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Abstract

In contrast to previous surveys, the present work is not focused on re-
viewing the datasets used in the network security field. The fact is that many
of the available public labeled datasets represent the network behavior just
for a particular time period. Given the rate of change in malicious behavior
and the serious challenge to label, and maintain these datasets, they become
quickly obsolete. Therefore, this work is focused on the analysis of current
labeling methodologies applied to network-based data. In the field of net-
work security, the process of labeling a representative network traffic dataset
is particularly challenging and costly since very specialized knowledge is re-
quired to classify network traces. Consequently, most of the current traffic
labeling methods are based on the automatic generation of synthetic network
traces, which hides many of the essential aspects necessary for a correct dif-
ferentiation between normal and malicious behavior. Alternatively, a few
other methods incorporate non-experts users in the labeling process of real
traffic with the help of visual and statistical tools. However, after conduct-
ing an in-depth analysis, it seems that all current methods for labeling suffer
from fundamental drawbacks regarding the quality, volume, and speed of the
resulting dataset. This lack of consistent methods for continuously gener-
ating a representative dataset with an accurate and validated methodology
must be addressed by the network security research community. Moreover,
a consistent label methodology is a fundamental condition for helping in the
acceptance of novel detection approaches based on statistical and machine
learning techniques.
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1. Introduction and Motivation

A Network Intrusion Detection System (NIDS) is an active process that
monitors network traffic to identify security breaches and initiate measures
to counteract the type of attack (e.g., spam, information stealing, botnet
attacks, among others.). Today’s network environments suffer from constant
modification and improvements. Therefore, a rapid adaptation by NIDS is
necessary if they do not want to become obsolete [1, 2]. Consequently, NIDS
based on statistical methods, machine learning, and data mining methods
have increased their application in recent years mostly because of their gen-
eralization capabilities [3, 4].

However, much of the success of the so-called statistically based NIDS
(SNIDS) will depend mostly on the initial model generation and the bench-
marking before going into the production network infrastructure [5]. Both
procedures will heavily relies on the quality of labeled datasets used.

Although dataset quality is not precisely defined, several authors [6, 7]
agree that representative and accurate labels are the main two aspects for
measuring the quality of a network traffic labeled dataset. A representa-
tive labeled dataset should provide all the associated behavioral patterns
for malicious and normal network traces. Representativeness is particularly
important when labeling network traces from normal users, where timing
patterns, frequency of use and work cycle must be precisely included in the
dataset. In the case of malicious network traces, the sequence of misuse ac-
tions performed on the network and their periodicity patterns are examples
of representative information. On the other hand, an accurate label should
be assigned only to those portions of a network trace containing the behav-
ior of interest. A mislabeled and underrepresented dataset will have direct
consequences on the performance of any model generated from the data.

Several aspects can be studied during the generation of labeled datasets
for the network security field, such as the mechanism used during the traffic
capture [8, 9, 10, 11, 12, 13], the subsequent cleaning process [14, 15], the
method of feature extraction [16, 17, 18, 19], and the strategy for labeling the
network traces, among others. In the particular case of the labeling strategy,
it is possible to analyze the process as a simple detection/classification prob-
lem in which a given network traffic event is classified as normal or malicious.
However, there are meaningful differences in the process of traffic labeling
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compared with a conventional traffic detection process. These can be framed
under the following aspects:

• Timing: in the labeling process, there is no need to perform the de-
tection in a particular time frame. During the labeling process, the
security analyst (automated system or expert user) can take the re-
quired time to confirm the potential anomaly or misuse. (D1)

• Relevance: a false positive is not as crucial for a real-time detection
system as it is for a labeled data set creation system. A false positive is
an inconvenience to the user during real-time analysis. For the labeling
process, however, it merely represents part of the noise that might occur
in the resulting dataset. (D2)

• Qualitative: the focus of the labeling process is to get a set of accurate
labels representing the most significant characteristics of the network.
The more representative is data, the better will be the resulting model
for performing detection. As an example, a labeled dataset with a
considerable set of confirmed malicious network traces coming from a
unique source and following the same pattern could be easy to predict.
However, it might not be useful for generating a proper detection model.
(D3)

• Scope: the scope between the detection problem and the labeling of
network traces are often different. Usually, network security datasets
are created with a particular scope in mind. On the other hand, when
performing real-time detection on real network environments, the de-
tection of malicious traffic does not restrict between network traces. It
has the task of classifying all traffic. (D4)

• Economic: the labeling process has no immediate economic conse-
quences. In other words, when confronted with an undetected malicious
network trace, in general, there is no consequence beyond inadequate
data for the construction of a statistical prediction model. While in the
case of a operational detection system, the non-recognition of malicious
behavior can cause important losses to the organization. (D5)

Over the past 20 years, several methods have been developed to address
the problem of labeling applied to network data sets. One of the most widely
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used methods has been using a controlled network environment for classifying
network traces within monitored time windows. The reason behind such a
decision responds to the simplicity of the labeling process.

However, the method fails in capturing many of the behavioral details of
realistic network traffic. Consequently, the resulting labeled dataset ends up
providing a dataset representing partially the conditions observed in a real
network environment. Recently, some other methods based on statistical
learning, visualization, and a combination of both (assisted methods) have
emerged to deal with more realistic network traffic and speed up the labeling
process. Nowadays, it is not clear whether such approaches provide a sig-
nificant help for the labeling process. The fact is that much of the analysis
and labeling of network traffic is still performed manually: with an expert
user observing the network traces [20, 21]. As mentioned by [4, 22], such a
situation could be a definite obstacle for the massive adoption of SNIDS in
the network security field.

The present document provides an extensive review of the works pre-
senting methodological strategies for generating accurate and representative
labels for network security datasets. The survey emphasizes the application
of labeling methods based on machine learning and visualization techniques
and their benefits and limitations in the generation of quality labels for build-
ing and evaluating the performance of SNIDS.

The rest of this document is organized as follows: Section 2 presents
the methodology used for the selection criteria of the papers presented in
this survey. Section 3 provides background information about the labeling
process, including a taxonomy and a brief description of the limitations of
current labeled datasets available for security research. Then, in Section 4,
the current methods for labeling network traffic are reviewed and compared
based on the taxonomy, while most relevant aspects of each strategy are
discussed in section 5. Section 6 remarks the challenges and open issues
in current labeling methods for achieving quality network traffic datasets.
Finally, concluding remarks are provided in Section 7.

2. Methodology

This study conducts a review of the different labeling methods for gener-
ating network traffic datasets and investigates the published journal article in
the last 20 years. We performed this review in two phases. Phase-1 identifies
the information resource (search engine) and keywords to execute a query to
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obtain an initial list of articles. In a second phase, the initial list is filtered
under specific selection criteria, and the most related and core articles are
stored into the final list reviewed in this article. The purpose of this review
article is to answer the following questions: 1) What are the methodologies
used by the community to obtain labeled network traffic data sets? 2) What
are the recent trends for network traffic labeling methods? 3) What are the
characteristics of the established traffic connection labels? 4) What are the
benefits and drawbacks of each labeling methodology adopted? 5) What is
the future scope of research for creating labeled network traffic datasets?

The queries include terms related to capturing and labeling network traf-
fic datasets and were the result of the authors’ experience, as well as the
terminology used in prominent literature in this area [4, 22]. The terms
used during the first stage of the methodology are traffic dataset, dataset
labeling, intrusion detection, network classification, dataset creation, and la-
beled dataset. All the queries aimed at being descriptive for including the
creation of network traffic datasets and labeling methodology. Whenever a
combination of keywords from both categories was found in the text, the
corresponding item was selected as a possible candidate.

The selected queries were applied on the all the best known scientific
databases: Scopus [23], Google Scholar [24], IEEE Explorer [25], ACM Digi-
tal Library [26], Microsoft Academic Search [27], Springer [28] and Mendeley
[29]. In addition, the proceedings of some of the most important conferences
and journals in the field (DEFCON [30], USENIX [31], IPOM [32], CCS [33],
Computers & Security [34], VizSec [35], EUROSYS [36], and others) were
specifically analyzed and also a full-text keyword search was applied.

The first stage of the methodology results in a list of 100 candidate ar-
ticles. The initial selection criteria for articles were intentionally made with
weak constraints so as not to exclude relevant articles and to create a large
candidate set. Because of these weak constraints, the initial list contained
many false positives that did not meet the predefined criteria. Therefore, in
the second stage, the initial list of reviewed and filtered according to i) the
generation or capture of labeled network traffic datasets and ii) the method-
ology for network traffic labeling. To sum up, for an article to be included in
this study, it must describe a methodology or framework for getting labeled
data related to network traffic traces. On the other hand, those works fo-
cused on the creation of unlabeled network traffic datasets or not explicitly
stating the labeling methods are omitted from this review. At the end of
the second stage, a final list with less than 30 articles was obtained. Basic
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information (including publication year and type ) about the selected articles
during phase-1 and the resulting articles after applying a more strict exclu-
sion criteria is shown in Figure 1. Despite the short number of articles found
on the generation of labeled datasets on network traffic, more articles are
expected to be published in the future. Especially, given the current interest
in the development of machine learning approaches in several other fields.

2020

2019

2018

2017

2016

2015

2014

2013

2012

2011
2010
2009
2008
2007
2006
2005
2004
2003
2000

Report

Proceedings

Journal

YES

NO

Year Pub Type Labeling

Labeling

NO

YES

Articles by year and type of publication

Figure 1: Publication year and type about the selected articles during phase-1. Articles
focused on the methodologies for labeling network traffic datasets are highlighted in blue.

3. Background

Labeling consists of adding one or more meaningful and informative tags
to provide context to data [37]. In the last years, quality dataset labeling
has emerged as a fundamental aspect in the application of machine learning
models in several areas. The network security field has been focused in the
development of NIDS based on machine learning (referred as SNIDS) with
the promising goal of achieving better performance detection [4, 22]. Conse-
quently, the community has focused in the generation of labeled datasets for
analyzing different machine learning approaches in the building of SNIDS.

This section provides a brief description of SNIDS and the need of quality
labeled datasets. Followed by a brief discussion about the limitations in the
current most relevant labeled datasets used for network security. The section
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ends with a taxonomy for strategies used to create labeled traffic network
datasets.

3.1. Statistically based NIDS

A simplified NIDS architecture is shown in Figure 2. In the first stage,
the traffic data acquisition module continuously monitors the traffic, gathers
all the network traces on the wire. Then such traces are evaluated by the
Incident detector module based on knowledge provided by some predefined
Traffic Model. When an incident is detected, an alert is raised, and the
suspicious network traces together with information related to the incident
are sent to the Response Management module for further expert analysis.
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Figure 2: A simplified NIDS architecture (adapted from [4])

The traditional approach for building a traffic model consists of including
a set of rules describing malicious behavior [38, 39]. One of the major incon-
venience of rule-based approaches is that rules are capable to recognize only
known attacks. Another issue is that rules must be regularly updated by
the security experts [4]. An alternative approach consists of using a statisti-
cal learning model. Under such approach, different network traffic behavior
(Email checking, regular social network interaction, Botnet command & con-
trol channel, SPAM, etc.) can be represented as a quantitative response Y
while information extracted from network traces such as IP addresses, desti-
nation ports, or the number of TCP connections in the last minutes (just to
mention a few) are referred as the p different predictors, X1, X1 ... Xp. Sta-
tistical models assume there is some relationship between Y and Xp, which
can be written in the very general form:

Y = f(X) + ε (1)
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Where f is an unknown function of Xp that can potentially recognize
different network traffic behaviors. In essence, statistical learning refers to a
set of approaches for estimating f . One of the most successful methods for
estimating f is the so-called supervised learning, where for each observation
of the X measurement(s) there is an associated response measurement for
Y . However, the performance of statistical learning models following a su-
pervised method will depend on the accuracy and representativeness of the
label Y .

The inclusion of statistical and machine learning techniques into a NIDS
eliminates the need to manually create rules describing traffic behavior by
automatically building them from some reference data [40]. Another major
benefit provided by these methods consists of being able to detect not only
known attacks but also their variations. On the other hand, a major in-
convenience with statistically-based NIDS is they require a large amount of
labeled network traces to build a traffic model. The difficulty associated with
the labeling process of network traffic datasets is one considerable obstacle
in the widespread adoption of SNIDS [4, 22].

3.2. Limitations of current Network traffic Datasets

When choosing a network traffic dataset to train or test a SNIDS it is nec-
essary to consider the representativeness and accuracy of the network events
included. However, obtaining representative and correctly labeled network
traffic data sets could be very challenging. Moreover, maintaining such data
sets could be prohibitive. The fact is that those organizations capable of
producing and publishing representative and accurate data are not very com-
fortable about the risk of potentially exposing sensitive information. On the
other hand, any effort to anonymize data is often considered prohibitively
expensive.

For more than 20 years since the first DARPA dataset was published in
1998 [41] there have been numerous published datasets for network security.
In a recent survey about labeled datasets for network security, Kenyon et al.
[42] enumerates several common flaws in the major public labeled datasets.
With more than 27 datasets surveyed, the lack of labels accuracy and net-
work representation emerge as the most required properties of a high-quality
dataset. However, some authors [43] also observe that most of the labeled
datasets available for research represent the network behavior for a particular
period. Given the rate of change in malicious behaviors, and the challenge
to create and maintain, these labeled datasets become quickly obsolete. The
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previously described situation difficult for statistically-based NIDS to gen-
eralize its performance to not previously observed attacks. Therefore, more
than having only a limited number of high-quality but static labeled datasets,
the focus must be on an accurate labeling methodology capable of continu-
ously generating a representative dataset based on network traffic.

3.3. A Taxonomy for Labeling network Security Datasets

Six fundamental categories are considered in the analysis of the labeling
methodologies for network security datasets. Figure 3 provides an overview
of the six categories and a classification according to three aspects. i) The
data resources used as input, ii) The characteristics of the resulting labeled
dataset, and iii) the tools and techniques involved during the labeling process.
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Figure 3: Proposed taxonomy for labeling Network traffic datasets

Traffic: the network traffic in the labeled dataset can be categorized into
real or synthetic data. The latter refers to data captured from real
networks while the former to data artificially generated with the goal
of capturing different network conditions.

Scope: network traffic datasets can be categorized as specific-scope: when
the labeling approach focus on a particular network behavior including
both normal and malicious (e.g. Garcia et al. [44] aims at capturing
only botnet behavior) or as general-scope: when no particular consid-
eration has been made during the labeling of the traffic data.
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Trace information A labeling method can be designed for working at
different levels on a network trace. At low-level, labeling focuses on
information directly extracted from a network trace, such as a list of
IP addresses, ports, and network connections, among others. At a mid
level, the labeling is carried out on network flows level (i.e. labels are
per-flow). Finally, at a high-level, labeling is conducted on aggregated
information considering interactions or relations between different IP
addresses, network flow, user-level applications, etc. The methodology
and tools involved in the labeling process will depend on the trace infor-
mation level under analysis. For instance, high-level trace information
such as IP address interactions can be represented as a graph structure.
The labeling of such complex structures can require a more elaborated
analysis than linear structures such as a list of IP addresses.

Privacy Privacy preservation is another fundamental aspect to consider
during the labeling process [45]. Since dealing with anonymized or en-
crypted data implies losing potentially valuable information, a labeling
methodology will need to be prepared for working under such circum-
stances. Three categories are considered: high-privacy-aware, the la-
beling methodology is capable of dealing with encrypted or anonymized
data. low-privacy-aware, the labeling is conducted on the network data
not containing the payload. However, sensitive user information such
as IP addresses and the port destination remains available, and the last
category is non-privacy-aware when all the network trace information
is available during the labeling process.

Labeling strategy: Two types of labeling methods are considered: human
guided labeling based on human interaction and automatic labeling that
uses controlled traffic environments. Human guided labeling includes
the so-called manual labeling which relies only on human expertise (i.e.,
traditional network traffic analysis with the aid of simple visual charts),
and assisted labeling which use interactive applications (i.e., a model
for recommending labels along with interactive visualizations) Among
the three strategies, automatic labeling is the most widely accepted.
The general idea behind automatic labeling is to set up a controlled
network environment and use the knowledge about the environment to
label the traffic.

Reproducibility A low reproducible methodology is designed for being

10



applied only once and producing a unique data set. A highly repro-
ducible labeling methodology aims at giving the possibility to a dif-
ferent research team to extend the resulting dataset. For supporting
reproducibility, a labeling methodology should provide detailed infor-
mation about the tools and resources used during the labeling process.

4. Current Methods for Labeling Network Traffic

The present section analyzes all the articles collected based on the method-
ology described in Section 2. The reviewed articles are organized according to
the three labeling methods described in section 3.3. A summary table with a
systematic analysis is presented at the beginning of each section. Each table
provides details about the all aspects mentioned in the taxonomy. Then, for
each piece of research, a brief description of the labeling approach is provided
with a particular focus on the tools and strategies used for conducting the
labeling.

4.1. Automatic Labeling

In general, under an automatic labeling technique, the creation of a data
set in a controlled and deterministic network environment facilitates recog-
nizing anomalous activities from normal traffic, thus eliminating the process
of manual labeling by experts (see Figure 4)

Human 

Network traffic Network traffic

Labeled datasetEnvironment

Human 

Network traffic Network traffic

Labeled datasetEnvironment

AUTOMATIC LABELING

HUMAN-GUIDED LABELING
Figure 4: Under automatic labeling methods labels are the result of monitoring a controlled
environment (network infrastructure) by a human (user). By having precise control of the
environment, the labeling process can be systematized.

In the last years, several network security researchers have embraced au-
tomatic labeling strategies with the help of techniques based on Injection
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Table 1: Summary of the methodologies using an Automatic strategy for labeling net-
work traffic. Columns four to eight refer to Reproducibility (Prepr.), Scope, Traffic
Type (Traffic), Privacy Awareness (Privacy) and Traces Information (Trace), as was
discussed in the taxonomy.

AUTOMATIC LABELING

Author Year Technique Repr. Scope Traffic Privacy Trace

Garcia [44] 2014 IT low specific synthetic non mid
Bhuyan [46] 2015 IT low general real non low
Moustafa [47] 2015 IT + NST low general synthetic non low
Haider [48] 2017 IT + NST low general synthetic non low
Mukkavilli [49] 2016 IT+ BP + NST low general synthetic non low
Lemay [50] 2016 IT low specific synthetic non low
Sharafaldin [6] 2018 BP + IT low general synthetic low low
Shiravi [51] 2012 BP + IT low general synthetic low low
Lippmann [41] 2000 BP + NST low general synthetic non low
Stolfo [52] 2000 BP + NST low general synthetic non high
Catania [53] 2012 NST low general real non low
Gargiulo [54] 2012 NST high general real low low
Song [55] 2011 NST low general real* non low
Sperotto [56] 2009 NST low general real low low
A-Navarro [57] 2014 NST low general real non low
Ring [58] 2017 NST + BP low general synthetic high mid
Sangster [59] 2009 NST + BP low general synthetic non low

Timing (IT), simulated Behavioral Profiles (BP), and commonly used Net-
work Security tools (NST). Table 1 summarises the surveyed articles using
automatic labeling techniques. In addition to the particular labeling tech-
nique, the table also provides relevant information about the remaining as-
pects mentioned in the taxonomy of section 3.3.

4.1.1. Injection Timing

One of the most successful methods for labeling network traffic datasets
consists of generating different network traces at specific time windows. Then
label all the network traces accordingly to the specific target behavior. This
technique is known as Injection Timing (IT) [50].

The injection timing strategy requires a controlled network environment
where the user has precise information about the different applications gener-
ating traffic on the network. Figure(Figure 5) provides a simplified overview
of the injection timing strategy. At ts the network has just become opera-
tional for the first time. At the time tsm the user injects into the network

12



particular malware traffic (DDOS, Botnet, port scanning, etc.) Since the
network has just become operational. All the background traffic from the
time window from ts to tsm is labeled as normal. Beyond tsm all network
traffic is labeled as malicious. When the user stops injecting the malicious
behavior at tem, all the traffic becomes labeled as normal again until the
network is permanently shut down at time te.

Normal labels

Background network traffic

tsmts tetem

Malicious network 
traffic starts

Normal labelsMalicious behavior 
Labels

Malicious network 
traffic ends

human

Figure 5: An example of the Injection Timing labeling strategy using specific time windows
for injecting and labeling malicious network traffic.

Since the Injection Timing strategy is applied under controlled environ-
ments, it is possible to create labeled datasets with numerous network traffic
behaviors. This feature provides some level of authenticity for validating
the experimental results on the generated labeled dataset. However, since
labels are obtained by merely contrasting the execution time window of each
generated network trace, a strict time control mechanism is necessary for
obtaining accurate labels.

A clear example of the application of the injection timing strategy is
observed in the work of Garcia et al. [44]. In particular, the authors use
Injection Timing for generating a labeled dataset focused on Botnet attacks
(The CTU-13 Dataset). A topology consisting of a set of virtualized com-
puters with the Microsoft Windows XP SP2 operating system on a Linux
Debian host was used for capturing the traffic through time windows.

For the particular case of Botnet network behavior, with Injection timing,
it is easier to label these network traces with higher accuracy than other
types of attacks. The fact is that Botnets tend to have a temporary and
very localized behavior, which means that most actions remain unchanged
for several minutes. Therefore, the separation of the traffic into time windows
facilitates the control of the botnet behavior of the network.
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Following a similar approach, Bhuyan et al. [46] use a subset of the
TUIDS (Tezpur University Intrusion Detection System) testbed network for
capturing normal and malicious traffic traces. Normal traffic is collected
independently from real users of the networks. At the same time, several
types of malicious network traffic are injected by infecting several network
stations. All the network traces from these stations are then captured con-
sidering the specific time intervals. Then after a pre-processing to extract
traffic from those infected stations, all network traces are mixed using the
time interval windows of each connection to classify them as either malicious
or non-malicious.

Tools like IXIA PerfectStorm are also used for generating labeled data.
By using this tool, it is possible to generate up to 9 families of malware.
The Australian Defence Force Academy relay on the IXIA PerfectStorm tool
for its labeling strategy. The captured traffic from IXIA perfectStorm and
label the traces using the windows time interval and the attack information
reported by the tool. This strategy was used for generating the UNSW-NB15
(Moustafa et al. [47]) and NGIDS-DS ( [48]) datasets.

On the other hand, Mukkavilli et al. [49] focus on labeling traffic inter-
action between users and cloud services (i.e. Amazon EC2). The authors
rely on the PlanetLab infrastructure. PlanetLab is a (now-extint) group of
computers available as a testbed for computer networks and distributed sys-
tems [60, 61]. The authors use specific PlanetLab nodes mimicking normal
users and their interaction with cloud services based on normal and uniform
traffic distributions. All traffic from normal nodes is labeled as normal. On
the other hand, malicious behavior is injected at different time windows to
generate malicious traffic. In particular, DDOS, port scanning, and ARP
spoofing attacks take place at random intervals, while normal behavior traf-
fic continues to run continuously. All attack nodes have the precaution to
start the malicious behavior within the same time window with a minimum
delay and labeled accordingly. Several other authors follow a similar ap-
proach combining tools for simulating normal behavior with injection timing
techniques for capturing malicious [58, 62, 6].

The work of Lemay et al. [50] applies an Injection Timing strategy for
labeling the traffic from SCADA (Supervisory Control and Data Acquisition)
systems. Due to the sensitive nature of these networks, there was little
publicly available data. Through the use of pre-established and simulated
network architecture, the authors could generate Modbus [63] network traffic
with precise knowledge about the behavior observed on each network trace
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type. Then if a packet is part of a trace group that includes malicious activity,
it will be labeled as ’malicious.’ Otherwise, it is labeled as ’normal.’

4.1.2. Behavioral Profiles

The use of Behavioral Profiles is another strategy used for automatically
labeling network traffic. Behavioral profiles provide the information to sim-
ulate a specific feature or aspect of the network. A profile encompasses an
abstract representation of features and events of real-world behaviors con-
sidered from the network perspective [51]. Therefore, profiles are usually
implemented as computer programs executing common tasks according to
some previously defined mathematical model (usually a probability distribu-
tion). These profiles are then used by human agents or operators to simulate
the specific events in the network. Their abstract property effectively makes
them network-agnostic and allows them to be applied to different setup and
topologies. Thus, the labeling process using this technique is straightforward;
all the traffic generated by a profile simulating normal traffic will be labeled
as normal. Similarly, all the traffic generated from a malicious behavioral
profile is labeled as malicious.

In this way, Shiravi et al. [51] combine two classes of profiles to generate
a labeled dataset with different characteristics and events. A first profile A
tries to describe an attack scenario unambiguously. While a second profile - B
- encapsulates distributions and mathematical behaviors extracted from cer-
tain entities and represented as procedures with pre and postconditions, thus
representing normal traffic. Examples include the statistical distributions of
packet sizes of a protocol, number of packets per flow, specific patterns in
the payload, size of payload, the request time distribution of protocol.

Sharafaldin et al. [6], also focus on two behavioral profiles. An ab-
stract benign profile is built upon 25 user behaviors based on the HTTP,
HTTPS, FTP, SSH, and email protocols. The benign profile is responsible
for modeling human interactions’ abstract behavior and generating natural-
istic benign background traffic. Six malicious profiles are generated based on
frequent attacks. Then, by combining these profiles, several labeled datasets
can be generated, each one with unique characteristics for the evaluation.
By merely altering the combination of the profiles, it is possible to control
the composition (e.g., protocols) and statistical characteristics (e.g., request
times, packet arrival times, burst rates, volume) of the resulting data set.

Other works [41, 64, 58, 49, 59] combines behavioral profiles with other
techniques for improving the representativeness of the resulting labeled datasets.
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In particular, Lippmann et al. [41, 64] proposes the use of automata to
simulate traffic behaviors with a traffic distribution similar to the observed
between a small Air Force base and the Internet. Through custom software
automata in the test bed, hundreds of programmers, secretaries, managers,
and other types of users running common UNIX and Windows NT applica-
tion programs are simulated. Automata interact with high-level user applica-
tion programs or they implement clients for network services such as HTTP,
SMTP, and POP3. Low-level TCP/IP protocol interactions are handled by
kernel software and are not simulated.

4.1.3. Network Security Tools

The labeling process is carried out based on the information provided by
network security tools (NST) such as sniffers, honeypots, or even using a
NIDS.

The application of a NST labeling strategy was one of the strategy applied
in the generation of the DARPA datasets (1998-99) [41, 64] and the KDD99
[52]. As part of the DARPA IDS evaluation program, a testbed was created
with many types of live traffic using virtual hosts to simulate a small Air
Force base separated by a router from the Internet. Different types of attacks
were conducted outside the network and captured by a sniffer located in the
network router. Any network trace coming outside the network (the internet)
is considered as malicious while those from inside are normal.

A similar approach was more recently applied by Ring et al. [58] combin-
ing a virtualized network environment with traces captured from a real web
server exposed to the internet. Normal traffic is generated through behav-
iors profiles while Malicious traffic comes from the external server as well as
particular attacks injected from the virtualized infrastructure. The authors
applied anonymization techniques netflow information for guaranteeing pri-
vacy.

NST tools are also applied for labeling traffic in capture-the-flag compe-
tition. Ideally, capture-the-flag competitions are a valuable source for gath-
ering distributed normal and malicious traffic. However, by default, data
sets do not contain labels. Sangster et al. [59] apply a set of pre-established
rules and user roles in combination with network sniffers to capture several
traffic behaviors. Then, based on that information, they provide the correct
label to each network trace. The malicious traffic is captured from specific
computers belonging to NSA security experts. On the other hand, Normal
traffic is generated artificially using profile behaviors.
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Gargiulo et al. [54] and Catania et al. [53] use rule-based NIDS for gen-
erating labels. In particular, Catania et al. analyze the performance of
stand-alone NIDS for labeling traffic and provide some results when results
labels are used training SNIDS. On the other hand, Gargiulo et al. use the
principles of Dempster-Shafer’s theory for combining the information of sev-
eral rule-based NIDS. In their approach, the authors use the basic probability
assignment for calculating the final decision about a particular network trace.
The resulting labels are then used for training a SNIDS.

The work of Navarro et al. [57] propose a similar strategy for automatic
labeling 802.11 network traffic using a NIDS based on unsupervised anoma-
lies. The NIDS analyzes the traffic, and for each of the network traces, the
system provides three numerical values with information about the label’s
belief. The belief values represent the probability of observing normal or at-
tack behaviors. A third value is used for registering how uncertain the system
is about network label and adjusting the system accordingly. The labeling
process is established by using a threshold of possible values per label. The
threshold is set using the mean and standard deviation of the probability
values set by NIDS. Through this threshold, all network traces whose label
value is not within this threshold will be discarded from the dataset due to
the degree of belief they present. Connections within the value range will
be labeled according to the NIDS’s highest probability between the Normal
and Malicious classes. Thus, the resulting labeled dataset will contain those
connections that NIDS determined with a high degree of confidence.

On the other hand, Sperotto et al. [56] with TWENTE, and Song et al.
[55] with KU aim to provide the security community with more realistic data
sets. Their labeling method is based on the analysis of several honeypots
with different architectures inserted within a network environment. Then,
all captured traffic to specific monitored services in the honeypots can be
easily labeled as malicious. By using honeynets, there is no human interfer-
ence during the data collection process (i.e., any form of attack injection is
prevented). Therefore, the attacks present in the dataset reflect the situation
of a real network.

4.2. Human-Guided Labeling

Many authors [65, 66, 67, 68] consider human experience is an essential
aspect of traffic analysis and the subsequent connection labeling. Therefore,
under human-guided labeling methods, the network environment is not con-
trolled and all the work relies in the expert users. However, since experts are
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an invaluable resource, labeling time has to be efficiently used (see Figure 6).

Human 

Network traffic Network traffic

Labeled datasetEnvironment

Human 

Network traffic Network traffic

Labeled datasetEnvironment

AUTOMATIC LABELING

HUMAN-GUIDED LABELING

Figure 6: Under human-guided labeling methods, the environment (network infrastruc-
ture) is not controlled by a human (user). Labels are the result of human knowledge with
the eventual assistance of particular tools.

4.2.1. Manual

A very significant percentage of today’s network analysis is performed
manually (i.e., without assistance from any system) by security experts [62].
Manual labeling by network traffic experts requires a precise understanding
of the network behavior for differentiating between malicious and normal
traces. Unfortunately, many of these extensive network analysis processes
are not published, and despite being widely used, the research community
has limited knowledge about it.

There are several approaches to reduce human effort in the manual label-
ing process. Some authors propose the use of visual tools (Viz) to improve
traffic behavior analysis. Others suggest collaborative environments between
a label prediction model and security experts (Crowd). A summary of the
mos relevant approaches are presented in Table 2.

Many works try to reduce the effort involved during manual labeling
through the use of visualization tools. In particular, the use of visual systems
help the user during labeling by improving correlation between malicious
patterns and making the user more confident about their labels [74].

NIVA [72] is one of the first examples of a data visualization tool for
intrusion detection. NIVA uses information from various intrusion detectors
and incorporates references and colors to give the attacks a significant value.
The color of the reference represents the severity of the attacks. Yellow is
moderate, while red is the most severe.
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Table 2: Summary of the methodologies using a manual strategy for labeling network traf-
fic. Columns four to eight refer to Reproducibility (Prepr.), Scope, Traffic Type (Traffic),
Privacy Awareness (Privacy) and Traces Information (Trace), as was discussed in the
taxonomy.

MANUAL LABELING

AUTHOR YEAR TOOL REPR. SCOPE TRAFFIC PRIVACY TRACE

Koike [69] 2006 Viz low general real low low
Livnat [70] 2005 Viz low general real low mid
Ren [71] 2005 Viz low general real low high
Scott [72] 2003 Viz low general real low high
Chen [73] 2014 Viz + Crowd low general real low mid
Huang [20] 2020 Crowd low general real non mid

On the other hand, IDGraphs [71], uses the visualization technique called
Histographs : a visual technique to map the brightness of a pixel to the fre-
quency of the data. By mapping multiple combinations of features in the
input data, attacks with different characteristics can be identified. IDGraphs
not only shows an overview of the underlying network data, but also allows
an in-depth analysis of possible anomalies through dynamic queries [62].

Livnat et al. [70] develop a chord-based visualization for the correlation
of network alerts. The approach is based on the notion that an alert must
possess three attributes: what, when, and where. These attributes can be
used as a basis for comparing heterogeneous events. A network topology map
is located at the center with the various alert records in a surrounding ring.
The ring’s width represents time and is divided into several periods of the
history of each connection. A line is drawn from an alert type on the outer
ring to a particular host on the topology map to represent a triggered alarm.
Thicker lines show a more significant number of alerts of a single type, and
the larger nodes in the topology map represent hosts that experience unique
alerts.

The authors of IPMatrix [69] believe that an attacker’s IP address, even
if falsified, is a significant factor in an attack, and administrators can take
appropriate countermeasures based on it. Using a combination of heatmap
and scatter plots, IP Matrix represents the full range of IPs. IP Matrix
incorporates two 256x256 matrices. The first, the Internet level matrix,
only maps the first two octets while the local level matrix maps the last
two octets, allowing the local and Internet level IP addresses to be seen
simultaneously. Each alert generated by an IDS is mapped using a pixel
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within its appropriate cell. Pixels are color-coded to represent attacks of
different nature, but because a pixel is too small to be seen, the background
of a cell is colored with the most frequent attack type. A disadvantage of
this system is that there are no connections between the local level and the
Internet hosts, which makes the system less intuitive.

Other manual approaches make use of crowdsourcing (Crowd) for obtain-
ing labeled datasets. Crowdsourcing has proven to be a cost-effectively way
to obtain a large-scale labeled dataset. Moreover, in some fields, it has been
demonstrated that nonexpert annotations were relatively useful for training
a statistical model [75].

Chen et al. [73] introduce the OCEANS (Online Collaborative Explo-
rative Analysis on Network Security) system, which integrates visual analyt-
ics methods and collaboration features as a web application. In particular,
OCEANS integrates the crowd input from security experts and makes every-
one contribute to labeling the network events. OCEANS visuals offer detail
of individual network flows, including IP, port, time, and network attributes
from both source and destination side, as well as health status and IPS logs.
OCEANS provides a web interface where a user can submit events while oth-
ers can view and comment on them. Users need to provide label information
describing the event. Then all the crowd input is synthesized into an event
graph and event timeline. The tool provides a suspicious score based on the
number of events an IP address involved, adding the count of agreement on
this event and subtracting the count of disagreement.

More recently, Huang et al. [20] developed and released IoT inspector.
An open-source application for capturing and labeling network traffic from
smart home devices. The application crowdsources the data from within
home networks and provides a mechanism for simplifying the labeling. The
resulting dataset is not focused on malicious behavior, but on modeling the
particular behavior of the different brands of smart devices. Contrary to
desktop computers, smart home devices perform very specific tasks making
their networking behavior very predictable [76].

4.2.2. Assisted

To facilitate the analysis and subsequent labeling of network traffic by ex-
perts, several authors have proposed using a technique called Active Learning
(AL) [77, 78].

AL refers to human-in-the-loop methods, where a prediction model is it-
eratively updated with input from expert users (see Figure 7). The expert
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user (a) is responsible for taking decisions on those connections where the
model has a high degree of uncertainty (e) (i.e. those connections near the de-
cision boundary) than expected (a strategy known as Uncertainty Sampling
[77, 79]). These final decisions are used for labeling the data (b) fed into the
model (c) to improve its objective function and prediction performance on
unlabeled data (d).

Labeled Data Pool of Unlabeled 
Data

Difficult points for 
the model

Label for 
difficult point

User Interaction

Machine Learning Model

Model

    f()

Interactive Learning Method

a

cb d

e

Figure 7: Work cycle of an Active Learning Strategy used for labeling

A summary of the most relevant approaches is presented in Table 3. In
some cases, AL is combined with other labeling tools. In particular, the
combination of Visual (Viz) and AL techniques has emerged as an effective
approach for labeling network traffic.

Classical AL techniques are widely used in labeling large volumes of data
in general, and it has started to be used for constructing labeled network
traffic datasets.

In their work from 2004, Almgren and Jonsson [80] propose a classical AL
strategy based on uncertainty sampling [77, 79] to select the most suitable
network traces to be labeled by the expert users.

On the other hand, other works attempt to accelerate the AL working
cycle by including several strategies for improving the quality of the network
data to be labeled by expert-users. Stokes [65] includes a rare category
detection algorithm [83] into to AL work cycle to encourage the discovery
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of families of network traces sharing the same features. Similarly, Görnitz
uses a k-nearest neighbors (KNN) approach to identify various network trace
families. Both approaches guarantee that every family has representative
members during the expert labeling process and reduces the sampling bias.
Beaugnon et al. [81] also rely on rare category detection to avoid sampling
bias. Moreover, they apply a divide-and-conquer strategy during labeling to
ensure good expert-model interaction focused on small traffic sections.

Similarly, McElwee [78] proposes an AL intrusion detection method based
on Random Forests and k-Means clustering algorithms. The daily events are
submitted to a Random Forests classifier and events receiving more than
95% of the votes are considered correct and saved into a master dataset.
The remaining events, conforms a candidate dataset grouped into k groups
using k-means clustering. Each group is analyzed and classified by an expert
and then saved into the master dataset.

Other works combine a visualization component with the AL labeling
strategy. The motivation behind including visual components is to improve
the user experience during the AL work cycle. A better user experience
translates into better quality labels for the prediction model. Xin Fan et al.
[67] present one of the most recent approaches combining AL techniques with
a visual tool to provide the user with a better representation of the traffic
being analyzed. The authors use a graph to display a two-dimensional topo-
logical representation of the network connections. The nodes in the graph
are differentiated by color to identify the connection type quickly and a color
intensity matrix to show the interaction between the connections. Several

Table 3: Summary of the methodologies using a assisted strategy for labeling network
traffic. Columns four to eight refer to Reproducibility (Prepr.), Scope, Traffic Type
(Traffic), Privacy Awareness (Privacy) and Traces Information (Trace), as was dis-
cussed in the taxonomy.

ASSISTED LABELING

AUTHOR YEAR TOOL REPR. SCOPE TRAFFIC PRIVACY TRACE

Almgren [80] 2004 AL low general real non high
Beaugnon [81] 2017 AL + Viz high general real low high
Fan [67] 2019 AL + Viz low specific real low mid
Guerra [82] 2019 AL + Viz high specific real high high
Gornitz [68] 2013 AL low specific real non low
McElwee [78] 2017 AL low general real low high
Stokes [65] 2008 AL low general real non high
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other visual tools such as histograms and boxplots are employed during the
labeling process. Histograms are used for representing the percentage of the
traffic of the various protocols/ports. Boxplots are used to show the distri-
butions of the destination ports and the number of records of the different
IPs

In the work of Beaugnon et al. [81, 66], the authors also implements
a visual representation for the user interaction process. In this case, the
visual application provides a mechanism for organizing the network traffic
in different groups. A set of queries and filters facilitates the user to create
families of connections for further analysis by small network traffic groups.

Otherwise, Guerra et al. present RiskID [82, 84], a modern application
focus in the labeling of real traffic. Specifically, RiskID intend to create
labeled datasets based in botnet and normal behaviors. The RiskID applica-
tion uses visualizations to graphically encode features of network connections
and promote visual comparison. A visualization display whole traffic using a
heatmap representation based in features. The heatmap promotes the search
of pattern inside the traffic with similar behaviors. Other visualization shows
statistical report for a punctual connection using color-map, histogram and
a pie-chart. In the background, two algorithms are used to actively orga-
nize connections and predict potential labels: a recommendation algorithm
and a semi-supervised learning strategy (AL strategy). These algorithms to-
gether with interactive adaptions to the user interface constitute a behavior
recommendation.

5. Discussion

No matter the labeling strategy used, they focused on the accuracy and
representativeness of the resulting datasets. However, despite their frequent
use, there are still substantial problems inherent to the labeling methodolo-
gies. Significant aspects such as privacy, reproducibility, and the level of
expertise required are not discussed in depth during the implementation of
each strategy. Table 4 summarizes the more significant aspects of the three
labeling strategies.

5.1. Automatic Labeling

Automatic labeling strategies are the preferred approach to obtain labeled
network traffic data. Such a decision responds to the low level of expertise
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Table 4: Benefits and drawbacks of the strategies for labeling network traffic datasets.

Labeling Strategy Benefits Drawbacks

Automatic

• Very fast
• Easy to adapt to new specific behaviors
• Low expertise
• Moderate accuracy

• Low representativeness
• Hard to reproduce
• Non Privacy

Manual
• High representiveness
• High Accuracy

• Slow
• High expertise
• Hard to reproduce
• Low Privacy

Assisted

• Fast
• Medium expertise
• High representivenes
• Moderate Accuracy

• Hard to reproduce
• Hard to adapt to new specific behaviors
• Low Privacy

required and the relative speed for generating large volumes of labeled net-
work traffic. The fact is that automatic labeling strategies do not require a
high level of expertise compared to manual labeling techniques.

Among all the automatic labeling strategies, the Injection Timing strat-
egy is the simplest and straightforward. Unfortunately, this strategy shows
several limitations regarding the critical representativeness required in the
data. The main limitation is that malicious and normal traffic activities
were usually captured from two different and uncorrelated environments.
When both captures are merged and collectively analyzed, it could be easy
to discriminate malicious from normal traffic. The background traffic, rout-
ing information, and the hosts present in the network are some aspects to
be considered when capturing network traffic from several sources. Another
significant issue with injection timing is the lack of a clear approach for sup-
porting privacy awareness. Although, it is theoretically possible to apply
several anonymization techniques, the fact is that most of the articles imple-
mented the techniques has not even considered a methodology for protecting
the privacy in background and normal traffic ( [44, 50, 46]). The only ex-
ception is the work of Ring et al. [58] where the authors have discussed IP
anoymization techniques during the labeling process.

On the other hand, the labeling process based on Network security tools
is usually applied on real traffic, which provides a better representiveness.
However, it could be difficult to ensure the required accuracy. As is the case
of the work of Navarro et al. [57], and Gargiulo et al. [54] who use a NIDS
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based on a set of rules for describing malicious behavior. Both authors use
only those connections classified by NIDS with a high confidence rank. These
approaches guarantee the reliability of the labels in the resulting dataset but
neglect those connections that are difficult to predict and that are very useful
to improve detection systems. To mitigate this bias towards easy-to-detect
connections, Navarro proposes the use of an expert for manually analyzing
and labeling just those connections with a high degree of hesitation.

In general, all reviewed labeling approaches based on NIDS [52, 54, 57, 48,
53] rely on some ruleset that needs to be periodically updated. i.e., Whenever
a new variant of a malicious behavior emerges, an expert needs to write a
new rule describing such behavior. The fact is that there is no guarantee
the traffic generating an alert in NIDS do not contain an attack. Therefore,
those supposedly normal traffic traces should be analyzed in depth before
added to the final labeled dataset.

The honeynets alternatives [55, 56, 58] provide a straightforward proce-
dure for labeling malicious network traces. However, similarly to the NIDS
approaches, it shows serious flaws for labeling normal traffic. The simple rule
of considering all traffic captured from the honeypots as malicious [56] does
not guarantee the rest of the traffic is free of undetected malicious behaviors.

The fact is that ensuring the quality of the automatic labeling methods
remains a challenging task. In Lemay et al. [50], they consider that if a
packet is part of a connection including malicious activity, it has to be la-
beled as malicious. Otherwise, it is labeled as normal. However, when an
attacker connects to an FTP service for sending an exploit, not all the traffic
contains malicious behavior. Under a deeper inspection of packet capture,
it can be argued that the TCP connection needed to connect to the service
to send the exploit is not malicious. After all, the connection procedure is
no different from other legitimate connections established by other clients
to the server. In that case, only the packets containing the actual exploit
should be labeled as malicious. A similar problem can be found in Bhuyan
et al. [46], where the authors attempt to generate normal traffic with varied
characteristics from traffic captures of users’ daily activities. Malicious traf-
fic is generated by launching attacks and infecting different users’ servers.
Under this scenario, it is not easy to guarantee that all the traffic captured
comes from users is normal. The fact is that considering that the network
is clean before the first attack occurs is a mere assumption. To sum up,
Automatic Labeling methods provide a fast and simple approach for gen-
erating a considerable amount of labeled traffic. They can easily adapt to
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new behavior without a high level of expertise. However, the deployment
of the infrastructure for capturing and labeling traffic could be difficult to
reproduce. Moreover, it is clear that despite all the precautions during the
generation of synthetic traffic, these methods still have serious drawbacks
regarding the level of representativeness and label accuracy. Ideally, a net-
work traffic labeled dataset should not exhibit any inconsistent property of
the network infrastructure and its relying traffic. The traffic must look as
realistic as possible, including both normal and malicious traffic behaviors.
In particular, traffic data should be free of noise and not include any leakage
caused by the selected labeling strategy. Therefore, the Automatic Labeling
method should implement a detailed specification of the capture processes
to provide coherent and valuable traffic data.

5.2. Human-guided labeling

In general, the manual labeling methods generate datasets with good rep-
resentativeness and accuracy. The main inconvenience relies on the difficulty
of labeling the traffic volume required for current SNIDS needs. Users with
high expertise are a fundamental resource during the labeling process. Re-
cent approaches including visualization techniques and interactive labeling
methods have emerged to facilitate the incorporation of users with a lower
degree of expertise.

However, those manual labeling approaches relying only on visualization
suffer from the same drawback [69, 70, 71, 72]. They still require a high level
of expertise for performing the actual classification. Despite having attracted
considerable attention for identifying malicious activities [62], their adoption
in real-world applications has been hampered by their complexity.

Human-guided methods based on AL strategies aim at improving the
speed of the labeling process while keeping high representativeness of the
resulting data. The inclusion of a statistical learning model can be a valu-
able tool for helping the user during the decision process. Moreover, some
of the approaches [67, 82] claim the expertise required for using such sys-
tems is reduced. Nevertheless, the role of the expert remains a fundamental
aspect for guaranteeing the quality of the labels. The expert is responsible
for generating the initial set of labels required for training the prediction
model. Moreover, the expert is responsible for labeling during the AL work-
ing cycle when a connection is difficult to discriminate between normal or
malicious. The precision of these labels could impact the overall accuracy of
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the recommendations made by the relatively simple models based on Logistic
Regression [66], Fuzzy c-means algorithm [67] or Random Forests [78].

Manual labeling strategies are difficult to reproduce and extend to new
traffic behaviors. In many cases, these strategies will rely only on the ability
of the expertise of the user to recognize new behaviors. Similar is the case
of assisted approaches, although to a minor degree. In some cases, if the
distribution of the new traffic behavior significantly differs from the known
distribution, the prediction model has to be retrained to recognize new be-
haviors. Moreover, when very focused visualization techniques are combined
with AL, adapting them to new traffic behavior could not be straightforward.
On the other hand, privacy awareness under the surveyed manual approaches
remains under minimal standards. None of them discuss the consequences of
traffic encryption or anonymization during the labeling. However, in many
cases, the labeling is conducted through observing mid-level trace information
such as net flows [70, 67, 20, 73], which indicates that payload information
is not available during labeling. Similarly, complex visuals such as [71, 72]
are suitable for hiding considerable private information and still being useful
for labeling. Not differently is the case of assisted labeling strategies, where
most of them seem not specially prepared for dealing with privacy mecha-
nisms. Only the work of Guerra et al. [82] have considered the inclusion of
anonymized network traces during the labeling process.

To sum up, all the human-guide labeling methods seem to be more well-
suited for label network traffic with high accuracy and representativeness.
However, despite the considerable improvements, these strategies still show
several issues regarding the capacity for rapid and continuous labeling of
network traffic.

6. Open Issues

6.1. Deficiencies in the representativeness of labeling strategies

Since DARPA [41, 64], there have been several attempts to improve the
quality of network traffic labeled datasets. However, there are still several
problems regarding the representativeness of the network scenarios. The fact
is that automatic labeling strategies have serious issues for operating on real
traffic [44, 50, 46, 51, 6]. Even those strategies using NST such as honeynets
which capture real attacks suffer from representativeness problems when they
try to incorporate normal traces into the resulting labeled dataset. Therefore,
these strategies cannot represent all the details about traffic dynamics and
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potential real-world network attacks. As shown in [85], the network traffic
differs between lab environments and production networks.

On the other hand, human-guided labeling strategies certainly improve
the authenticity of the resulting labels. However, the labeling process is still
slow and challenging for obtaining a sufficient number of representative labels
for use on current SNIDS implementation.

Privacy preservation is another major issue regarding human-guide label-
ing strategies. In manual and assisted strategies, the expert has access to all
the traffic information from real users. The previous situation is not so criti-
cal in automatic labeling strategies, since normal traffic is usually generated
artificially [6, 51] or under controlled conditions [44].

A partial solution consisted of applying anonymization techniques dur-
ing the capture process. Therefore, network traffic can be subjected to en-
cryption or attribute extraction procedures for hiding different portions of
the traffic during the labeling process. [86]. Many human-guided strategies
rely on this approach for a minimal privacy preservation. Almgren and Fan
[80, 67] for instance, perform traffic labeling at the flow level, hiding rele-
vant information such included in the payload. Similarly, Beaugnon et al.
[81] perform a complete per-flow feature extraction procedure depriving the
community of using the entire network payload. However, the main prob-
lem with anonymization is that the removal of valuable information from the
network has an impact on the correct representation of network behavior.
When dealing with real and representative labeled datasets generation, it is
essential to ensure precise and consistent network traffic information. The
process requires careful monitoring and capturing of the different aspects of
regular traffic, in conjunction with a fast and accurate labeling method for
providing the SNIDS and the research community with an adequate dataset.

It seems that the inclusion of collaborative approaches [73] is an aspect
that could improve human-guided labeling techniques. Firstly, the incor-
poration of multiple users in the labeling is a significant improvement of
the overall speed of the process. Alleviating one of the main drawbacks of
human-guided strategies. Secondly, it incorporates into the process more
evaluative analysis on the different behaviors, allowing both differentiation
and unification of criteria. In this way, through a kind of voting, labels could
be established with greater accuracy while keeping representativeness at a
high level. On the other hand, the speed of collaborative labeling techniques
impacts AL-based strategies. Since traces are labeled faster, the prediction
model gets earlier feedback, which accelerates the phases of the learning cy-
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cle.
Another possible path for improving the speed and quality of human-

guided strategies is the use of users’ labeling history. It would be straightfor-
ward for current human-guided strategies [66, 81, 87, 67] to create a matrix of
user preferences in relation to the set of traces that make up the traffic. The
resulting matrix can be used to build a Recommendation System to focus
the labeling on groups of traces with similar characteristics and according to
the user’s preferences. In this way, the whole labeling process is enhanced.

6.2. Support for systematic periodical updates

Recently some members of the network security community have started
to mention that due to the evolution of malicious behavior and the constant
innovations in attack strategies, network traffic labeled datasets need to be
updated periodically [88, 42]. However, from all labeling strategies in section
4, only a few of them provide a consistent approach to continuously updating
dataset information and preventing it from expiring over time.

The automatic labeling strategies require the deployment of a complex
network infrastructure. The maintenance of such infrastructures complicates
the extension to new behaviors. Moreover, the whole reproducibility of the
process is adversely affected, since infrastructure, user profiles, the malware
used are usually not precisely described,

On the other hand, some assisted labeling strategies seem to be more
adaptable to new behaviors, as they depend on the generalization of their
prediction model. Both Beaugnon et al. [66] and Guerra et al. [84] published
the source code of their visualization tools together with the AL prediction
model. However, the model performance can often decay since predictions
are biased to specific network behavior. Updating these models require a
continuous execution of the AL working cycle, which demands expert user
assistance.

Consistently with the previous section, a collaborative approach can also
be applied to guarantee a certain degree of reproducibility during the expert
interaction. In the best case, if a network trace received different classifica-
tions, but most of them are from a particular behavior, it can be estimated
as the correct behavior and finally set the label.

In general, given the volume, velocity and variety characteristics of net-
work traffic [89], it is necessary to move away from strategies that result in
static datasets. Having a continuous pipeline for generating accurate and rep-
resentative labeled datasets is part of the so-called MLOps (Machine Learn-
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ing Operations). MLOps [90], is a recent field of machine learning that aims
to make building and deploying models more systematic. Current labeling
strategies need to incorporate MLOps strategies capable of adapting to cur-
rent traffic distributions and intrusions approaches and provide modifiable,
extensible, and reproducible mechanisms for continuous labeled dataset de-
livery.

6.3. Lack of consistent validation methodologies

Despite the strategy employed for labeling a dataset, a consistent method-
ology is necessary to validate its results. The components of this methodology
should be adapted depending on the applied strategy.

In the methods based on automatic labeling, the most common evalua-
tion methodology is based on the similarity against real traffic. Several au-
thors [6, 91] proposed similarity metrics for evaluating the resulting datasets.
Metrics such as complete network configuration, labeling accuracy, available
protocols, attack diversity, and metadata provide a quality standard for a
dataset. However, the impact of the labeled dataset quality in creating net-
work behavior classification models remains unknown.

In contrast, the validation of methods based on human-guided labeling
is considerably more complex. It is necessary to evaluate the components
included in the work cycle and the interaction between them to determine
the effectiveness of the strategy. Unfortunately, AL strategies discussed in the
5 section do not analyze the benefits and the problems involved in the work
cycle of labeling data. Surveyed articles [65, 66, 67, 78] do not include any
process for measuring the accuracy of the prediction model as the AL cycle
progresses. Other important considerations, such as the minimum number of
labels needed to make accurate suggestions or how the strategy reacts when
noisy data is introduced, are not explored in depth.

Similarly is the case for those strategies including visualization tools. The
main goal behind these strategies is to assist the user during the labeling
process. However, most of the reviewed works considering visualization tools
[71, 70, 72, 69, 66, 67] have not evaluated the benefits and usefulness of the
proposed visualizations. Fan et al. [67], and Guerra et al. [82] are among the
few authors to analyze the performance of different visualization techniques
used to improve pattern perception during the interactive process. The fact
is that the availability and cost of conducting a validation with expert users
and traffic analysts affect the evaluation process. As a result, analytical and
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empirical evaluations of the systems often do not provide the information
needed to establish the usefulness of the support tools.

It seems critical that the community starts to focus on providing user
studies to measure the impact of the tools in the labeling process and get
relevant information about the labeling strategy followed by users. Such
studies should include information about the expertise level of the users,
their interaction with the assistant tools, and the human effort associated
with the complete labeling process.

Finally, current labeling strategies must provide an in-depth analysis of
the correlation between labeling strategy, label quality, and the final perfor-
mance of the resulting detection models

7. Conclusions

Labeled dataset generation is a fundamental resource for network secu-
rity research. However, all current labeling strategies experience significant
problems in terms of quality, volume, and speed. There is a trade-off between
the quality of the resulting labeled dataset and the amount of network traces
included. Automatic labeling method provide a large amount of labeled net-
work traces, but the accuracy and representative could not be guaranteed.
Human-guided method are an improvement for the quality of resulting la-
beled dataset, but since they still heavily depend on user expertise, the speed
and volume of labeled data could be insufficient.

A more significant problem is that the current methodologies are oriented
to create a static version of the datasets. A static labeled dataset is only
suitable for research during a very short time period. The development of a
validated methodology including a continuous pipeline for incorporating new
representative and accurate network traces is fundamental for continue with
the development of network security research. In the case of Statistically-
based NIDS, the need of a standard strategy for a continuous generation of
quality labeled datasets is entirely accordant with the recent MLOps roles
included in the production cycle beyond the network security field.

To sum up, quality labeled datasets are not enough. The network se-
curity research community need to standardize the methodology reducing
expert-user interaction with focus on reproducible and continuous validation
in concordance of the data-centric models used nowadays when deploying
machine learning products in real-life scenarios.
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