and poachers, and the security in a city centre.

For these situations in which continuous monitoring is required,

two techniques are currently superior: audiovisual technologies

and wireless sensor networks. Audiovisual technologies are based

on video and sound. These are accurate and interpretable by hu-

mans, yet they are considered privacy invasive. This means these

technologies can often not be used due to privacy concerns. Wire-

less sensor networks are the more privacy-aware alternative, as it

becomes harder for humans to interpret the signals. Furthermore,

they are considered to be unobtrusive as they often consider of

small sensors, barely causing any impairment to the user. However,

they are in fact still obtrusive physically, as sensors often need to

be worn on and in the body.

Remotely sensing the human body is the only way to achieve

true unobtrusive sensing. In order to achieve this, current research

has shifted to remote sensing [1, 2, 8, 12]: analysing how activities

and/or events affect the environment. An increasingly popular tech-

nique used for remote sensing is based on channel state information.

Channel state information takes advantage of the multipath effect

and provides information regarding the propagation of traces from

the transmitter to the receiver, measured over different subcarriers

and antenna pairs.

Human activity recognition is a field often tackled by this new

idea of remote sensing. Research has shown that measuring physi-

ological signals [5, 7, 9, 10] and general activity recognition [1, 5,

6, 11] can all be achieved through channel state information. The

user-friendliness of remote systems is higher, as no wearables are re-

quired. Another incentive is the sense of privacy as it is more likely

people would feel more comfortable with no cameras, microphones

or wearables (Hawthorne effect).

1.1 Uniqueness of the dataset

Clearly labeled datasets with proper metadata including channel

state information are hard to find, as they are often not shared. The

ones that are shared are often lacking documentation or metadata.

Furthermore, collecting varied data from multiple participants over

multiple days is often challenging due to time constraints and

availability.

This dataset is unique in that data is collected from nine different

participants over three days, while two participants also repeated

the experiments over the course of a total of three days. It allows

researchers to test their model on i) same participant (50 trials per

activity), ii) different participants on the same day, iii) different par-

ticipants over different days and iv) same participants over different

days.
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2 DATA COLLECTION

2.1 Hardware and software

A dedicated transceiver node was designed for this research, con-

sisting mainly of a Gigabyte Brix IoT. The hardware of the Brix was

modified to fit an Intel Ultimate Wi-Fi Link 5300 NIC (Figure 1).

The Intel NIC was chosen in order to use the open CSI platform

by D. Halperin et al. [3]. Effort was put into using micro-PCs, but

these were not stable enough in combination with the Intel 5300.

This is likely due to the Intel 5300 being heavily outdated hardware.

The specifications of the final design can be found in Table 1 and

the final solution can be found in Figure 1.

Table 1: Hardware specifications Gigabyte Brix IoT

Component Specifications

Processor Intel Apollo Lake N34500

RAM 1x HyperX 8GB DRR3L-SO DIMM 1866 MHz

Hard drive Transcend MTS800 SSD 128 GB (M.2 2280)

Graphics card None

Wireless adapter Intel N Ultimate Wi-Fi Link 5300

Size 165x105x27mm

Operating System Ubuntu 14.04.4

The software developed for the receiver node was essentially a

wrapper, allowing CSI collection for custom duration and sampling

rate (depending on the activity). The node initiated the collection

by pinging the access point. The access point replied to the node

and for this reply the channel state information (amplitude and

phase) over 30 subcarriers was recorded. Therefore, the sampling

rate is not necessarily the number of frames measured per second,

but rather the number of pings sent from the node to the access

point.

Afterwards, the receiver node would synchronise with a server

(a Raspberry Pi with an external hard drive) and store the files in a

logical order on the hard drive. Synchronisation was done using

the same network between activities. The files were automatically

converted by the Raspberry Pi from .dat to .mat and .h5 to analyse

them through MATLAB and Python. The Raspberry Pi was located

within the same room, but at a safe distance away from the nodes.

Figure 1: Inside of the Gigabyte Brix IoT (receiver node) with

the Intel 5300 NIC

2.2 Data acquisition

2.2.1 Experimental setup. In order to produce a dataset that is

reminiscent of day-to-day living, an actual (small) living room

was used in student housing. The living area is approximately

379x345cm and enclosed by two concrete walls (379cm), a full glass

wall (305 cm) and an "open space", partly blocked by a hard plastic

toilet box (179cm), leading into the kitchen and sleeping area. The

total dimensions of the studio are 861x345cm (Figure 2).

(a) Clap (b) Walk (c) Wave (d) Jump (e) Sit (f) Fall

Figure 2: Layout of the experiment studio, including visual-

ization of performed activities. Transmitter and receiver are

the red and green square, respectively.

The setup consisted of a custom Gigabyte Brix IoT connected

to an access point (TP-LINK AC1750). The distance between the

transmitter and receiver was approximately 250cm, where the ac-

cess point was located on a table (50cm off the ground) and the

receiver node was located on a shelf on the wall (160cm off the

floor). Furthermore, there was a laptop to monitor the status of the

nodes and a screen showing experiment instructions and progress

to the participants. The room also contained a yoga mat to indicate

the perfect location to perform activities. Also located in the room

were a L-shaped sofa, table (with a plant), TV (and furniture), desk

(with a chair), and a bookcase with books. All of these were either

in the line-of-sight between the nodes or within the immediate

vicinity of the either the node or the access point.

2.2.2 Connectivity. There are different connectivity options using

the Linux CSI Tool [3]. The two main ones are using aWiFi network

(which this dataset used) or the 802.11n injection mode. For this

dataset, the node initiates the transmission by pinging the access

point. The access point then returns a frame for which the channel

state information is captured. The most important incentive to use

an existing WiFi network, was that it was important to replicate a

real-life setting. Injection mode requires more modifications to the

access point and a continuous transmission (thus causing a lot of

interference on the specified GHz band). The rate at which the node

was pinging the access point was 20 Hz. This low frequency was

chosen over higher frequencies used in past works [11], as real-life

solutions should not flood the network. A 2.4 GHz network was

used, as this is still the most available one in most homes. Frames
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were transmitted at 48 Mbps using 64QAM(1/2) using mostly 3x3

MIMO for 5 seconds. After each 5 seconds, there was a 1 second

buffer to flush the data. Note that this does not mean that 100 traces

were recorded per second, as frames get lost.

2.2.3 Participants. A majority of papers using channel state infor-

mation for activity recognition focus on either a single participant or

generalizing all data. Nine participants were selected with strongly

different characteristics when it comes to height and weight. The

dataset does not contain this information due to the participants

not willing to share confidential information. The 9 participants

were spread over the course of 3 days, meaning there were three

participants on each day. However, due to availability constraints,

participants were welcomed at any time and therefore there is

no consistency between recording times throughout the days (see

Table 2).

Table 2: Timesheet participants per day (GMT+1), each ex-

periment took 1 hour

Day 1 Day 2 Day 3 Day 6 Day 7 Day 8

1 2 3 4 5 6 7 8 9 6 8 6 8 6 8

T
im

e
s

11:30

13:00

14:00

15:00

16:00

17:30

19:00

20:00

21:00

22:00

2.2.4 Activities. The performed activities were full-body activities

to visibly change the channel state information to the human eye.

Minor activities (such as hand gestures) or physiological signals

(such as heart rate) do not cause enough disturbance on the chan-

nels to differentiate them using the human eye. For the analysis of

impact on the channel state information, it was thus more beneficial

to consider these activities. The activities include clapping, walking,

waving, jumping, sitting and falling (see bottom of Figure 2). Jump-

ing was excluded from the experiments for the two participants

performing over multiple days due to health concerns.

2.2.5 Days. Experiments were conducted over multiple days to

investigate WiFi signals changing throughout and over days, due

to external influences. These influences include other wireless net-

works (on the same channel), mobile devices and physical changes

in the environment (such as furniture being replaced). As this re-

search focuses on the use of a wireless network, rather than the

802.11n injection mode, stability over days is captured.

2.3 Dataset

The dataset is available at the 4TU.ResearchData under the CC

BY-NC-SA license with the DOI 10.4121/uuid:42bffa4c-113c-46eb-

84a1-c87b6a31a99f [4].

2.3.1 Overview. Each experiment contained 5 or 6 activities, where

each activity contains of 50 trials.Each trial took 5 seconds, resulting

in 250 seconds for the each activity. This means the total time each

experiment captured data was 1500 seconds. This is excluding the

buffer periods between trials. Per second, 20 pings were initiated,

meaning ideally 5000 frames were recorded per activity. A visual-

ization of the data can be found in Figure 3 for all activities. Note

that these are chosen as they are quite distinctive. Depending on

the participant and day, trials may include more or less distinctive

activities as shown here. Each trace also contains more information

regarding noise and antennas [3].

(a) Clapping (b) Walking (c) Waving

(d) Jumping (e) Sitting (f) Falling

Figure 3: Visualization of the amplitude (x-axis) for 1 subcar-

rier and 6 antenna pairs (3x2MIMO) over 100 frames (y-axis)

2.3.2 Metadata. Datawas collected fromNovember 13, 2018 through

November 20, 2018. Files are ordered in a clear manner, spread over

different folders per day. The naming of the files is done in the

following fashion:

./day<n>/<p>_<a>_<t>.<dat|mat>

where n ∈ {1, 2, 3, 6, 7, 8} for days, p ∈ {1, 2, 3} for participants,

a ∈ {clappinд,walkinд,wavinд, jumpinд, sittinд, f allinд} and t ∈

{1..50}. Note that participants are denoted from 1 to 3, depending

on the day, unlike Table 2 where participants are numbered from 1

to 9.

Except for falling, all activities were monitored continuously.

This means that the data contains a lot of different phases of each of

the activities and that no starting point is comparable. For example

in waving, a trace could start with the participant moving the hand

from left to right, but also with the participant moving the hand

from right to left. This increases the diversity in the dataset.

For d = {1, 2, 3}, participants were instructed to perform the ac-

tivities more freely. This meant participants were allowed to change

the way they performed activities throughout the experiments and

walk freely in the experiment area. This was most noticeable for

d = 2.

For d = {6, 7, 8}, participants were instructed to repeat the same

experiments at approximately the same time each day. The partici-

pants performed the activities in the same order every day and an

effort was made to replicate the appearance of each participant by

making sure the outfit and hairstyle were the same throughout the

experiments. Furthermore, an effort was made to replicate the activ-

ities in the same way by showing a video of the first day. Jumping

was excluded from the list of activities.
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(a) Lost traces (b) Frame loss

Figure 4: Visualization of received traces and frame loss within traces for days, participants and activities (in %)

2.3.3 Dataset analysis. During the statistical analysis, we denote

the following notation for easy reference:

• d ∈ {1, 2, 3, 6, 7, 8} as a given day d .

• a ∈ {clappinд,walkinд,wavinд, jumpinд, sittinд, f allinд}

as a given activity a

• p = {d, s}whered is a given day and s the index for a specific

participant on a d . Note that p(2, 3) = p(6, 2) = p(7, 2) =

p(8, 2) and p(3, 2) = p(6, 1) = p(7, 1) = p(8, 1).

• t ∈ {1..50} as a given trial t .

The dataset should contain 420000 frames when considering 5

seconds per frame with 20 Hz. However, it turns out the actual

dataset consists of 407978 frames due to frame loss and corrupted

files. Out of all files, only 2 traces had 0 frames (Figure 4a). This

figure shows most experiments have at least a single recorded trace,

with the exception for d = 1, s = 1,a = walkinд, t = 50 and

d = 1, s = 3,a = clappinд, t = 41.

For the remaining traces, 97.14% of the expected frames were

collected, meaning 2.86% of all frames were lost. This is confirmed

by Figure 4b, as an average loss of 3.05% per day, activity and

participant can be found here. As these are averaged over multiple

trials, there are some outliers. Figure 5 shows that while most trace

lengths are in the range of [90; 110], some received fewer frames

(as low as 20).

For the entire dataset there were always 3 receiving antennas

(Nrx). However, for a total of 1782 traces the number of transmitting

antennas was 2 instead of 3 (0.44%). For the rates, this was slightly

different. The total range of rates can be split into two categories,

low (< 278) and high (> 8468). Here, the high rates correspond to

the 48 Mbps. There are 404254 traces with high rates, accounting

for 99.09% of the dataset.
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