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Dataset decay and the problem
of sequential analyses on open
datasets
Abstract Open data allows researchers to explore pre-existing datasets in new ways. However, if

many researchers reuse the same dataset, multiple statistical testing may increase false positives.

Here we demonstrate that sequential hypothesis testing on the same dataset by multiple researchers

can inflate error rates. We go on to discuss a number of correction procedures that can reduce the

number of false positives, and the challenges associated with these correction procedures.
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Introduction
In recent years, there has been a push to make

the scientific datasets associated with published

papers openly available to other researchers

(Nosek et al., 2015). Making data open will

allow other researchers to both reproduce pub-

lished analyses and ask new questions of existing

datasets (Molloy, 2011; Pisani et al., 2016).

The ability to explore pre-existing datasets in

new ways should make research more efficient

and has the potential to yield new discoveries

(Weston et al., 2019).

The availability of open datasets will increase

over time as funders mandate and reward data

sharing and other open research practices

(McKiernan et al., 2016). However, researchers

re-analyzing these datasets will need to exercise

caution if they intend to perform hypothesis test-

ing. At present, researchers reusing datasets

tend to correct for the number of statistical tests

that they perform on the datasets. However, as

we discuss in this article, when performing

hypothesis testing it is important to take into

account all of the statistical tests that have been

performed on the datasets.

A distinction can be made between simulta-

neous and sequential correction procedures

when correcting for multiple tests. Simultaneous

procedures correct for all tests at once, while

sequential procedures correct for the latest in a

non-simultaneous series of tests. There are sev-

eral proposed solutions to address multiple

sequential analyses, namely a-spending and a-

investing procedures (Aharoni and Rosset,

2014; Foster and Stine, 2008), which strictly

control false positive rate. Here we will also pro-

pose a third, a-debt, which does not maintain a

constant false positive rate but allows it to grow

controllably.

Sequential correction procedures are harder

to implement than simultaneous procedures as

they require keeping track of the total number

of tests that have been performed by others.

Further, in order to ensure data are still shared,

the sequential correction procedures should not

be antagonistic with current data-sharing incen-

tives and infrastructure. Thus, we have identified

three desiderata regarding open data and multi-

ple hypothesis testing:

Sharing incentive

Data producers should be able to share their

data without negatively impacting their initial

statistical tests. Otherwise, this reduces the

incentive to share data.
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Open access

Minimal to no restrictions should be placed on

accessing open data, other than those necessary

to protect the confidentiality of human subjects.

Otherwise, the data are no longer open.

Stable false positive rate

The false positive rate (i.e., type I error) should

not increase due to reusing open data. Other-

wise, scientific results become less reliable with

each reuse.

We will show that obtaining all three of these

desiderata is not possible. We will demonstrate

below that the current practice of ignoring

sequential tests leads to an increased false posi-

tive rate in the scientific literature. Further, we

show that sequentially correcting for data reuse

can reduce the number of false positives com-

pared to current practice. However, all the pro-

posals considered here must still compromise

(to some degree) on one of the above

desiderata.

An intuitive example of the
problem
Before proceeding with technical details of the

problem, we outline an intuitive problem regard-

ing sequential statistical testing and open data.

Imagine there is a dataset which contains the

variables (v1, v2, v3). Let us now imagine that one

researcher performs the statistical tests to ana-

lyze the relationship between v1 ~ v2 and v1 ~ v3

and decides that a p < 0.05 is treated as a posi-

tive finding (i.e. null hypothesis rejected). The

analysis yields p-values of p = 0.001 and p = 0.04

respectively. In many cases, we expect the

researcher to correct for the fact that two statis-

tical tests are being performed. Thus, the

researcher chooses to apply a Bonferroni correc-

tion such that p < 0.025 is the adjusted thresh-

old for statistical significance. In this case, both

tests are published, but only one of the findings

is treated as a positive finding.

Alternatively, let us consider a different sce-

nario with sequential analyses and open data.

Instead, the researcher only performs one statis-

tical test (v1 ~ v2, p = 0.001). No correction is per-

formed, and it is considered a positive finding

(i.e. null hypothesis rejected). The dataset is then

published online. A second researcher now per-

forms the second test (v1 ~ v3, p = 0.04) and

deems this a positive finding too because it is

under a p < 0.05 threshold and they have only

performed one statistical test. In this scenario,

with the same data, we have two published posi-

tive findings compared to the single positive

finding in the previous scenario. Unless a reason-

able justification exists for this difference

between the two scenarios, this is troubling.

What are the consequences of these two dif-

ferent scenarios? A famous example of the con-

sequences of uncorrected multiple simultaneous

statistical tests is the finding of fMRI BOLD acti-

vation in a dead salmon when appropriate cor-

rections for multiple tests were not performed

(Bennett et al., 2010; Bennett et al., 2009).

Now let us imagine this dead salmon dataset is

published online but, in the original analysis,

only one part of the salmon was analyzed, and

no evidence was found supporting the hypothe-

sis of neural activity in a dead salmon. Subse-

quent researchers could access this dataset, test

different regions of the salmon and report their

uncorrected findings. Eventually, we would see

reports of dead salmon activations if no sequen-

tial correction strategy is applied, but each of

these individual findings would appear

completely legitimate by current correction

standards.

We will now explore the idea of sequential

tests in more detail, but this example highlights

some crucial arguments that need to be dis-

cussed. Can we justify the sequential analysis

without correcting for sequential tests? If not,

what methods could sequentially correct for the

multiple statistical tests? In order to fully grapple

with these questions, we first need to discuss

the notion of a statistical family and whether

sequential analyses create new families.

Statistical families
A family is a set of tests which we relate the

same error rate to (familywise error). What con-

stitutes a family has been challenging to pre-

cisely define, and the existing guidelines often

contain additional imprecise terminology (e.g.

Cox, 1965; Games, 1971; Hancock and Klock-

ars, 1996; Hochberg and Tamhane, 1987;

Miller, 1981). Generally, tests are considered

part of a family when: (i) multiple variables are

being tested with no predefined hypothesis (i.e.

exploration or data-dredging), or (ii) multiple

pre-specified tests together help support the

same or associated research questions

(Hancock and Klockars, 1996; Hochberg and

Tamhane, 1987). Even if following these
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guidelines, there can still be considerable dis-

agreements about what constituents a statistical

family, which can include both very liberal and

very conservative inclusion criteria. An example

of this discrepancy is seen in using a factorial

ANOVA. Some have argued that the main effect

and interaction are separate families as they

answer ’conceptually distinct questions’ (e.g.

page 291 of Maxwell and Delaney, 2004), while

others would argue the opposite and state they

are the same family (e.g. Cramer et al., 2016;

Hancock and Klockars, 1996). Given the sub-

stantial leeway regarding the definition of family,

recommendations have directed researchers to

define and justify their family of tests a priori

(Hancock and Klockars, 1996; Miller, 1981).

A crucial distinction in the definition of a fam-

ily is whether the analysis is confirmatory (i.e.

hypothesis-driven) or exploratory. Given issues

regarding replication in recent years

(Open Science Collaboration, 2015), there has

been considerable effort placed into clearly

demarcating what is exploratory and what is

confirmatory. One prominent definition is that

confirmatory research requires preregistration

before seeing the data (Wagenmakers et al.,

2012). However, current practice often involves

releasing open data with the original research

article. Thus, all data reuse may be guided by

the original or subsequent analyses (a HARKing-

like problem where methods are formulated

after some results are known [Button, 2019]).

Therefore, if adopting this prominent definition

of confirmatory research (Wagenmakers et al.,

2012), it follows that any reuse of open data

after publication must be exploratory unless the

analysis is preregistered before the data release.

Some may find Wagenmakers et al., 2012

definition to be too stringent and instead would

rather allow that confirmatory hypotheses can

be stated at later dates despite the researchers

having some information about the data from

previous use. Others have said confirmatory

analyses may not require preregistrations

(Jebb et al., 2017) and have argued that confir-

matory analyses on open data are possible

(Weston et al., 2019). If analyses on open data

can be considered confirmatory, then we need

to consider the second guideline about whether

statistical tests are answering similar or the same

research questions. The answer to this question

is not always obvious, as was highlighted above

regarding factorial ANOVA. However, if a study

reusing data can justify itself as confirmatory,

then it must also justify that it is asking a ’con-

ceptually distinct question’ from previous instan-

ces that used the data. We are not claiming that

this is not possible to justify, but the justification

ought to be done if no sequential correction is

applied as new families are not created just

because the data is being reused (see next

section).

We stress that our intention here is not to

establish the absolute definition of the term fam-

ily; it has been an ongoing debate for decades,

which we do not intend to solve. We believe our

upcoming argument holds regardless of the def-

inition. This section aimed to provide a working

definition of family that allows for both small

and large families to be justified. In the next sec-

tion, we argue that regardless of the specific

definition of family, sequential testing by itself

does not create a new family by virtue of it

being a sequential test.

Figure 1. Correction procedures can reduce the probability of false positives. (A) The probability of there being

at least one false positive (y-axis) increases as the number of statistical tests increases (x-axis). The use of a

correction procedure reduces the probability of there being at least one false positive (B: a-debt; C: a-spending;

D: a-investing). Plots are based on simulations: see main text for details. Dotted line in each panel indicates a

probability of 0.05.
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Families of tests through time
The crucial question for the present purpose is

whether the reuse of data constitutes a new fam-

ily of tests. If data reuse creates a new family of

tests, then there is no need to perform a

sequential correction procedure in order to

maintain control over familywise error. Alterna-

tively, if a new family has not been created sim-

ply by reusing data, then we need to consider

sequential correction procedures.

There are two ways in which sequential tests

with open data can differ from simultaneous

tests (where correction is needed): a time lag

between tests and/or different individuals per-

forming the tests. Neither of these two proper-

ties is sufficient to justify the emergence of a

new family of tests. First, the temporal displace-

ment of statistical tests can not be considered

sufficient reason for creating a new family of sta-

tistical tests, as the speed with which a

researcher analyzes a dataset is not relevant to

the need to control for multiple statistical tests.

If it were, then a simple correction procedure

would be to wait a specified length of time

before performing the next statistical test. Sec-

ond, it should not matter who performs the

tests; otherwise, one could correct for multiple

tests by crowd-sourcing the analysis. Thus if we

were to decide that either of the two differenti-

ating properties of sequential tests on open

data creates a new family, undesirable correction

procedures would be allowable. To prevent this,

statistical tests on open data, which can be run

by different people, and at different times, can

be part of the same family of tests. Since they

can be in the same family, sequential tests on

open data need to consider correction proce-

dures to control the rate of false positives across

the family.

We have demonstrated the possibility that

families of tests can belong to sequential analy-

ses. However, in practice, when does this occur?

The scale of the problem rests partly in what is

classed as an exploratory analysis or not. If all

data reuse is considered part of the same family

due to it being exploratory, this creates a large

family. If however, this definition is rejected,

then it depends on the research question. Due

to the fuzzy nature of ’family’, and the argument

above showing that data reuse does not create

new families automatically, we propose a simple

rule-of-thumb: if the sequential tests would be

considered within the same family if performed

simultaneously, then they are part of the same

family in sequential tests. The definition of

exploratory analyses and this rule-of-thumb indi-

cate that many sequential tests should be con-

sidered part of the same family when reusing

open data. We, therefore, suggest that research-

ers should apply corrections for multiple tests

when reusing data or provide a justification for

the lack of such corrections (as they would need

to in the case of simultaneous tests belonging to

different families).

The consequence of not taking
multiple sequential testing
seriously
In this section, we consider the consequences of

uncorrected sequential testing and several pro-

cedures to correct for them. We start with a sim-

ulation to test the false positive rate of the

different sequential correction procedures by

performing 100 sequential statistical tests (Pear-

son correlations) where the simulated covariance

between all variables was 0 (see Methods for

additional details). The simulations ran for 1000

iterations, and the familywise error was calcu-

lated using a two-tailed statistical significance

threshold of p<0.05.

We first consider what happens when the

sequential tests are uncorrected. Unsurprisingly,

the results are identical to not correcting for

simultaneous tests (Figure 1A). There will almost

always be at least one false positive any time

one performs 100 sequential analyses with this

simulation. This rate of false positives is dramati-

cally above the desired familywise error rate of

at least one false positive in 5% of the simula-

tion’s iterations: uncorrected sequential tests

necessarily lead to more false positives.

To correct for this false positive increase, we

consider several correction procedures. The first

sequential procedure we consider is a-debt. For

the ith sequential test, this procedure considers

there to be i tests that should be corrected. This

procedure effectively performs a Bonferroni cor-

rection – i.e. the threshold of statistical signifi-

cance becomes a1

i
where a1 is the first statistical

threshold (here 0.05). Thus, on the first test a1 =

0.05, then on the second sequential test a2 =

0.025, a3 = 0.0167, and so on. While each

sequential test is effectively a Bonferroni correc-

tion considering all previous tests, this does not

retroactively change the inference of any previ-

ous statistical tests. When a new test is per-

formed, the previous test’s a is now too lenient

considering all the tests that have been per-

formed. Thus, when considering all tests

together, the false positive rate will increase,
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accumulating a false positive ’debt’. This debt

entails that the method does not ensure the

type I error rate remains under a specific value,

instead allows it to controllably increase under a

’debt ceiling’ with each sequential test (the debt

ceiling is the sum of all a1 to at at t). The debt

ceiling will always increase, but the rate of

increase in debt slows down. These phenomena

were confirmed in the simulations (Figure 1B).

Finally, the method can mathematically ensure

that the false negative rate (i.e., type II error) is

equal to or better than simultaneous correction

with Bonferroni (See Methods).

The next two procedures we consider have

previously been suggested in the literature a-

spending and a-investing (Aharoni and Rosset,

2014; Foster and Stine, 2008). The first has a

total amount of ’a wealth’, and the sum of all

the statistical thresholds for all sequential tests

can never exceed this amount (i.e., if the a

wealth is 0.05 then the sum of all thresholds on

sequential tests must be less than 0.05). Here,

for each sequential test, we spend half the

remaining wealth (i.e., a1 is 0.025, a2 is 0.0125,

and so on). In the simulations, the sequential

tests limit the probability of there being at least

one false positive to less than 0.05 (Figure 1C).

Finally, a-investing allows for the significance

threshold to increase or decrease as researchers

perform additional tests. Again there is a con-

cept of a-wealth. If a test rejects the null hypoth-

esis, there is an increase in the remaining a-

wealth that future tests can use and, if the

reverse occurs, the remaining a-wealth

decreases (see methods). a-investing ensures

control of the false discovery rate at an assigned

level. Here we invest 50% of the remaining

wealth for each statistical test. In the simulations,

this method also remains under 0.05 familywise

error rate as the sequential tests increase

(Figure 1D).

The main conclusion from this set of simula-

tions is that the current practice of not correct-

ing for open data reuse results in a substantial

increase in the number of false positives pre-

sented in the literature.

Sensitivity to the order of
sequential tests
The previous simulation did not consider any

true positives in the data (i.e. cases where we

should reject the null hypothesis). Since the sta-

tistical threshold for significance changes as the

number of sequential tests increases, it becomes

crucial to evaluate the sensitivity of each method

to both type I and type II errors in regards to the

order of sequential tests. Thus, we simulated

true positives (between 1-10) where the covari-

ance of these variables and the dependent vari-

able were set to p (p ranged between 0 and 1).

Further, l controlled the sequential test order

determining the probability that a test was a

true positive. When l is positive, it entails a

higher likelihood that earlier tests will be one of

the true positives (and vice versa when l was

negative; see methods). All other parameters

are the same as the previous simulation. Simulta-

neous correction procedures (Bonferroni and

FDR) of all 100 tests were also included to con-

trast the different sequential procedures to

these methods.

The results reveal that the order of the tests

is pivotal for sequential correction procedures.

Unsurprisingly, the uncorrected and simulta-

neous correction procedures do not depend on

the sequential order of tests (Figure 2ABC). The

sequential correction procedures all increased

their true positive rate (i.e., fewer type II errors)

when the true positives were earlier in the analy-

sis order (Figure 2A). We also observe that a-

debt had the highest true positive rate of the

sequential procedures and, when the true posi-

tives were later in the test sequence, performed

on par with Bonferroni. Further, when the true

positives were earlier, a-debt outperformed

Bonferroni at identifying them. a-investing and

a-spending cannot give such assurances when

the true positives are later in the analysis

sequence (i.e. l is negative) there is less sensitiv-

ity to true positives (i.e. type II errors). a-debt is

more sensitive to true positives compared to a-

spending because the threshold for the mth

sequential test decreases linearly in a-debt and

exponentially in a-spending. This fact results in a

more lenient statistical threshold for a-debt in

later sequential tests.

The false positive rate and false discovery

rate are both very high for the uncorrected pro-

cedure (Figure 2BC). a-debt and a-spending

both have a decrease in false positives and false

discovery rate when l is positive (Figure 2BC).

The false discovery rate for a-debt generally lies

between the spending (smallest) and investing

procedures (largest and one that aims to be

below 0.05). Also, for all methods, the true posi-

tive rate breaks down as expected when the

covariance between variables approaches the

noise level. Thus we split the false discovery rate

along four quadrants based on l and the noise

floor (Figure 2D). The quadrants where true

positive covariance is above the noise floor (Q1
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and Q2) has a false discovery rate of less than

0.05 for all procedures except uncorrected

(Figure 2D). Finally, when varying the number of

true positives in the dataset, we found that Q1

and Q2 generally decrease as the number of

true positives grows for a-spending and a-debt,

Figure 2. The order of sequential tests can impact true positive sensitivity. (A) The true positive rate in the uncorrected case (left-most panel), in two

cases of simultaneous correction (second and third panels), and in three cases of sequential correction (fourth, fifth and sixth panels). In each panel the

true positive rate after 100 tests is plotted as a function of two simulation parameters: l (x-axis) and the simulated covariance of the true positives (y-

axis). When l is positive (negative), it increases the probability of the true positives being an earlier (later) test. Plots are based on simulations in which

there are ten true positives in the data: see main text for details. (B) Same as A for the false positive rate. (C) Same as A for the false discovery rate. (D)

Same as C for the average false discovery rate in four quadrants. Q1 has l <0; covariance >0.25. Q2 has l >0; covariance >0.25. Q3 has l <0;

covariance <0.25. Q4 has l >0; covariance <0.25. The probability of true positives being an earlier test is highest in Q2 and Q4 as l >0 in these

quadrants. (E) Same as D with the false discovery rate (y-axis) plotted against the percentage of true positives (x-axis) for the four quadrants. The dotted

lines in D and E indicate a false discovery rate of 0.05. Code is available at https://github.com/wiheto/datasetdecay (Thompson, 2020; copy archived at

https://github.com/elifesciences-publications/datasetdecay).
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whereas a-investing remains the 0.05 mark

regardless of the number of true positives

(Figure 2E).

All three sequential correction procedures

performed well at identifying true positives

when these tests were made early on in the anal-

ysis sequence. When the true positive tests are

performed later, a-debt has the most sensitivity

for true positives and a-investing is the only pro-

cedure that has a stable false discovery rate

regardless of the number of true positives (the

other two methods appear to be more conserva-

tive). The true positive sensitivity and false dis-

covery rate of each of the three sequential

correction methods considered depend on the

order of statistical tests and how many true posi-

tives are in the data.

Uncorrected sequential tests will
flood the scientific literature with
false positives
We have demonstrated a possible problem with

sequential tests on simulations. These results

show that sequential correction strategies are

more liberal than their simultaneous counter-

parts. Therefore we should expect more false

positives if sequential correction methods were

performed on a dataset. We now turn our atten-

tion to empirical data from a well-known shared

dataset in neuroscience to examine the effect of

multiple reuses of the dataset. This empirical

example is to confirm the simulations and show

that more positive findings (i.e. null hypothesis

rejected) will be identified with sequential cor-

rection. We used 68 cortical thickness estimates

from the 1200 subject release of the HCP data-

set (Van Essen et al., 2012). All subjects

belonging to this dataset gave informed consent

(see Van Essen et al., 2013 for more details).

IRB protocol #31848 approved by the Stanford

IRB approves the analysis of shared data. We

then used 182 behavioral measures ranging

from task performance to survey responses (see

Supplementary file 1). For simplicity, we ignore

all previous publications using the HCP dataset

(of which there are now several hundred) for our

p-value correction calculation.

We fit 182 linear models in which each behav-

ior (dependent variable) was modeled as a func-

tion of each of the 68 cortical thickness

estimates (independent variables), resulting in a

total of 12,376 statistical tests. As a baseline, we

corrected all statistical tests simultaneously with

Bonferroni and FDR. For all other procedures,

the independent variables within each mode (i.e.

cortical thickness) had simultaneous FDR correc-

tion while considering each linear model (i.e.

each behavior) sequentially. The procedures

considered were: uncorrected sequential analy-

sis with both Bonferroni and FDR simultaneous

correction procedures; all three sequential cor-

rection procedures with FDR simultaneous cor-

rection within each model. For the sequential

tests, the orders were randomized in two ways:

(i) uniformly; (ii) weighting the earlier tests to be

the significant findings found during the baseline

conditions (see Methods). The latter considers

how the methods perform if there is a higher

chance that researchers test hypotheses that

produce positive findings earlier in the analysis

sequence rather than later. Sequential analyses

had the order of tests randomized 100 times.

We asked two questions with these models.

First, we identified the number of positive find-

ings that would be reported for the different

correction methods (a positive finding is consid-

ered to be when the null hypothesis is rejected

at p < 0.05, two tail). Second, we asked how

many additional scientific articles would be pub-

lished claiming to have identified a positive

result (i.e. a null hypothesis has been rejected)

for the different correction methods. Impor-

tantly, in this evaluation of empirical data, we

are not necessarily concerned with the number

of true relationships with this analysis. Primarily,

we consider the differences in the inferred statis-

tical relationships when comparing the different

sequential correction procedures to a baseline

of the simultaneous correction procedures.

These simultaneous procedures allow us to con-

trast the sequential approaches with current

practices (Bonferroni, a conservative procedure,

and FDR, a more liberal measure). Thus any pro-

cedure that is more stringent than the Bonfer-

roni baseline will be too conservative (more type

II errors). Any procedure that is less stringent

than FDR will have an increased false discovery

rate, implying more false positives (relative to

the true positives). Note that, we are tackling

only issues regarding correction procedures to

multiple hypothesis tests; determining the truth

of any particular outcome would require addi-

tional replication.

Figure 3 shows the results for all correction

procedures. Using sequentially uncorrected tests

leads to an increase in positive findings (30/44

Bonferroni/FDR), compared to a baseline of 2

findings when correcting for all tests simulta-

neously (for both Bonferroni and FDR proce-

dures). The sequentially uncorrected procedures

would also result in 29/30 (Bonferroni/FDR)

Thompson et al. eLife 2020;9:e53498. DOI: https://doi.org/10.7554/eLife.53498 7 of 17

Feature Article Meta-Research Dataset decay and the problem of sequential analyses on open datasets

https://doi.org/10.7554/eLife.53498


publications that claim to identify at least one

positive result instead of the simultaneous base-

line of two publications (Bonferroni and FDR),

reflecting a 1,400% increase in publications

claiming positive results. If we accept that the

two baseline estimates are a good trade-off

between error rates, then we have good reason

to believe this increase reflects false positives.

The sequential correction procedures were

closer to baseline but saw divergence based on

the order of the statistical tests. If the order was

completely random, then a-debt found, on aver-

age, 2.77 positive findings (min/max: 2/6) and

2.53 publications claiming positive results (min/

max: 2/4) would be published. The random

order leads to an increase in the number of false

positives compared to baseline but considerably

less than the sequentially uncorrected proce-

dure. In contrast, a-spending found 0.33 positive

findings (min/max: 0/5) resulting in 0.22 studies

with positive findings (min/max: 0/2) and a-

investing found 0.48 (min/max: 0/8) positive

findings and 0.37 (min/max 0/4) studies with

positive findings; both of which are below the

conservative baseline of 2. When the order is

informed by the baseline findings, the sequential

corrections procedures increase in the number

of findings (findings [min/max]: a-debt: 3.49 [2/

7], a-spending: 2.58 [1/4], a-investing: 3.54 [1/

10]; and publications with positive findings [min/

max]: a-debt: 2.38 [2/4], a-spending: 1.97 [1/3],

a-investing: 2.54 [1/5]). All procedures now

increase their number of findings above base-

line. On average a-debt with a random order

has a 19% increase in the number of published

studies with positive findings, substantially less

than the increase in the number of uncorrected

studies. Two conclusions emerge. First, a-debt

remains sensitive to the number of findings

found regardless of the sequence of tests (fewer

type II errors) and can never fall above the Bon-

ferroni in regards to type II errors. At the same

time, the other two sequential procedures can

be more conservative than Bonferroni. Second,

while a-debt does not ensure the false positive

rate remains under a specific level (more type I

errors), it dramatically closes the gap between

the uncorrected and simultaneous number of

findings.

We have shown with both simulation and an

empirical example of how sequential statistical

tests, if left uncorrected, will lead to a rise of

false positive results. Further, we have explored

different sequential correction procedures and

shown their susceptibility to both false negatives

and false positives. Broadly, we conclude that

the potential of a dataset to identify new statisti-

cally significant relationships will decay over time

as the number of sequential statistical tests

increases when controlling for sequential tests.

In the rest of the discussion section, we first dis-

cuss the implications the different sequential

Figure 3. Demonstrating the impact of different correction procedures with a real dataset. (A) The number of

significant statistical tests (x-axis) that are possible for various correction procedures in a real dataset from the

Human Connectome Project: see the main text for more details, supplementary file 1 for a list of the variables

used in the analysis, and https://github.com/wiheto/datasetdecay copy archived at https://github.com/

elifesciences-publications/datasetdecay for the code. (B) The potential number of publications (x-axis) that could

result from the tests shown in panel A. This assumes that a publication requires a null hypothesis to be rejected in

order to yield a positive finding. The dotted line shows the baseline from the two simultaneous correction

procedures. Error bars show the standard deviation and circles mark min/max number of findings/studies for the

sequential correction procedures with a randomly permuted test order.
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procedures have in regards to the desiderata

outlined in the introduction. Then we discuss

other possible solutions that could potentially

mitigate dataset decay.

Consequence for sequential tests
and open data
We stated three desiderata for open data in the

introduction: sharing incentive, open access, and

a stable false positive rate. Having demonstrated

some properties of sequential correction proce-

dures, we revisit these aims and consider how

the implementation of sequential correction pro-

cedures in practice would meet these desider-

ata. The current practice of leaving sequential

hypothesis tests uncorrected leads to a dramatic

increase in the false positive rate. While our pro-

posed sequential correction techniques would

mitigate this problem, all three require

compromising on one or more of the desiderata

(summarized in Table 1).

Implementing a-spending would violate the

sharing incentive desideratum as it forces the ini-

tial analysis to use a smaller statistical threshold

to avoid using the entire wealth of a. This

change could potentially happen with appropri-

ate institutional change, but placing restrictions

on the initial investigator(s) (and increased type

II error rate) would likely serve as a disincentive

for those researchers to share their data. It also

places incentives to restrict access to open data

(violating the open access desideratum) as per-

forming additional tests would lead to a more

rapid decay in the ability to detect true positives

in a given dataset.

Implementing a-investing, would violate the

open access desideratum for two reasons. First,

like a-spending there is an incentive to restrict

incorrect statistical tests due to the sensitivity to

order. Second, a-investing would require track-

ing and time-stamping all statistical tests made

on the dataset. Given the known issues of file

drawer problem (Rosenthal, 1979), this is cur-

rently problematic to implement (see below).

Also, publication bias for positive outcomes

would result in statistical thresholds becoming

more lenient over time with this correction pro-

cedure, which might lead to even more false

positives (thus violating the no increase in false

positives desideratum). Unless all statistical tests

are time-stamped, which is possible but would

require significant institutional change, this pro-

cedure would be hard to implement.

Implementing a-debt would improve upon

current practices but will compromise on the sta-

ble false positive rate desideratum. However, it

will have little effect on the sharing incentive

desideratum as the original study does not need

to account for any future sequential tests. The

open-access desideratum is also less likely to be

compromised as it is less critical to identify the

true-positives directly (i.e. it has the lowest type

II error rate of the sequential procedures).

Finally, while compromising the false positive

desideratum, its false positive rate a marked

improvement compared to sequentially uncor-

rected tests.

Finally, a practical issue that must be taken

into consideration with all sequential correction

procedures is whether it is ever possible to know

the actual number of tests performed on an

unrestricted dataset. This issue relates to the file

drawer problem where there is a bias towards

the publication of positive findings compared to

null findings (Rosenthal, 1979). Until this is

resolved, to fully sequentially correct for the

number of previous tests corrected, an estima-

tion of the number of tests may be required

(e.g. by identifying publication biases;

Samartsidis et al., 2017; Simonsohn et al.,

2013). Using such estimations is less problem-

atic with a-debt because this only requires the

number of tests to be known. Comparatively, a-

investing requires the entire results chain of sta-

tistical tests to be known and a-spending

requires knowing every a value that has been

used, both of which would require additional

assumptions to estimate. However, even if a-

debt correction underestimates the number of

previous statistical tests, the number of false

positives will be reduced compared to no

sequential correction.

Table 1. Summary of the different sequential correction methods and the open-data desiderata.

Yes indicates that the method is compatible with the desideratum.

Sharing incentive Open access Stable false positive rate

a-spending No No Yes

a-investing Yes No Yes

a-debt Yes Yes No
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Towards a solution
Statistics is a multifaceted tool for experimental

researchers to use, but it (rarely) aims to provide

universal solutions for all problems and use

cases. Thus, it may be hard to expect a one size

fits all solution to the problem of sequential tests

on open data. Indeed, the idiosyncrasies within

different disciplines regarding the size of data,

open data infrastructure, and how often new

data is collected, may necessitate that they

adopt different solutions. Thus, any prescription

we offer now is, at best, tentative. Further, the

solutions also often compromise the desiderata

in some way. That being said, there are some

suggestions which should assist in mitigating the

problem to different degrees. Some of these

suggestions only require the individual

researcher to adapt their practices, others

require entire disciplines to form a consensus,

and others require infrastructural changes. This

section deals with solutions compatible with the

null hypothesis testing framework, the next sec-

tion considers solutions specific to other

perspectives.

Preregistration grace period of analyses
prior to open data release

To increase the number of confirmatory analyses

that can be performed on an open dataset, one

possible solution is to have a ’preregistration

grace period’. Here a description of the data

can be provided, and data re-users will have the

opportunity to write a preregistration prior to

the data being released. This solution allows for

confirmatory analyses to be performed on open

data while simultaneously being part of different

statistical families. This idea follows

Wagenmakers et al., 2012 definition of confir-

matory analysis. Consequently, once the dataset

or the first study using the dataset are pub-

lished, the problems outlined in this paper will

remain for all subsequent (non pre-registered)

analyses reusing the data.

Increased justification of the statistical
family

One of the recurring problems regarding statisti-

cal testing is that, given the

Wagenmakers et al., 2012 definition, it is hard

to class open data reuse as confirmatory after

data release. However, if disciplines decide that

confirmatory analyses on open data (post-publi-

cation) are possible, one of our main arguments

above is that a new paper does not automati-

cally create a new statistical family. If researchers

can, for other reasons, justify why their statistical

family is separate in their analysis and state how

it is different from previous statistical tests per-

formed on the data, there is no necessity to

sequentially correct. Thus providing sufficient

justification for new a family in a paper can effec-

tively reset the alpha wealth.

Restrained or coordinated alpha-levels

One of the reasons the a-values decays quickly

in a-invest and a-spend is the 50% invest/spend

rate that we chose in this article uses a large

portion of the total a-wealth in the initial statisti-

cal tests. For example, the first two tests in a-

spend, use 75% of the overall a-wealth. Different

spending or investing strategies are possible,

which could restrain the decay of the remaining

a-wealth, allowing for more discoveries in later

statistical tests. For example, a discipline could

decide that the first ten statistical tests spend

5% of the a wealth, then the next ten spends

2.5% of the overall wealth. Such a strategy

would still always remain under the overall

wealth, but allow more people to utilize the

dataset. However, imposing this restrained or

fair-use of a-spending would either require con-

sensus from all researchers (however, this strat-

egy would be in vain if just one researcher fails

to comply) or restricting data access

(compromising the open access desideratum).

Importantly, this solution does not mitigate the

decay of the alpha threshold; it just reduces the

decay.

Metadata about reuse coupled to datasets

One of the problems regarding sequential cor-

rections is knowing how many tests have been

made using the dataset. This issue was partially

addressed above with suggestions for estimat-

ing the number of preceding tests. Additionally,

repositories could provide information about all

known previous uses of the data. Thus if data

repositories were able to track summaries of

tests performed and which variables involved in

the tests, this would, at the very least, help

guide future users with rough estimates. In order

for this number to be precise, it would, however,

require limiting the access to the dataset

(compromising the open access desideratum).

Held out data on repositories

A way to allow hypothesis testing or predictive

frameworks (see below) to reuse the data is if

the infrastructure exists that prevents the

researcher from ever seeing some portion of the
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data. Dataset repositories could hold out data

which data re-users can query their results

against to either replicate their findings or test

their predictive models. This perspective has

seen success in machine learning competitions

which hold out test data. Additional require-

ments could be added to this perspective, such

as requiring preregistrations in order to query

the held out data. However, there have been

concerns that held out data can lead to overfit-

ting (e.g. by copying the best fitting model)

(Neto et al., 2016) although others have argued

this does not generally appear to be the case

when evaluating overfitting (Roelofs et al.,

2019). However, Roelofs et al., 2019 noted that

overfitting appears to occur on smaller datasets,

which might prevent it from being a general

solution for all disciplines.

Narrow hypotheses andminimal statistical
families

One way to avoid the sequential testing prob-

lem is to ensure small family sizes. If we can jus-

tify that there should be inherently small family

sizes, then there is no need to worry about the

sequential problems outlined here. This solution

would also entail that each researcher does not

need to justify their own particular family choice

(as suggested above), but rather a specific con-

sensus of what the contested concept family

actually means is achieved. This would require:

(1) confirmatory hypothesis testing on open data

is possible, (2) encouraging narrow (i.e. very spe-

cific) hypotheses that will help maintain minimal

family sizes, as the specificity of the hypothesis

will limit the overlap with any other statistical

test. Narrow hypotheses for confirmatory analy-

ses can lead to families which are small, and can

avoid correcting for multiple statistical tests

(both simultaneous and sequential). This strategy

is a possible solution to the problem. However,

science does not merely consist of narrow

hypotheses. Broader hypotheses can still be

used in confirmatory studies (for example,

genetic or neuroimaging datasets often ask

broader questions not knowing which specific

gene or brain area is involved, but know that a

gene or brain region should be involved to con-

firm a hypothesis about a larger mechanism).

Thus, while possibly solving a portion of the

problem, this solution is unlikely to be a general

solution for all fields, datasets, and types of

hypotheses.

Different perspective-specific
solutions regarding sequential
testing
The solutions above focused on possible solu-

tions compatible within the null hypothesis test-

ing framework to deal with sequential statistical

tests, although many are compatible with other

perspectives as well. There are a few other per-

spectives about data analysis and statistical

inferences that are worth considering, three of

which we discuss here. Each provide some per-

spective-specific solution to the sequential test-

ing problem. Any of these possible avenues may

be superior to the ones we have considered in

this article, but none appear to readily applica-

ble in all situations without some additional

considerations.

The first alternative is Bayesian statistics. Mul-

tiple comparisons in Bayesian frameworks are

often circumnavigated by partial pooling and

regularizing priors (Gelman et al., 2013;

Kruschke and Liddell, 2017). While Bayesian

statistics can suffer from similar problems as

NHST if misapplied (Gigerenzer and Marewski,

2014), it often deals with multiple tests without

explicitly correcting for them, and may provide

an avenue for sequential correction to be

avoided. These techniques should allow for the

sequential evaluation of different independent

variables against a single dependent variable

when using regularizing priors, especially as

these different models could also be contrasted

explicitly to see which model fits the data best.

However, sequential tests could be problematic

when the dependent variable changes and the

false positive rate should be maintained across

models. If uncorrected, this could create a simi-

lar sequential problem as outlined in the empiri-

cal example in the article. Nevertheless, there

are multiple avenues where this could be fixed

(e.g. sequentially adjusting the prior odds in

Bayes-factor inferences). The extent of sequen-

tial analysis on open dataset within the Bayesian

hypothesis testing frameworks, and possible sol-

utions, is an avenue of future investigation.

The second alternative is using held-out data

within prediction frameworks. Instead of using

statistical inference, this framework evaluates a

model by how well it performs on predicting

unseen test data (Yarkoni and Westfall, 2017).

However, a well-known problem when creating

models to predict on test datasets is overfitting.

This phenomenon occurs, for example, if a

researcher queries the test dataset multiple

times. Reusing test data will occur when
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sequentially reusing open data. Held-out data

on data repositories, as discussed above, is one

potential solution here. Further, within machine

learning, there have been advances towards hav-

ing reusable held-out data that can be queried

multiple times (Dwork et al., 2015;

Dwork et al., 2017; Rogers et al., 2019). This

avenue is promising, but there appear to be

some drawbacks for sequential reuse. First, this

line of work within ’adaptive data analysis’ gen-

erally considers a single user querying the hold-

out test data multiple times while optimizing

their model/analysis. Second, this is ultimately a

cross-validation technique which is not necessar-

ily the best tool in datasets where sample sizes

are small, (Varoquaux, 2018) which is often the

case with open data and thus not a general solu-

tion to this problem. Third, additional assump-

tions exist in these methods (e.g., there is still a

’budget limit’ in Dwork et al., 2015, and ’mostly

guessing correctly’ is required in Rogers et al.,

2019). However, this avenue of research has the

potential to provide a better solution than what

we have proposed here.

The third and perhaps most radical alterna-

tive is to consider all open data analysis to be

exploratory data analysis (EDA). In EDA, the pri-

mary utility becomes generating hypotheses and

testing assumptions of methods (Donoho, 2017;

Jebb et al., 2017; Thompson et al., 2020;

Tukey, 1980). Some may still consider this

reframing problematic, as it could make findings

based on open data seem less important. How-

ever, accepting that all analyses on open data is

EDA would involve less focus on statistical infer-

ence — the sequential testing problem disap-

pears. An increase of EDA on exploratory

analyses would lead to an increase of EDA

results which may not replicate. However, this is

not necessarily problematic. There would be no

increase of false positives within confirmatory

studies in the scientific literature and the

increase EDA studies will provide a fruitful guide

about which confirmatory studies to undertake.

Implementing this suggestion would require lit-

tle infrastructural or methodological change;

however, it would require an institutional shift in

how researchers interpret open data results. This

suggestions of EDA on open data also fits with

recent proposals calling for exploration to be

conducted openly (Thompson et al., 2020).

Conclusion
One of the benefits of open data is that it allows

multiple perspectives to approach a question,

given a particular sample. The trade-off of this

benefit is that more false positives will enter the

scientific literature. We remain strong advocates

of open data and data sharing. We are not advo-

cating that every single reuse of a dataset must

necessarily correct for sequential tests and we

have outlined multiple circumstances throughout

this article where this is the case. However,

researchers using openly shared data should be

sensitive to the possibility of accumulating false

positives and ensuing dataset decay that will

occur with repeated reuse. Ensuring findings are

replicated using independent samples will

greatly decrease the false positive rate, since the

chance of two identical false positives relation-

ships occurring, even on well-explored datasets,

is small.

Methods

Preliminary assumptions

In this article, we put forward the argument that

sequential statistical tests on open data could

lead to an increase in the number of false posi-

tives. This argument requires several assump-

tions regarding (1) the type of datasets

analyzed; (2) what kind of statistical inferences

are performed; (3) the types of sequential analy-

ses considered.

The type of dataset
we consider a dataset to be a fixed static snap-

shot of data collected at a specific time point.

There are other cases of combining datasets or

datasets that grow over time, but we will not

consider those here. Second, we assume a data-

set to be a random sample of a population and

not a dataset that contains information about a

full population.

The type of statistical testing
We have framed our discussion of statistical

inference using null hypothesis statistical testing

(NHST). This assumption entails that we will use

thresholded p-values to infer whether a finding

differs from the null hypothesis. Our decision for

this choice is motivated by a belief that the

NHST framework being the most established

framework for dealing with multiple statistical

tests. There have been multiple valid critiques

and suggestions to improve upon this statistical

practice by moving away from thresholded

p-values to evaluate hypotheses (Cum-

ming, 2014; Ioannidis, 2019; Lee, 2016;

McShane et al., 2019; Wasserstein et al.,
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2019). Crucially, however, many proposed alter-

native approaches within statistical inference do

not circumnavigate the problem of multiple sta-

tistical testing. For example, if confidence inter-

vals are reported and used for inference

regarding hypotheses, these should also be

adjusted for multiple statistical tests (see, e.g.

Tukey, 1991). Thus, any alternative statistical

frameworks that still must correct for multiple

simultaneous statistical testing will have the

same sequential statistical testing problem that

we outline here. Thus, while we have chosen

NHST for simplicity and familiarity, this does not

entail that the problem is isolated to NHST. Sol-

utions for different frameworks may however dif-

fer (see the discussion section for Bayesian

approaches and prediction-based inference

perspectives).

The types of analyses
Sequential analyses involve statistical tests on

the same data. Here, we consider sequential

analyses that reuse the same data and analyses

to be a part of the same statistical family (see

section on statistical families for more details).

Briefly, this involves either the statistical infer-

ences being classed as exploratory or answering

the same confirmatory hypothesis or research

question. Further, we only consider analyses that

are not supersets of previous analyses. This

assumption entails that we are excluding analy-

ses where a statistical model may improve upon

a previous statistical model by, for example,

adding an additional layer in a hierarchical

model. Other types of data reuse may not be

appropriate for sequential correction methods

and are not considered here.

While we have restrained our analysis with

these assumptions and definitions, it is done pri-

marily to simplify the argument regarding the

problem we are identifying. The degree to which

sequential tests are problematic in more

advanced cases remains outside the scope of

this paper.

Simulations

The first simulation sampled data for one depen-

dent variable and 100 independent variables

from a multivariate Gaussian distribution (mean:

0, standard deviation: 1, covariance: 0). We con-

ducted 100 different pairwise sequential analy-

ses in a random order. For each analysis, we

quantified the relationship between an indepen-

dent and the dependent variable using a Pear-

son correlation. If the correlation had a two-

tailed p-value less than 0.05, we considered it to

be a false positive. The simulation was repeated

for 1000 iterations.

The second simulation had three additional

variables. First, a variable that controlled the

number of true positives in the data. This vari-

able varied between 1-10. Second, the selected

true positive variables, along with the depen-

dent variable, had their covariance assigned as

p. p varied between 0 and 1 in steps of 0.025.

Finally, we wanted to test the effect of the analy-

sis order to identify when the true positive were

included in the statistical tests. Each sequential

analysis, (m1, m2, m3 . . .), could be assigned to be

a ’true positive’ (i.e., covariance of p with the

dependent variable) or a ’true negative’ (covari-

ance of 0 with dependent variable). First, m1

would be assigned one of the trials, then m2 and

so forth. This procedure continued until there

were only true positives or true negatives

remaining. The procedure assigns the ith analysis

to be randomly assigned, weighted by l. If l

was 0, then there was a 50% chance that mi

would be a true positive or true negative. If l

was 1, a true positive was 100% more likely to

be assigned to mi (i.e. an odds ratio of 1+l:1),

The reverse occurred if l was negative (i.e. -1

meant a true negative was 100% more likely at

mi).

Empirical example

Data from the Human Connectome Project

(HCP) 1200 subject release was used (Van Essen

et al., 2012). We selected 68 estimates of corti-

cal thickness to be the independent variables for

182 continuous behavioral and psychological

variables dependent variables. Whenever possi-

ble, the age-adjusted values were used.

Supplementary file 1 shows the variables

selected in the analysis.

For each analysis, we fit an ordinary least

squares model using Statsmodels (0.10.0-dev0

+1579, https://github.com/statsmodels/statsmo-

dels/). For all statistical models, we first stan-

dardized all variables to have a mean of 0 and a

standard deviation of 1. We dropped any miss-

ing values for a subject for that specific analysis.

Significance was considered for any independent

variable if it had a p-value < 0.05, two-tailed for

the different correction methods.

We then quantified the number of findings

and the number of potential published studies

with positive results that the different correction

methods would present. The number of findings

is the sum of independent variables that were

considered positive findings (i.e. p < 0.05, two-

tailed). The number of potential studies that
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identify positive results is the number of depen-

dent variables that had at least one positive find-

ing. The rationale for the second metric is to

consider how many potential non null-finding

publications would exist in the literature if a sep-

arate group conducted each analysis.

For the sequential correction procedures, we

used two different orderings of the tests. The

first was with a uniformly random order. The sec-

ond was an informed order that pretends we

somehow a priori knew which variables will be

correlated. The motivation behind an informed

order is because it may be unrealistic that scien-

tists ask sequential questions in a random order.

The ’informed’ order was created by identifying

the significant statistical tests when using simul-

taneous correction procedures (see below). With

the baseline results, we identified analyses which

were baseline positives (i.e. significant with any

of the simultaneous baseline procedures. There

were two analyses) and the other analyses that

were baseline negatives. Then, as in simulation

2, the first analysis, m1 was randomly assigned to

be a baseline positive or negative with equal

probability. This informed ordering means that

the baseline positives would usually appear in an

earlier in the sequence order. All sequential cor-

rection procedures were applied 100 times.

Simultaneous correction procedures

We used the Bonferroni method and the Benja-

mini and Hochberg FDR method for simulta-

neous correction procedures (Benjamini and

Hochberg, 1995). Both correction methods

were run using multipy (v0.16, https://github.

com/puolival/multipy). The FDR correction pro-

cedure intends to limit the proportion of type I

errors by keeping in below a certain level. In

contrast, Bonferroni error intends to limit the

probability of at least one type-I error. Despite

ideological criticisms and objections to both

these methods (Bonferroni: Perneger, 1998;

FDR: Mayo, 2017), the Bonferroni correction is

a conservative procedure that allows for more

type II errors to occur and the FDR is a liberal

method (i.e. allows for more type I errors).

Together they offer a baseline range that allows

us to contrast how the sequential correction pro-

cedures perform together.

In the second simulation, the false discovery

rate was also calculated to evaluate different

correction methods. To calculate this metric, the

average number of true positives was divided by

the average number of discoveries (average

false positives + average true positives).

Sequential correction procedures

Uncorrected. This procedure is to not correct for

any sequential analyses. This analogous to reus-

ing open data with no consideration for any

sequential tests that occur due to data reuse.

For all sequential hypothesis tests, p<0.05 was

considered a significant or positive finding.

a-debt. A sequential correction procedure

that, to our knowledge, has not previously been

proposed. At the first hypothesis tested, a1 sets

the statistical significance threshold (here 0.05).

At the ith hypothesis tested the statistical

threshold is ai ¼
a1

i
. The rationale here is that, at

the ith test, a Bonferroni correction is applied

that considers there to be i number of tests per-

formed. This method lets the false positive rate

increase (i.e. the debt of reusing the dataset) as

each test corrects for the overall number of

tests, but all earlier tests have a more liberal

threshold. The total possible ’debt’ incurred for

m number of sequential tests can be calculated

by
Pm

i¼1
ai and will determine the actual false

positive rate.

a-spending. A predefined a0 is selected,

which is called the a-wealth. At the ith test the

statistical threshold, ai, a value is selected to

meet the condition that
Pi

j¼1
aj<a0. The ith test

selects ai that spends part of the remaining ’a-

wealth’. The remaining a-wealth at test i is

a0 �
Pi�1

j¼1
aj. Like, a-debt, this method effec-

tively decreases the p-value threshold of statisti-

cal significance at each test. However, it can also

ensure that the false positive rate of all statistical

tests is never higher than a0. Here, at test i we

always spend 50% of ai�1 and a0 is set to 0.05.

See Foster and Stine, 2008 for more details.

a-investing. The two previous methods only

allow for the statistical threshold to decrease

over time and are more akin to familywise error

correction procedures. An alternative approach,

which is closer to false discovery rate proce-

dures, is to ensure the false discovery rate

remains below a predefined wealth value (W0)

(Foster and Stine, 2008). At each test, ai is

selected from the remaining wealth at Wi�1. If

the sequentially indexed test i was considered

statistically significant (i.e. rejecting the null

hypothesis), then Wi increases: Wi ¼ Wi�1 þ !.

Alternatively, if the null hypothesis cannot be

rejected at i, then the wealth decreases:

Wi ¼ Wi�1 �
ai

1�ai
. We set ! to a0, which is the

convention, a0 to 0.05, and ai is set to 50% of

the remaining wealth. See Foster and Stine,

2008 for more details.
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When combining the simultaneous and

sequential correction procedures in the empirical

example, we used the sequential correction pro-

cedure to derive ai, which we then used as the

threshold in the simultaneous correction.
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