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Abstract

Generating value from data requires the ability to find, access and make sense of datasets. There are many efforts underway

to encourage data sharing and reuse, from scientific publishers asking authors to submit data alongside manuscripts to data

marketplaces, open data portals and data communities. Google recently beta-released a search service for datasets, which

allows users to discover data stored in various online repositories via keyword queries. These developments foreshadow an

emerging research field around dataset search or retrieval that broadly encompasses frameworks, methods and tools that help

match a user data need against a collection of datasets. Here, we survey the state of the art of research and commercial

systems and discuss what makes dataset search a field in its own right, with unique challenges and open questions. We look at

approaches and implementations from related areas dataset search is drawing upon, including information retrieval, databases,

entity-centric and tabular search in order to identify possible paths to tackle these questions as well as immediate next steps

that will take the field forward.

Keywords Dataset search · Dataset retrieval · Dataset · Information search and retrieval

1 Introduction

Data is increasingly used in decision making: to design

public policies, identify customer needs, or run scientific

experiments [64,173]. For instance, the integration of data

from deployed sensor systems such as mobile phone net-
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works, camera networks in intelligent transportation systems

(ITS) [103] and smart meters [3] is powering a number of

innovative solutions, such as the city of London’s oversight

dashboard [17]. Datasets are increasingly being exposed

for trade within data markets [13,70] or shared via open

data portals [41,80,97,125,144,174] and scientific reposito-

ries [5,57]. Communities such as Wikidata or the Linked

Open Data Cloud [125] come together to create and main-

tain vast, general-purpose data resources, which can be used

by developers in applications as diverse as intelligent assis-

tants, recommender systems and search engine optimization.

The common intent is to broaden the use and impact of the

millions of datasets that are being made available and shared

across organizations [24,148,184]. This trend is reinforced

by advances in machine learning and artificial intelligence,

which rely on data to train, validate and enhance their algo-

rithms [159]. In order to support these uses, we must be able

to search for datasets. Searching for data in principled ways

has been researched for decades [42]. However, many prop-

erties of datasets are unique, with interesting requirements

and constraints, which have been recognized by the recent

release of Google Dataset Search [141]. There are many open

problems across dataset search, which the database commu-

nity can assist with.
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Currently, there is a disconnect between what datasets are

available, what dataset a user needs, and what datasets a

user can actually find, trust and is able to use [24,159,167].

Dataset search is largely keyword-based over published

metadata, whether it is performed over web crawls [66,161]

or within organizational holdings [80,97,171]. There are sev-

eral problems with this approach. Available metadata may

not encompass the actual information a user needs to assess

whether the dataset is fit for a given task [106]. Search results

are returned to the user based on filters and experiences

that worked for web-based information, but do not always

transfer well to datasets [68]. These limitations impact the

use of the retrieved data—machine learning can be unduly

affected by the processing that was performed over a dataset

prior to its release [168], while knowing the original pur-

pose for collecting the data aids interpretation and analysis

[185]. In other words, in a dataset search context, approaches

need to consider additional aspects such as data provenance

[27,67,81,112,135,187], annotations [86,124,189], quality

[155,175,195], granularity of content [105], and schema

[4,18] to effectively evaluate a dataset’s fitness for a par-

ticular use. The user does not have the ability to introspect

over large amounts of data, and their attention must be pri-

oritized [11]. In some cases, a user’s need may even require

integrating data from different sources to form a new dataset

[63,155]. Furthermore, using data is sometimes constrained

by licenses and terms and conditions, which may prohibit

such integration, especially when personal data is involved

[136].

In order to realize the full potential of the datasets we are

generating, maintaining and releasing, there is more research

that must be done. Dataset search has not emerged in isola-

tion, but has built on foundational work from other related

areas. In Sect. 2, we outline the basic dataset search problem

and briefly review these areas. Current commercial dataset

search offerings are introduced in Sect. 3, while Sect. 4 pro-

vides an overview of ongoing dataset search research. Finally,

Sect. 5 discusses several open problems, while Sect. 6 high-

lights a possible route to take steps to advance the field.

2 Background

To understand the fundamental problem of dataset search, we

define a dataset. The concept of dataset is abstract, admitting

several definitions depending on the particular community

[24,148]. There is a large body of work discussing the nature

of data and its relation to practice and reuse [24,25]. For

example, the statistical data and metadata exchange initia-

tive (SDMX) [162] defines a dataset as ‘a collection of

related observations, organized according to a predefined

structure’. This definition is shared by the DataCube work-

ing group at the World Wide Web Consortium (W3C), which

adds the notion of a ‘common dimensional structure’ [179].

Meanwhile, the Organization for Economic Co-operation

and Development (OECD), citing the US bureau and cen-

sus, uses ‘any permanently stored collection of information

usually containing either case level data, aggregation of case

level data, or statistical manipulations of either the case level

or aggregated survey data, for multiple survey instances’

[162]. The Data Catalog Vocabulary, another W3C effort,

[127] includes a dataset class, defined as a ‘collection of

data, published or curated by a single agent, and available

for access or download in one or more formats.’ Finally, for

the MELODA (MEtric for reLeasing Open DAta) initiative,

a dataset is a ‘group of structured data retrievable in a link or

single instruction as a whole to a single entity, with updating

frequency larger than a once a minute’ [131]. Building upon

these proposals, for the purposes of this paper, we will use

the following definition:

Definition 1 Dataset: A collection of related observations

organized and formatted for a particular purpose.

A dataset can be a set of images, or graphs, or docu-

ments, as well as the classic table of data. Thus, dataset search

involves the discovery, exploration, and return of datasets to

an end-user. However, within this work, we focus on alphanu-

meric data (e.g., text, entities, data). While datasets may

also comprise images, or graphs, search techniques for these

modalities contain both alphanumeric search techniques for

metadata and specialized techniques based on the structure

of the data. Thus, to be more general in this survey, we dis-

cuss techniques for alphanumeric data. We note two very

distinct types of dataset search in this work. In what we will

call ‘basic’ dataset search, the set of related observations

are organized for a particular purpose and then released for

consumption and reuse. We see this pattern of interaction

within individual data repositories, such as for research data

(e.g., Figshare [171], Dataverse [5], Elsevier Data Search

[57]), open data portals [41,80,97,125,144,174] and search

engines such as DataMed [161] and Google Dataset Search

[141]. A basic search, using any of these services, is discussed

in Example 1. Alternatively, a dataset search may involve a

set of related observations that are organized for a particular

purpose by the searcher themselves. This pattern of behavior

is particularly marked in data lakes [62,156], data markets

[13,70], and tabular search [114,198]. Example 2 illustrates

this kind of data search.

Example 1 (Basic dataset search) Imagine you want to write

an article on how Hurricane Sandy impacted the gasoline

prices in New York City in the week after the incident. Con-

sider the two datasets shown in Fig. 1. Dataset A is from

the American Automobile Association (AAA) and dataset

B is from Twitter. Both document the gasoline available

for purchase in New York City in the week after Hurri-

cane Sandy. The choice of which dataset to use depends on
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Fig. 1 Datasets about gasoline availability in New York City in the week

after Hurricane Sandy in 2012. a The American Automobile Associa-

tion (AAA) created a structured dataset twice post-Sandy by phoning

every gas station in the NYC area. It was complete, easy to use (CSV),

accurate, clean, and out of date by the time it was released. b The sec-

ond dataset is a collection of tweets to NYC_GAS. It was incomplete,

required natural language processing (NLP) techniques to use, was dirty

with respect to place names and addresses, but up to date and timely

throughout post-hurricane clean-up efforts

the specifics of the information need, potentially the pur-

pose and requirements of algorithms or processing methods,

as well as the user’s tool-set and data literacy. In order to

find the right dataset, a user must issue a query that will

return datasets, not tuples, documents or corpora. Differ-

ences inherent in the datasets should alter their ranking. For

instance, a user who requires easy-to-use data, with fewer

restrictions on timeliness, may feel that the AAA dataset is a

better fit than the other one. A user who wishes to establish

an accurate timeline of gas in NYC would have a different

assessment. These two scenarios have different requirements

and therefore would assess the datasets differently. Moreover,

both users start filtering results based on content (gaso-

line), but use very different criteria and metrics to rank the

datasets.

Example 2 (Constructive dataset search) The Centro De

Operacoes Prefeitura Do Rio in Rio de Janeiro, Brazil, is

developing a strategy to prevent and manage floods in the city.

The city planners follow a data-informed approach, where

they mash up several data sources, including traffic and pub-

lic transport; utility and emergency services; weather; and

citizen reports [103]. Consider a simple scenario in which

datasets on weather, highlighting rain amounts that could

trigger a flash flood, are integrated on the fly with datasets on

traffic volume and augmented with identification of emer-

gency response services in order to create a dataset that

highlights the current populations at risk during an event.

A recent extension to RapidMiner highlights the opportu-

nities inherent in creating such as dataset, with additional

examples [63].
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2.1 Overview of dataset search

Figure 2 contains a high-level view of the search process and

mappings of the main process steps to topics researched in

related communities.

A general approach to providing search over datasets is

to model the user experience over existing keyword-based

information retrieval search systems, where a user poses a

query and a ranked list of existing datasets is returned.

Querying. In dataset search, a query is typically a keyword or

Contextual Query Language (CQL) expression [163]. Figure

3 shows the search interface for the UK government’s open

data portal [174]. In addition to the keywords search box, the

“Filter by” boxes allow the user to subset the data according to

predefined categories. As we discuss search techniques from

several different disciplines below, we use the term ‘query’

to mean a semantically and syntactically correct expres-

sion of search for that specific technology. For instance,

within a database, a query would be expressed in SQL,

while in information retrieval, a query would be expressed in

CQL.

Query handling. The information submitted by the user is

used to search over the metadata published about a dataset.

Results are produced based on how similar the metadata is

to the search terms.

Data handling. Publishers populate the metadata about their

dataset, including title, description, language, temporal cov-

erage, etc. They can use vocabularies such as DCAT [127],

schema.org [71] or CSV on the Web [170] as a starting point.

The goal of these vocabularies is to provide a uniform way of

ensuring consistency of data types and formats (e.g., unique-

ness of values within a single column) for every file, which

can provide basis for validation and prevent potential errors.

Publishers sometimes add descriptions to their datasets to aid

sensemaking [105,140,189]. Either way, this step is mostly

manual and hence resource-intensive, which means that more

often than not dataset descriptions are incomplete or do not

contain enough detail. This limits the capabilities of query

handling methods, which attempt to match search terms to

the descriptions.

Results presentation. Search Engine’s Results Pages (SERPs)

for dataset search currently follow a traditional 10 blue links

paradigm, as can be seen on many data portals [5,80,97,174].

Basic filtering options, as shown in Fig. 3, are sometimes

available for faceted search. Clicking on a search result usu-

ally takes the user to a preview page that contains metadata, a

free-text summary, and sometimes a sample or visualization

of the data. While Google Dataset Search [66] also follows

a traditional result presentation as a list, they display a split

interface. This presents a large number of search results for

scrolling on the left side and a reduced version of a dataset

Fig. 2 An abstract view of the search process, comprising of query-

ing, query processing, data handling and results presentation, alongside

approaches to each step by different related communities

Fig. 3 Dataset search engine for the UK government’s open data portal,

data.gov.uk. Form inputs create CQL statements to query the underlying

data

preview page with links to one (or multiple) repositories that

hold the respective dataset on the right side.

2.2 Common search architectures

Searches for datasets can be local, e.g., within a single repos-

itory [5,57,156,171] or global. In a similar manner to a

distributed database, given a query Q and a set of datasets

(the sources), the query engine first selects the datasets rel-

evant to the query [160,177] and then chooses between

different approaches: aggregating the datasets locally, using

distributed processing as in Hadoop [188], or query federa-

tion [143].

The dataset search problem can be addressed at various

levels. Services such as Google Dataset Search [141] and

DataMed [161] crawl across the web and facilitate a global

search across all distributed resources. These approaches use

tags found in metadata mark-up, expressed in vocabulary

terms from schema.org [71] or DCAT [127], to structure

and identify the metadata considered important for datasets.
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However, the problem also exists at a local level, includ-

ing open government data portals such as data.gov.uk [174],

organizational data lakes [156], scientific repositories such

as Elsevier’s [57] and data markets [13,70]. Across all these

systems, users are attempting to discover and assess datasets

for a particular purpose. Supporting them requires frame-

works, methods and tools that specifically target data as its

input form and consider the specific information needs of

data professionals.

2.3 Other search sub-communities

Search has been addressed in a range of scenarios, depending

on the types of data and methods used. Relevant sub-

disciplines include databases, document search (classic infor-

mation retrieval), entity-centric search (tackled in the context

of the semantic web, knowledge discovery in databases and

information retrieval), and tabular search (which draws upon

methods from broader data management, IR and sometimes

entity-centric search).

Figure 2 lists some of the most important methods used

in these sub-disciplines to implement core search capabili-

ties from query writing and handling to results presentation.

While dataset search is a field in its own right, with distinct

challenges and characteristics, it shares commonalities and

draws upon insights from all these disciplines. In this section,

we provide a very brief review of the focus and tools each

community uses. We focus specifically on those in which the

type of object returned is the same as the underlying data,

e.g., a result set of data from a database of data, or a doc-

ument from a corpus of documents. We neglect approaches

such as question answering [111], which involve additional

processing and reasoning steps.

2.3.1 Databases

The classic pipeline for search within a database begins with

a structured query, followed by parsing the query [38,117,

121]; creating an evaluation plan [116]; optimizing the plan

[37,87]; and executing the plan utilizing appropriate indexes

and catalogues [19].

In addition to the classic database search pipeline, we wish

to draw attention to recent work to uncover more data from

hidden areas of the web: Hidden/Deep web search.

Hidden/deep web search. The hidden, or deep, web refers

to content that lies “behind” web forms typically written

in HTML [28,29,77,100,128], and ranging from medical

research data to financial information and shopping cata-

logues. It has been estimated that the amount of content

available in this way is an order of magnitude larger than

the so-called surface web, which is directly accessible to

web crawlers [77,128].

There have been two main approaches to searching for

data on the deep web. The first uses more traditional tech-

niques to build vertical search engines, whereby semantic

mappings are constructed between each website and a cen-

tralized mediator tailored to a particular domain. Structured

queries are posed on the mediator and redirected over the web

forms using the mappings. Kosmix [154] (later transformed

into WalmartLabs.com) was such a system presenting ver-

tical engines for a large number of domains, ranging from

health, and scientific data to car and flight sales. Sometimes

systems learn the forms’ possible inputs, and create central-

ized mediated forms [77].

A second group of approaches tries to generate the result-

ing web pages, usually in HTML, that come out of web form

searches. Google has proposed a method for such surfacing

of deep web content by automatically estimating input to sev-

eral millions of HTML forms, written in many languages and

spanning over hundreds of domains, and adding the resulting

HTML pages into its search engine index [128]. The form

inputs are stored as part of the indexed URL. When a user

clicks on a search result, they are directed to the result of the

(freshly submitted) form.

2.3.2 Information retrieval

Several classes of IR systems existing, including document

search, web search and engines for other types of objects

(e.g., images, people etc.). When working on text, IR uses a

range of statistical and semantic techniques to compute the

relevance of search terms of documents. Specialized search

engines are tailored to the characteristics of the underlying

resources. For example, email search considers aspects such

as sender and receiver addresses, topic or timestamp to define

relevance functions [2]. Due to their specificity and limited

scope of resources, vertical search engines often offer greater

precision, utilize more complex schemas to match searching

scenarios, and tend to support more complex user tasks [120,

180,194].

2.3.3 Entity-centric search

In entity-centric search information is organized and accessed

via entities of interest, and their attributes and relationships

[15]. A comprehensive overview of the area is available in

[14]. The problem has been tackled mostly by the semantic

web and knowledge discovery communities.

From a semantic web perspective, efforts have been

directed toward creating machine-understandable graph-

based representations of data [79]. Researchers have pro-

posed languages, models and techniques to publish structured

data about entities and link entities to each other to facilitate

search and exploration in a decentralized space, replicating

search and browsing online. The World Wide Web Con-
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sortium (W3C) settled on the Resource Description Format

(RDF) as a standard model for representing and exchanging

data about resources, which can refer to conventional web

content (information resources), as well as entities in the

offline world such as people, places and organizations (non-

information resources). Both are identified by International

Resource Identifiers (IRIs). Properties link entities or attach

attributes to them. By reusing and linking IRIs, publishers

signal that they hold data about the same entity, therefore

enabling queries across multiple datasets without any addi-

tional integration effort.

To take advantage of these features, data needs to be

encoded and published as linked data [9], which refers to

a set of technologies and architectures including IRIs, RDF,

RDFS (RDF Schema) and HTTP. The structure of the data is

defined in vocabularies, which can be reused across datasets

to facilitate data interpretation and interlinking. Platforms

such as Linked Open Vocabulary portal1 assist publishers

looking for a vocabulary for their data with search and explo-

ration capabilities over hundreds of vocabularies developed

by different parties.

Interlinking is concerned with two related problems. First

is entity resolution: given two or more datasets, identify

which entities and properties are the same. A general frame-

work of entity resolution is described [40]. It covers the

design of similarity metrics to compare entity descriptions,

and the development of blocking techniques to group roughly

similar entities together to make the process more efficient.

More recent efforts have proposed iterative approaches,

where discovered matches are used as input for comput-

ing similarities between further entities. The second part of

interlinking is referred to as link discovery, where given two

datasets, one has to find properties that hold between their

entities. Properties can be equivalence or equality, as in entity

resolution, or domain specific such as ‘part-of’ [79].

Linked data facilitates entity-centric search. A user can

express a query using a structured language such as SPARQL,

which includes entities, entity classes, as well as properties

and values. Queries are translated into an RDF graph that is

matched against the published data, which is also available as

RDF [197,199]. Similar to before, queries can be answered

locally, against an RDF data store, or globally, using a range

of techniques.

From a knowledge discovery perspective, significant

efforts have been directed toward the construction of knowl-

edge graphs (KGs), which are large collections of intercon-

nected entities, which may or may not be encoded using

linked data. Building KGs requires a range of capabilities,

from vocabularies to describe the domain of interest to extrac-

tion algorithms to take data from different sources and map

it to graphs, to curation and evolution. Knowledge discovery

1 https://lov.linkeddata.es.

shares many methods and challenges with the semantic web,

the main difference being that the former focuses on build-

ing a (centralized) graph, which enhances the results of data

mining and machine learning processes [23,54,166], while

the latter is about managing information in open, decentral-

ized settings such as the web.

2.3.4 Tabular search

In tabular search, users are interested in accessing data stored

in one or more tables. The overall aim is to discover spe-

cific pieces of information, such as attribute names or extend

tables with new attributes. [190] identified three core tasks

in this context:

1. Augmentation by attribute name—given a populated

table and a new column name (i.e., attribute), populate the

column with values. This is also referred to table exten-

sion elsewhere [28]. One can see this as finding tables

which can be joined.

2. Attribute discovery—given a populated table, discover

new potential column names.

3. Augmentation by example—given a populated table

where some values are missing, fill in the missing val-

ues. This is often referred to as table completion in the

literature [197] and resembles finding tables which can

be unioned.

It is important to distinguish between table and tabular

search. Table search is a sub-task of dataset search, where

the user issues a keyword query and the result is available as

tables, for example in CSV format. Tabular search is about

engaging with one or more tables with the aim to manipulate

and extend them. Information needs, for instance to discover

attributes and tables to extend or complete, are expressed as

tables. One of the challenges in tabular search is to answer

the latent information need of the user.

Table extension. [115] distinguishes between constrained and

unconstrained table extension. Constrained table extension is

essentially the augmentation by previously defined attribute

names. Unconstrained table extension also involves the addi-

tion of new columns to a table, but with no predefined label

for the attribute. One can think of this as attribute discovery

followed by constrained table extension.

A common technique to perform table extension is to dis-

cover existing tables through table similarity—in particular

by measuring schema similarity [51]. In fact, table exten-

sion was introduced by [28] where they defined a special

operator EXTEND that would discover similar web tables

to the given input table. Similarity here is computed with

respect to the schema of the table. The values of the most

similar table are then used to populate the input table’s addi-
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Table 1 Search technology

used across implementations
Entity-centric Information retrieval Database Tabular search

Open data publishing platforms

(e.g., CKAN, Socrata)

•

Data marketplaces •

Linked data search engines • • •

Google DSS • •

tional column. The Infogather system [190] uses a similar

approach, but instead of just calculating the direct similar-

ity between the input table and potential augmenting tables,

it also takes into the account the neighborhood around the

potential augmenting tables. These indirect tables provide

ancillary information that can be better suited for augmenta-

tion than the tables with the highest similarity to the input. Of

interest, [51] have discovered that there seems to be a latent

link structure between web tables. Recent work in table sim-

ilarity has shown that semantic similarity using embedding

approaches can improve performance over syntactic mea-

sures [198].

Table completion. This task also relies heavily on table sim-

ilarity as the mechanism for finding potential values that can

be added to a table. [197] defines the notion of row popula-

tion, which adds new rows to a table. For simplicity, we view

this as a type of table completion in which the values to be

completed form an additional row. Even more broadly, one

could provide a set of columns as a query and have the system

fill in the remaining rows [151]. The task of table completion

can be seen as entity-set completion, where the goal is to

complete a list given a set of seed entities [51,197]. This task

is relevant for a number of other scenarios, including entity-

centric search [16] and knowledge-base completion [49]. The

completion of rows is similar to the broad problem of impu-

tation and dealing with incomplete data [132]. Specific work

in the context of the web has looked at performing impu-

tation through the use of external data [1,123,169]. Much

of that work has used web tables as the data source, and

hidden/deep web techniques as discussed above could be

applied.

3 Current dataset search implementations

There are many functioning versions of dataset search in

production today. In this section, we break down the set of

dataset search services that exist according to their focus

and how they deal with datasets. We distinguish between the

two scenarios discussed in Examples 1 and 2 and between

centralized and decentralized architectures. For the latter, the

search engine needs a way to discover the datasets as well as

handle user queries and present results.

Table 1 matches the implementations discussed to the

technology described in Sect. 2. Note that at this time, we

can find no examples of tabular search being used commer-

cially.

The common theme of current dataset search strategies,

both on the web and within the boundaries of a repository,

is the reliance on dataset publishers tagging their data with

appropriate information in the correct format. Because cur-

rent dataset search only uses the metadata of a dataset, it

is imperative that these metadata descriptions are correct

and maintained. Other, domain-specific solutions function

in similar ways. Especially for scientific datasets there are

initiatives aiming to support the creation of better and more

unified metadata, such as for instance CEDAR by the Meta-

data Center2 or ‘Data in Brief’ submissions supported by

Elsevier.3

In aid of better searches, there are several attempts at

monitoring and working over data portals to provide a meta-

analysis. For instance, the Open Data Portal Watch [138,139]

currently watches 254 open data portals. Once a week, the

metadata from all watched portals is fetched, the quality of

the metadata computed, and the site updated to allow a cohe-

sive search across the open data. Similarly, the European Data

Portal4 harvests metadata of public sector datasets available

on public data portals across European countries, in addition

to educating about open data publishing.

3.1 Basic, centralized search

3.1.1 Open government data portals

Open data portals [41,80,97,125,144,174] allow users to

search over the metadata of available datasets. One of the

most popular portal software is CKAN [41]. It is built using

Apache Solr,5 which uses Lucene to index the documents.

In this scenario, the documents are the datasets’ metadata

provided by the publishers, expressed in CKAN. From a

search point of view, datasets and their metadata are reg-

2 https://metadatacenter.org/.

3 https://www.journals.elsevier.com/data-in-brief.

4 https://www.europeandataportal.eu.

5 http://lucene.apache.org/solr/.
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istered to the portal by their owners and there is no need to

discover the datasets in the wild or come up with a com-

mon way to describe them. There are several competitors

to CKAN, such as Socrata and OpenDataSoft, but from a

dataset search point of view they have many similarities—

they assume the datasets are available and accompanied by

metadata encoded in the same way. Implemented this way,

dataset search has many limitations, which are mostly due to

the quality of the metadata accompanying the datasets and to

the lack of appropriate capabilities to match keyword-based

queries and metadata and come up with a meaningful ranking

[68]. In many cases the metadata does not describe the full

potential of the data, so some relevant datasets may not be

presented as a result to a query simply because appropriate

keywords were not used in the description.

3.1.2 Enterprise search

Proprietary data portals are not much different from an archi-

tecture point of view. In 2016, Google introduced Goods, an

enterprise dataset search system, to manage datasets origi-

nating from different departments within the company with

no unified structure or metadata [74]. In this catalog, related

datasets are clustered based on the structure of the dataset

or gathering frequency. Members of a group then become a

single entry in the catalog. This helps to structure the catalog

and also reduces the workload of metadata generation and

schema computing. Within the Goods system each dataset

entry has an overview of the dataset presented on a profile

page. Using this profile, users can judge the dataset’s useful-

ness to their task. Keyword queries are then laid on top of

this structure, producing a ranked result list of datasets as an

output. Search functionality was built based on an inverted

index of a subset of the dataset’s metadata. In the absence of

the information on the importance of each resource, Halevy

et al. [74] propose to rank the datasets based on heuristics

over the type of a resource, precision of keyword match, if

the dataset is used by other datasets and if the dataset contains

an owner-sourced description.

3.1.3 Scientific data portals

Several commercial portals provide access to scientific

datasets, including Elsevier [57], Figshare [171] and Data-

verse [5]. They operate in a similar way to the other types

of systems described in this section, offering keyword- or

faceted search over metadata records of a centralized pool of

datasets that is compiled with the help of data publishers.

3.1.4 Data marketplaces

Finally, data marketplaces exist as a way for organizations

to realize value for their data [13,70]. From a search point of

view, they match user queries to dataset descriptions, which

may include a bespoke set of metadata attributes related to

accessibility or price. The greatest challenge in this case is

in finding a query handling approach that can give the user

an estimate of the value of the data without computing the

result.

3.2 Basic, decentralized search

3.2.1 Search over linked data

As noted in Sect. 2, linked data facilitates dataset search at

web scale. This is exemplified in approaches such as [76],

where new linked datasets are discovered during query exe-

cution, by following links between datasets and continuously

adding RDF data to the queried dataset. There is also a

large body of the literature and prototypical implementations

for searching linked data in a native semantically hetero-

geneous and distributed environment [50,60,83,129,178],

where semantic links are used to come up with an estimate

of the importance of each dataset and rank search results.

3.2.2 Google Dataset Search

Following their work on Goods, in 2018 Google introduced

a vertical web search engine tailored to discover datasets on

the web [141]. This system uses schema.org [71] and DCAT

[127]. Based on the Google Web Crawl, they crawl the web

for all datasets described with the use of the schema.org

Dataset class, as well as those describing their datasets

using DCAT, and collect the associated metadata. They fur-

ther link the metadata to other resources, identify replica

and create an index of enriched metadata for each dataset.

The metadata is reconciled to the Google knowledge graph

and search capabilities are built on top of this metadata.

The indexed datasets can be queried via keywords and CQL

expressions [163].

3.2.3 Domain-specific search

Some search services focus on datasets from particu-

lar domains. They propose bespoke metadata schemas to

describe the datasets and implement crawlers to discover

them automatically. For instance, DataMed, a biomedical

search engine uses a suite of tags, DATS, to allow a crawler

to automatically index scientific datasets for search [161].

The Open Contracting Partnership released a Open Contract-

ing Data Standard that identifies information needed about

contracts to allow their crawler to access and catalogue con-

tracting datasets [147].
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3.3 Constructive search

Many private companies have understood that data is a com-

modity that can be effectively monetized. Some companies,

such as Thomson Reuters, have been collecting data to create

datasets for sale for decades.6 In the same time, companies

such as OpenCorporates use public data sources, with prove-

nance, to gather information on legal entities. This dataset

is then made publicly available.7 Similarly, Researchably

compiles information from scientific publications and makes

interest-specific datasets for sale to biotech companies.8 In

all of these cases, the data exists in a scattered manner and

the company provides value by gathering, organizing and

releasing it as a constructed dataset.

Data marketplaces can offer similar services as well.

Unlike the previous examples, they provide a catalog of

datasets for users to purchase. While the user is able to down-

load an entire dataset from the marketplace, it is also possible

to access subsets of the data as needed to construct a new

dataset.

4 Survey of dataset search research

This section surveys the current work related to dataset

search. To organize it, we utilize the headings from Fig. 2,

corresponding to the search process.

4.1 Querying

Creating queries. Users interact with datasets in a different

manner than they interact with documents [99]. While this

study is limited to social scientists, it indicates that users

have a higher investment in the results and are thus willing

to spend more time searching. Moreover, the relationship

of the dataset to the task at hand may play a larger role in

dataset search; e.g., two datasets about cars could fit within a

user’s ability to understand and utilize, but may have different

results depending on the goal of the task.

Data-centric tasks can be categorized into two categories:

(1) Process-oriented tasks in which data is used for some-

thing transformative, such as using data in machine learning

processes; and (2) Goal-oriented tasks in which data is,

e.g., used to answer a question [106]. While the boundaries

between the two categories are somewhat fluid and the same

user might engage in both types of tasks, the primary dif-

ference between them lies in the ‘user information needs’,

i.e., the details users need to know about the data in order to

6 https://www.thomsonreuters.com/en.html.

7 https://opencorporates.com/.

8 https://www.researchably.com/.

interact with it effectively. For process-oriented tasks, aspects

such as timeliness, licenses, updates, quality, methods of data

collection and provenance have a high priority. For goal-

oriented tasks, intrinsic qualities of data such as coverage

and granularity play a larger role. As yet, beyond the user fil-

tering by certain characteristics, there is no way to state the

task needs in the query. There has not yet been a movement

away from keywords and CQL to query datasets.

Query types. As stated earlier, most queries for datasets use

keywords or CQL over the metadata of the dataset. A formal

query language that supports dataset retrieval does not yet

exist. Instead, specific query interfaces are created for the

underlying data type, e.g., [90] provides a SQL interface over

text data and [138] for temporal and spatial data. Current

implementations provide platform specific faceted search to

allow basic filtering for categories such as publisher, format,

license or topics (for instance [174]).

4.2 Query handling

As stated in Sect. 2, most dataset searches operate over the

dataset’s metadata. Unfortunately, low metadata quality (or

missing metadata) affects both the discovery and the con-

sumption of the datasets within Open Data Portals [175]. The

success of the search functionality depends on the publishers

knowledge of the dataset and the quality of the descriptions

they provide.

Moving away from just searching over the metadata,

[172] use the data type and column information for map-

ping columns in a query to the underlying table columns,

while [151] allow keyword queries over columns. Similarly,

[72] describe how to map structured sources into a semantic

search capability. This is taken further in [198] by providing

the ability to pose a keyword query over a table. Meanwhile,

in [33], queries are broken up in a federated manner, and

executed over distinct, heterogeneous datasets in their native

format, allowing for easy alteration of the queries and sub-

stitution of the underlying datasets being queried.

4.3 Data handling

While the “handling” that typically needs to occur for dataset

search at the moment is collection and indexing of metadata,

there is research in additional data handling that can improve

the effectiveness of search.

Quality and entity resolution. There are several efforts deal-

ing with metadata quality [139,175]. One solution proposed

to tackle the metadata quality problem includes cross-

validating metadata by merging feeds from identified entities

[82]. Using self-categorized information [110] as facets is

another. Attempts to better represent the underlying data [21]

do have an affect on search. This includes better links with
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other data [56]. Other approaches, such as [8], investigate

how to detect dataset coverage and bias that could affect any

algorithms that use the dataset as input.

In the context of constructive dataset search, the Mannheim

Search Join Engine [114,115] and WikiTables [20] use a

table similarity approach for table extension but also look

at the unconstrained task. In both cases, a similarity ranking

between the input and augmentation tables is used to decide

which columns should be added. Interestingly, the Mannheim

system also consolidates columns from different potential

augmentation tables before performing the table extension.

Summarization and annotation. To help both search and

user understanding, summaries and annotations are addi-

tional metadata that can be generated about the underlying

dataset [105]. For instance, [136] deal with the problem that

the underlying dataset cannot be exposed, but good sum-

maries may help the user undertake the task of data access.

Meanwhile, [124] use annotations to help support search-

ing over data types and entities within a dataset, while [93]

provide better labeling for numerical data in tables.

4.4 Results presentation

Ranking Datasets. Intuitively datasets require different rank-

ing approaches due to their unique properties, which is

also indicated in initial exploratory studies with users (e.g.,

[99,106]). Noy et al. [141] describe that links between

datasets are still rare, which makes traditional web-based

ranking difficult. There is some work that looks at ranking

datasets. For instance, after performing a keyword query over

tables, a ranking on the returned tables is attempted [198]. In

a more advanced method, Van Gysel et al. [176] use an unsu-

pervised learning approach to identify topics of a database

that can then be used in ranking. Finally, [118] rank datasets

containing continuous information.

Interactions. Interactive query interfaces allow ad-hoc data

analysis and exploration. Facilitating users exploration

changes the fundamental requirements of the supporting

infrastructure with respect to processing and workload [91].

Choosing a dataset greatly depends on the information

provided alongside it. A number of studies indicate that stan-

dard metadata does not provide sufficient information for

dataset reuse [105,140]. Recent studies have discussed tex-

tual [105,172] or visual [183] surrogates of datasets that aim

to help people identify relevant documents and increase accu-

racy and/or satisfaction with their relevance judgments.

There has been additional research in how to help users

interact with datasets for better understanding. For instance,

there is the many-answer problem: users struggle to spec-

ify exact queries without knowing the data and their need to

understand what is available in the whole result set to for-

mulate and refine queries [126]. Currently dataset search is

mainly performed over metadata, so the users understanding

of what the dataset contains before download is limited by

the quality, comprehensiveness and nature of metadata. A

number of frameworks or SERP designs have been proposed

as research prototypes for data search and exploration, such

as TableLens [152], DataLens [126], the relation browser

[130] for sensemaking with statistical data, or summarization

approaches of aggregate query answers in databases [181].

Navigational structures can support the cognitive representa-

tion of information [157], and we see a large space to explore

interfaces that allow more complex interaction with datasets

such as sophisticated querying [89] (e.g., taking a dataset as

input and searching for similar ones) or being able to follow

links between entities in datasets.

Interaction characteristics for dataset search have been

subject to several recent human data interaction studies. Mov-

ing beyond search as a technological problem, Gregory et

al. [68] show that there are also social considerations that

impact a user when searching. In a comparison between doc-

ument retrieval and dataset retrieval, Kern and Mathiak [99]

show that users are more reliant on metadata when perform-

ing dataset search. While looking at dataset users of varying

abilities [26] show that the amount of tool support can impact

a user’s ability to effectively discover and use a dataset.

Finally, in a framework for Human Interaction with Struc-

tured data [106] discuss three major aspects that matter to

data practitioners when selecting a dataset to work with: rel-

evance, usability and quality. Users judge the relevance of

datasets for a specific task based on the dataset’s scope (e.g.,

geographical and temporal scope) [95,138], basic statistics

about the dataset such as counts and value ranges, and infor-

mation about granularity of information in the data [105].

The documentation of variables and the context from which

the dataset comes from also play a key role. Data quality

is intertwined with a user’s assessment of “fitness for use”

and depends on various factors (dimensions or characteris-

tics) such as accuracy, timeliness, completeness, relevancy,

objectivity, believability, understandability, consistency, con-

ciseness, availability and verifiability [105]. Provenance is

a prevalent attribute to judge a datasets quality as it gives

an indication of the authoritativeness, trustworthiness, con-

text and original purpose of a dataset, e.g., [84,105,135].

In order to judge a dataset’s usability for a given task, the

following attributes have been identified as important: for-

mat, size, documentation, language (e.g., used in headers or

for string values), comparability (e.g., identifiers, units of

measurement), references to connected sources, and access

(e.g., license, API) [84,105,184]. These are attributes inde-

pendent of a dataset’s content or topical relevance which can

influence whether a user is actually able to engage with the

dataset.

123



Dataset search: a survey 261

Table 2 Mapping of Dataset search open problems to possible solution areas. We identify relevant works from other search sub-communities that

could be used as inspiration for solving current dataset search problems

Query languages Query handling Query handling Results presentation

Beyond keyword Differentiated access Extra knowledge Interactivity

Entity-based [6,43,73] [45,102] [122,149,153] [142,192,193]

IR [10,134] [78,98,104,165]

Databases [44,59] [18,55,88,96,150] [1,21,36,53,62,86,123,126,133,137,145,169,191,200] [32]

Hidden/deep web [30,113,164] [154] [52,107,119] [101]

Tabular [63,196] [114,115,190]

5 Open problems

In this survey, we have organized the literature into a frame-

work that reflects the high-level steps necessary to implement

a dataset search system. We have considered current research

explicitly targeting dataset search challenges. In this sec-

tion, we discuss several cross-cutting themes that need to

be explored in greater detail to advance dataset search.

Issues of discoverability of open data were recognized by

the European Commission which oversees the process of data

publishing within Europe. In 2011 they defined six barriers

that challenge the reuse and true openness of data, which also

apply to dataset search [58]:

– a lack of information that certain data actually exists and

is available;

– a lack of clarity of which public authority holds the data;

– a lack of clarity about the terms of reuse;

– data which is made available only in formats that are

difficult or expensive to use;

– complicated licensing procedures or prohibitive fees;

– exclusive reuse agreements with one commercial actor

or reuse restricted to a government-owned company.

In addition to these challenges, we identify several addi-

tional problems that need attention. In order to tackle these

problems, we look at similar solutions used by other search

sub-areas, as described in Sect. 2.3. We map the problems

we have identified in Dataset Search to solutions utilized in

other search techniques that could help make headway in

each problem area, as summarized in Table 2.

5.1 Query languages: moving beyond keywords

Existing dataset search systems, whether it is Google’s

Dataset Search or vertical engines such as those used within

data repositories, use query languages and concepts from

information retrieval. Information needs are expressed via

keyword queries, or, in the case of faceted search, via a series

of filters modeled after metadata attributes such as domain,

format or publisher. Studies in tabular search point to the

need for alternative interfaces, which allow users to start

their search journey with a table and then add to it as they

explore the results. In addition to having different ways to

capture information needs, it would also be beneficial to pro-

vide query languages that are able to combine information

adaptively across multiple tables. This would be especially

useful for tasks such as specifying data frames or generating

comprehensive data-driven reports [69].

This connects dataset search to the area of text databases

[90] and the deep web. However, much of that work has

looked at verticals instead of search across datasets coming

from multiple domains. The problem here is to be able to

identify relevant tables for the input query, join them appro-

priately, and do subsequent query processing.

Existing research has primarily focused on structured

queries (SQL, SPARQL) over the metadata of the datasets,

without considering the actual content of the dataset. There

is thus a need for richer query languages that are able to

go beyond the metadata of datasets and are supported by

indexing systems. Our understanding of the level of expres-

siveness of these languages is still fairly limited. The W3C

CSV on the Web working group [170] has made a proposal

for specifying the semantics of columns and values in tables,

but the approach requires mappings between a column and

the intended semantic meaning, which are typically specified

manually. Recently, the Source Retrieval Query Language

(SRQL) has been proposed that facilitates declarative search

for data sources based the relations of the underlying data

[31].

5.1.1 Entity-centric search building blocks

Entity-centric search naturally fits within the needs of dataset

search. Datasets themselves are often built of entities, and as

such need the ability to specify an entity as a query, a set of

entities, or a type of entity. Moreover, the notion of similarity

[198] among entities should be expanded so that the entities

themselves are not the focus of the match, but the number of

similarities within the dataset.
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5.1.2 Database building blocks

Querying datasets will likely require new adaptations to

query languages and methods. In addition to the explo-

ration of a structured query language that can operate over

datasets natively, other mechanisms to define queries should

be explored. For instance, the overlap of programming lan-

guages and database query languages in which programming

language concepts are used to define queries over databases

with different levels of capabilities [44] or over MapReduce

frameworks [59], could be one such rich area to explore.

5.1.3 Tabular search building blocks

Tabular search provides an interesting view on the poten-

tial query language requirements for dataset search, where

instead of keywords, the input is a table itself. This also

makes novel user interfaces possible, for example, to pro-

vide assistance during the creation of spreadsheets [196].

5.2 Query handling: differentiated access

Most dataset search systems today either work within the

confines of a single organization or on publicly available

datasets that publish metadata according to a specified

schema. However, there is demand to be able to pool infor-

mation stemming from different organizations, for example,

to be able to build cohorts for health studies from across clin-

ical studies [46,136]. Providing such differentiated access is

critical for the emerging notion of data trusts,9 which pro-

vide the legal, technical and operational structures to share

data between organizations.

We must facilitate an organizational as well as technical

space to share data between both public and private enti-

ties. Thus, there are critical issues to be solved with respect

querying over datasets with differing legal, privacy and even

pricing properties. Without being able to search over these

hidden datasets, access to a majority of data will be pre-

vented. Here, aspects of using the provenance of data could

be leveraged at query time [187]. We note that this is not just

an issue for private data. Public data also have different prop-

erties (e.g., licenses) that users want to effectively integrate

in their searches.

At an implementation level, further investigation into inte-

grating security techniques in the query handling process is

necessary, for example, searching over encrypted datasets

[12,109] or using digests to minimize disclosure while still

enabling search [136]. All of this must be done while also

considering that the demands of reuse may change the under-

lying requirements and bottlenecks of query processing [61].

9 https://theodi.org/article/what-is-a-data-trust/.

5.2.1 Information retrieval building blocks

In the context of dataset retrieval, the basic concepts support-

ing general web search are not sufficient, which indicates a

need for a more targeted approach for dataset retrieval, treat-

ing it as a unique vertical [28,65].

5.2.2 Database building blocks

The relational algebra that underpins our processing within

a database [42] has no equivalent yet in dataset search.

Recently, Apache released information about the query pro-

cessing system used for many of the Apache products

including Hive and Storm, and Begoli et al. [18] inves-

tigated how the relational algebra can be applied to data

contained within the various data processing frameworks in

the Apache suite. Alternatively, other recent work in query

processing attempts to handle non-relational operators via

adaptive query processing [96].

Techniques such as those found in [150] suggest using a

hybrid version of approximate query processing over sam-

ples and precomputation. Solutions such as ORCHESTRA

[88] that were built to manage shared, structured data with

changing schemas, cleaning, and queries that utilize prove-

nance and annotation information (discussed in more detail

below) need to be adapted to the dataset search problem.

Other work from the probabilistic database area could also be

of assistance. For instance [55] calculates the top-k results for

queries over a probabilistic database by taking into account

the lineage of each tuple. This usage of provenance to influ-

ence the overall ranking of the end result could inform dataset

ranking.

Focusing on constructive dataset search, in which datasets

are generated on-the-fly based on a user’s needs and query,

the work in data integration is particularly important. Query-

ing sources in an integrated fashion [75,108] becomes a

foundational component of constructive dataset search.

5.3 Data handling: extra knowledge

In order to support the differentiated access and advanced

exploratory interfaces articulated above, dataset search

engines will need to become more advanced in their inges-

tion, indexing and cataloging procedures. This problem

divides into two areas: incorporation of external knowledge

in the data handling process and better management and

usage of dataset-intrinsic information. As described in [141],

links between datasets are still rare, making identification and

usage of extra knowledge difficult.

Incorporating external knowledge, whether through the

use of domain ontologies, external quality indicators or

even unstructured information (i.e., papers) that describe the
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datasets, is a critical problem. A concrete example of this

problem: many datasets are described through code books

that are written in natural language. These datasets are nearly

useless without integration of external information about the

codebooks themselves.

Utilizing dataset-intrinsic information, is necessary to

more fully capture the richness of each dataset, and allow

users to express a richer set of criteria during search. Within

this space, there are open problems related to data pre-

processing. How to do quality assessment on the fly? What

kinds of indexes around quality need to be created? Moving

beyond quality, in general, the automatic creation and main-

tenance of metadata that describes datasets is difficult. Users

rely up on metadata to chose appropriate datasets. Open prob-

lems for metadata include:

1. identifying the metadata that is of highest value to users

w.r.t. datasets;

2. tools to automatically create and maintain that metadata;

3. automatic annotation of dataset with metadata—linking

them automatically to global ontologies.

In addition to pre-processing, current dataset search sys-

tems primarily rely on information retrieval architectures

(e.g., indexing into ElasticSearch) to index and perform

queries. Here, lessons learned from database architectures

could be applied. This is particularly the case as we have

seen the importance of lessons learned from relational query

engines being applied in the case of distributed data envi-

ronments [7]. Thus, we think an important open problem is

what the most effective architectures are for dataset search

systems.

5.3.1 Entity-centric search building blocks

One can apply the Linked Data paradigm to solve dataset

search by converting datasets to RDF and following the full

cycle, as described in [110]. However, for data publishers, it

is often still very expensive to execute this full cycle. Fur-

thermore, there is debate on whether certain datasets should

have an RDF representation at all, as their original formats are

perhaps more suited to the tools that are required for them

(e.g., geospatial datasets). A middle-ground solution is to

consider datasets as resources and encode only their descrip-

tion in RDF, for example, using the Data Catalog Vocabulary

(a W3C recommendation) [127]. Then, the Linked Data cycle

can be applied to these descriptions, ultimately enabling the

querying of datasets. The main challenge is the generation

and maintenance of these descriptions, with some works

tackling the problem of extracting specific properties from

specific formats, like [138] for extracting spatio-temporal

properties, and, e.g., [94] for identifying the numerical prop-

erties in CSV tables.

5.3.2 Database building blocks

As noted in [11], users do not have the “attention” to intro-

spect deeply into large and changing datasets. Instead, we

can draw upon several areas of research from the database

community, including data profiling and data quality.

Naumann’s recent survey [137] provides a good overview

of data profiling activities based on how data-users approach

the task, and what resources are available for it. Of particu-

lar note for dataset search is the work on outlier detection

[53,126] as a way to provide indications to an end-user

about the scope, spread and variety of a dataset during

search. In particular, we note the techniques found in [200]

are interesting for dataset search in that they split a large

dataset into many smaller datasets and create an approximate

representation of it for more accurate sampling of these sub-

pieces. Finally, [62] establishes a tool that can comb through

semi-structured log datasets to pull information into multi-

layered structured datasets. All of these techniques may aid

users in exploring and making sense of dataset. Given that

a dataset is by definition a collection of pieces, imputa-

tion of missing pieces needs great scrutiny. As discussed in

Sect. 4, imputation efforts are underway [1,21,123,169] but

draw heavily from web techniques. The imputation methods

from the data management community should be consid-

ered.

The work on profiling contains expressions of data clean-

liness and coverage, completeness and consistency. These

properties are classic data quality metrics, and help the user

form a picture of whether the data is fit for use. Automatic

understanding of data quality in order to either populate

metadata or answer metadata queries in a lazy manner will

require techniques that can automatically determine com-

plex datatypes such as [191]. Currently, though, the research

in each of these areas has been focused on its relationship

to describing or working within a specific artifact, not as a

component for a search. To do this, the structures and content

for each area need to be computable in a timely manner and

presented in a way that can be taken advantage of by a search

system. For instance, data quality is a traditionally resource

expensive task that is often domain-specific. Generic, albeit

possibly less accurate methods must be developed to com-

pute data quality estimations that can be accessed and used

during search [36,133].

In order to facilitate understanding of the contents of a

dataset, summarization can be used, as done in [145] over

probabilistic databases. Provenance, another tools that could

help users understand a dataset, has an unsolved problem of

moving across granularity levels. A tuple within a dataset

may have provenance associated with it, as may the table,
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and the entire dataset itself. The challenge is in under-

standing how the aggregation of tuple-provenance would

affect the search results compared to dataset-provenance.

Finally, using annotations to improve the data [86] will

be needed. Interesting extensions could include using user

feedback to facilitate ranking of datasets based on the

searcher’s criteria, or utilizing the context under which the

annotations were created to change how annotations impact

ranking.

5.3.3 Hidden/deep web building blocks

An inherent challenge in dataset search over the web is to

be able to identify particular resources as datasets of inter-

est (and ignore, for example, natural language documents).

This challenge will be also present in any forthcoming

approach in searching for datasets on the deep web. More-

over, any such approach will build on some combination of

the two main directions for surfacing deep web data. Building

vertical engines for the hidden web has the difficulties of pre-

defining all interesting domains, identifying relevant forms

in front of datasets on the web and investigating automatic

(or semi-automatic) approaches to create mappings; a task

which seems extremely hard on a web scale. Hence, learn-

ing/computing web form inputs might be the option of choice.

Nevertheless, in cases where there are complex domains

that involve many attributes and involved inputs, e.g., air-

line reservations, when the datasets change frequently, e.g.,

financial data, or when forms use the http POST method [128]

virtual integration remains an attractive direction.

5.3.4 Tabular search building blocks

The majority of work in tabular search addresses web tables,

not uploaded datasets. These tables have the benefit of gen-

erally being better described and often general-knowledge

related, e.g., column names are human readable and not

codes, or the tables are embedded in larger documents (e.g.,

HTML tables). In addition, a majority of work treats what

are termed ‘entity-centric tables’, which are tables in which

each row represents a single entity. Datasets can be much

more general, for example, containing multiple tables in one

file.

5.4 Result presentation: interactivity

As previously discussed, existing data search systems follow

similar approaches to search showing a ranked list of search

results with some additional faceted searching in place. At

a tactical level, ranking approaches specifically tailored to

dataset search should be developed. Importantly, this should

take into account the kinds of rich indexes suggested in the

prior section. Here, the challenges are that typical approaches

to improving ranking in information retrieval such as learn-

ing to rank are difficult given that many data search engines

do not have the kind of level of user traffic needed for learn-

ing to rank algorithms [176]. In addition, the integration of

dataset search and entity search is an important open problem.

For example, when searching for a chemical we could also

display associated data, but we currently know little about

what data that should be. Beyond standard search paradigms,

supporting conversational search over data and embedding

search into the actual data usage process deserves significant

attention, particularly since dataset search is often needed in

the context of a variety of tasks [167].

5.4.1 Information retrieval building blocks

As pointed out by Cafarella et al. [28] structured data on the

web is similar to the scenario of ranking of millions of indi-

vidual databases. Tables available online contain a mixture of

structural and related content elements which cannot easily

be mapped to unstructured text scenarios applied in gen-

eral web search. Tables lack the incoming hyperlink anchor

text and are two-dimensional—they cannot be efficiently

queried using the standard inverted index. For those reasons

PageRank-based algorithms known from general web search

are not applicable to the same extent to the dataset/table

search, particularly as tables of widely-varying quality can

be found on a single web page.

Search for datasets is often complex and shows character-

istics of exploratory search tasks, involving multiple queries,

iterations and refinement of the original information need, as

well as complex cognitive processing [106]. There are many

possible reasons that users have diverse interaction styles,

from context and domain specificity [68] to uncertainty in

the search workflow itself [26]. It is important to note that

users have different interaction styles with respect to “getting

the data”. These interactions range from question answering

to “data return” to exploration [68,106]. From an interaction

perspective, dataset search is not as advanced as web or doc-

ument search. Contextual or personalized results, which are

common on the web [182] are practically non-existent for

dataset search. Additionally, as mentioned, dataset search

relies on limited metadata instead of looking at the dataset

itself which limits interaction. While many classifications

for information seeking tasks exist [22], there is no widely

used classification of data-centric information seeking tasks

yet that could be used to model interaction flows in dataset

search.

5.4.2 Database building blocks

Provenance [27,67,81,187] is likely to be a key element in

assisting the user in choosing a dataset of interest. Until now,

provenance has been used to facilitate trust in an artifact
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[47,48] or automatically estimate quality [85]. New meth-

ods must be developed to facilitate translation of this large

graph into a format that a user who is evaluating whether

or not to use a dataset can interpret and utilize [34]. The

logic and possible new operators behind dataset search will

open up new areas for determining why and why not to

consider provenance of the dataset query results themselves

[35,81,112].

The presentation of data models has been a topic in

database literature [89] as well as exploration strategies of

result spaces beyond the 10 blue links paradigm. For instance,

the use of sideways and downwards exploration of web table

queries by [39]. Challenges and directions for search results

presentation and data exploration as part of the search process

are discussed on a mostly speculative basis in the literature

and include representing different types of results in a manner

that express the structure of the underlying dataset (tables,

networks, spatial presentations, etc) [89].

An overview of search results can enhance orientation

and understanding of the information provided [157], which

allows to get an awareness of the dataset result space as a

whole. Making a large set of possible results more informa-

tive to the user has been explored for databases [181]. At the

same time being able to investigate the dataset on a column,

row and cell level to match both process and content oriented

requirements on the search result can be necessary [151,170].

Within the scope of constructive dataset search, the work

of [186] is essential to appropriately annotate and cite the

results of queries.

In the next section, we discuss one foundation that is cru-

cial for addressing these open problems, benchmarks.

6 The road forward: benchmarks

One of the most widely recognized problems of dataset

search is the lack of benchmarks. For instance, the Bio-

CADDIE project, which attempts to index for discovery

scientific datasets, has a pilot project to recommend appro-

priate datasets to users based on similar topic, size, usage,

user background and context [92]. In order to do this, the

pilot participants are creating a topic model across scien-

tific articles, and using user query patterns to identify similar

users. While this is an interesting start, and acknowledges

that there are a myriad of overlapping concerns that impact

dataset search, from content to the user’s ability, there is no

way yet to measure whether the solution works. For this, a

clear benchmark is needed. In this section we will outline the

state of the art with respect to the evaluation of different parts

of the dataset search pipeline, which were discussed earlier

in this work.

Step one is identifying the set of metrics that are appro-

priate to dataset search. Do they mimic the online and offline

metrics of information retrieval? At first blush, session aban-

donment rate, session success rate and zero result rate from

information retrieval online metrics appear relevant, while

click-through rate may need some adjustment for the context

of datasets. Meanwhile, most of the offline metrics, from the

set of precision-based metrics, to recall, fall-out, discounted

cumulative gain, etc. are obviously still necessary.

However, there are dataset-specific metrics that may need

to be considered. For instance, “completeness” could be an

interesting new metric to consider. Many tasks involving

datasets require the stitching of several datasets to create

a whole that is fit for purpose. Is the right set, that cre-

ates a “complete” offering returned? How do we measure

that the appropriate set of datasets for a given purpose were

returned. For instance, in the context of information retrieval

on an Open Data Platform, [95] found that some user queries

require multiple datasets which are equally relevant in oppo-

sition to a ranked result list of resources with single resource

per rank. The question of how such result list should be

returned to the user remains open, and creates an interest-

ing case within benchmark creation. To facilitate interactive

dataset retrieval studies we would need to have a clearer

understanding of selection criteria for datasets, a taxonomy

of data-centric tasks and annotated corpora of information

tasks for datasets, queries and connected relevant datasets as

search results.

The availability of benchmarks upon which solutions

across the query processing pipeline for dataset search can

be tested is essential. Any benchmark created for dataset

search needs to, explicitly or implicitly, highlight the rela-

tionships that exist between the user, the task at hand and

the properties of the dataset or it’s metadata. Unlike classic

web retrieval, there are added dimensions for dataset search.

It is not enough for a user to find the information appropri-

ate based on its content; for dataset search, the user and the

specific task requirements must be satisfied. The result list

presented to the user must be understandable and explorable,

due to the added complexity of interpreting and using data.

Several benchmarks have already been created that cover

tasks related to dataset search. These benchmarks include:

managing RDF datasets [146]; information retrieval over

Wikipedia tables [198]; assignment of semantic labels to web

tables [158]. Further efforts in this area are needed in order to

truly understand and make progress on the underlying tech-

nology.

Moreover, the availability of benchmarks will enable per-

formance evaluations across search architectures, enabling a

better ability for tool users to choose an appropriate solution

for their specific needs. Ultimately, through benchmarks, and

performance evaluations, we should be able to design data

search systems that assist a user, for example, who needs to

search for a dataset to do a particular classification task, and

let that user clearly understand which methods will provide

123



266 A. Chapman et al.

the best results on the returned dataset or which risks might

be associated with using a particular dataset.

7 Conclusions

The topic of data-driven research will only grow; we are at

the start of a journey in which datasets are used for anal-

ysis, decision making and resource optimization, am. Our

current needs for dataset search require us to give due atten-

tion to this problem. The current state of the art is focused

on tuple, document or webpage. Datasets are an interesting

entity to themselves with some properties shared with docu-

ments, tuples and webpages, and some unique to datasets.

In this work, we highlight that dataset search can be

achieved through two different mechanisms: (1) issue query,

return dataset; (2) issue query, build dataset. However, dataset

search itself is in its infancy. Techniques from many other

fields, including databases, information retrieval, and seman-

tic web search, can be applied toward the problem of dataset

search. The creation of an initial service, Google Dataset

Search, that allows for automatic indexing of datasets, and

Google-style search over that indexed information marks this

problem as important. Moreover, it highlights the research

that still needs to be performed within the dataset retrieval

domain, including: formal query language(s), dealing with

social and organizational restrictions when processing a

query, providing additional information to support query pro-

cessing, facilitating user exploration and interaction with a

result set made up of datasets. This is an exciting time with

respect to dataset search, in which there is a high need for

datasets of all sorts, combined with burgeoning tools for

dataset search, like Google Dataset Search, that provide the

necessary infrastructure. However, further research is needed

to fully understand and support dataset search.
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