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Magdalena Wojtaszek-Główka 3 and Antoni Ligęza 1,*
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Simple Summary: We reviewed the literature on the publicly available datasets used to automatically
recognise emotion and affect using artificial intelligence (AI) techniques. We were particularly
interested in databases with cardiovascular (CV) data. Additionally, we assessed the quality of the
included papers. We searched the sources until 31 August 2020. Each step of identification was
carried out independently by two reviewers to maintain the credibility of our review. In case of
disagreement, we discussed them. Each action was first planned and described in a protocol that we
posted on the Open Science Framework (OSF) platform. We selected 18 works focused on providing
datasets of CV signals for automated affect and emotion recognition. In total, data for 812 participants
aged 17 to 47 were analysed. The most frequently recorded signal was electrocardiography. The
authors most often used video stimulation. Noticeably, we did not find much necessary information
in many of the works, resulting in mainly low quality among included papers. Researchers in this
field should focus more on how they carry out experiments.

Abstract: Our review aimed to assess the current state and quality of publicly available datasets
used for automated affect and emotion recognition (AAER) with artificial intelligence (AI), and
emphasising cardiovascular (CV) signals. The quality of such datasets is essential to create replicable
systems for future work to grow. We investigated nine sources up to 31 August 2020, using a
developed search strategy, including studies considering the use of AI in AAER based on CV signals.
Two independent reviewers performed the screening of identified records, full-text assessment,
data extraction, and credibility. All discrepancies were resolved by discussion. We descriptively
synthesised the results and assessed their credibility. The protocol was registered on the Open
Science Framework (OSF) platform. Eighteen records out of 195 were selected from 4649 records,
focusing on datasets containing CV signals for AAER. Included papers analysed and shared data of
812 participants aged 17 to 47. Electrocardiography was the most explored signal (83.33% of datasets).
Authors utilised video stimulation most frequently (52.38% of experiments). Despite these results,
much information was not reported by researchers. The quality of the analysed papers was mainly
low. Researchers in the field should concentrate more on methodology.

Keywords: systematic review; cardiovascular; artificial intelligence; dataset; automated emotion
recognition; automated affect recognition; affective computing
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1. Introduction

Facilitating access to databases seems to be an essential matter in the field of machine
learning (ML). Publicly available, reliable datasets could drive research forward, making
it unnecessary to re-run similar yet complicated experiments in order to obtain sufficient
data. Credible work relies on proper arrangement, validation, adjustment, and fairness in
artificial intelligence (AI) [1,2].

Moreover, sufficient descriptions of the scientific methods in AI are a constant chal-
lenge. It seems to be particularly valid in automated affect and emotion recognition (AAER)
studies, which fall under the field of human–computer interaction (HCI), linking psychol-
ogy, computer science. and biomedical engineering. As human emotions affect multiple
channels, research on this topic is being conducted based on speech, facial expressions,
gestures or physiological signals, which became exceptionally popular in the last decade [3].

Increasing interest in the field, among others, comes from broad application prospects.
Recent studies point out the potential usage of emotion recognition techniques in medical
fields, public security, traffic safety, housekeeping, and related service fields [4].

The topic is extensive, as it covers both data acquisition and computation. A typical
experiment in AAER involves several steps [5]. Firstly, the researchers need to adopt
a specific perspective on the field, as many exist that consider the universality [6,7] of
emotions or their structure [8]. The theoretical approach imposes an understanding of
emotions, selections of material used for stimulation, and interpretations. However, the
general structure of elicitation experiments that are carried out to gather the data from
human participants remains stable [9]. To evoke emotions, passive (e.g., video, music, or
pictures presentation) or active stimulation (e.g., game playing, interaction with virtual
reality, or conversation) is used [5]. Eliciting material may have different lengths, types,
and quantities. After the stimulation phase, the subjects are asked how they felt. Several
validated instruments enable it, e.g., Self-Assessment Manikin (SAM) [10].

During the stimulation phase, subjects are connected to measuring devices. Re-
searchers use dedicated hardware [11–13] and experiment with smartphone [14] or wear-
able [15,16] technologies, especially with CV signals [17–19]. Among others, gathered data
include physiological signals [20] (e.g., heart, skin, brain, respiratory system, and eye work),
facial expressions [21], and speech [22,23]. Typically, several signals are collected in order
to improve the accuracy of the AI system used for AAER [24].

Next, the recognition phase begins. It involves data preprocessing, classification or
regression, and finally, validation [5]. Due to its flexibility resulting in, e.g., reduced data
preprocessing time [5], deep learning (DL) techniques are widely adopted [25–27], along
with classical approaches in AAER [28–31].

As the data collection process in experiments within this field is complex and multi-
stage, the problems may occur on many levels. It is thus crucial to plan the experiment and
report upon it in adequate detail [32].

The replicability crisis in both psychology and computer science also affects studies
on AAER [5,33,34]. Poor methodological conduct often makes it impossible for existing
research to be replicated or reproduced. Even in renowned and well-established research
that dictates the social order, the phenomenon is widely present [35,36].

Datasets collected inadequately might contribute to lowering the credibility of emerg-
ing research (influencing model development by introducing undesirable biases) and waste
of time and resources. This issue has been widely discussed before and is known as the
garbage in, garbage out problem [37,38]. Avoiding bias and proper validation of experiments
are crucial to eliminating it [32].

Promisingly, publishing source codes and data is becoming a desirable standard in
computer science [39–42]. Journal initiatives [43,44] on the topic emphasise the importance
of computational research reproducibility and promote open research. In turn, preregistra-
tion of the research plan, taking into account the hypotheses and defining step-by-step the
methodology allows for improving the quality of the research and its reproducibility from
a psychological perspective [45,46].
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To create a reliable model presenting a high degree of emotion or affect recognition
precision, it is relevant to limit external and internal factors potentially confounding the
collected measurements [47,48].

The confounding effect of incomplete control may arise from any stage of the study.
For instance, subjects with somatic disorders might affect measures of features, mood
disorders, or alexithymia, which is estimated to affect 13% of the population [49].

Each stage of an experiment leading to AAER should be repeatable and standardised
among subjects. AAER concerns stimuli presentation, assessment of elicited emotions by
the subject, collection of physiological parameters, and laboratory environment, including
the presence of experimenter and individual factors [5].

While measuring emotional and affective responses in the laboratory environment
using objective methods reduces the risk of self-reported bias, the risk of contextual non-
integrity remains. This creates the need to document all the contextual environmental
aspects that could influence the measurement [50].

Along with the pervasiveness of wearable devices available to register user psycho-
logical parameters during daily activities, AAER is reached [51,52]. Wearable devices
are proven to measure efficiently CV signals while being offered at low prices [53,54].
However, the challenge remains to design credible ML models able to deal with the broad
spectrum of possible emotions and lack of universality in this category among cultures [7].

Studies on ubiquitous computing are growing in number [55–57]. Due to the con-
straints of time and human resources, all these results could not be read. Therefore, creating
summaries along with the analysis of evidence is now necessary [58]. Describing the data
together with a critical appraisal helps to determine, for example, the actual accuracy of
the methods and to highlight those articles whose results are derived from a high-quality
methodological process. The selection of studies answering a similar research question may
be chaotic, purposeful, or systematic [59]. The latter method reduces the risk of researchers
steering conclusions, as it follows restrictive, transparent criteria [32,60,61].

Because of the above and since previous similar studies on AAER were of weak
reliability [5], we decided to present a systematic review on the topic, corresponding to
approved standards, to limit the risk of bias (RoB). We review public datasets available for
AAER with the use of AI, utilising physiological modalities as an input with the focus on
CV signals.

This paper is a part of the project on a systematic review of studies focused on AAER
from CV signals with AI methods. For more details, see the protocol [62] and our previous
conference paper [63].

Research Questions

1. What are the datasets used for AAER from CV signals with AI techniques?
2. What are the CV signals most often gathered in datasets for AAER?
3. What were other signals are collected in analysed papers?
4. What are the characteristics of the population in included studies?
5. What instruments were used to assess emotion and affect in included papers?
6. What confounders were taken into account in analysed papers?
7. What devices were used to collect the signals in included studies?
8. What stimuli are most often used for preparing datasets for AAER from CV signals?
9. What are the characteristics of investigated stimuli?
10. What is the credibility of included studies?

2. Methods
2.1. Eligibility Criteria, Protocol

Papers in which more than half of the sample constitutes a specific population (e.g.,
children or people with illness) were excluded. All experiments needed to be carried out
in laboratory settings. We considered any type of publication to be eligible in which CV
signals and AI methods were used for AAER. The primary focus of our whole project [63]
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was the performance of these computer programs (e.g., specificity, sensitivity, accuracy).
For this focused systematic review, we imposed additional inclusion criteria, namely public
availability of the data.

Due to double referencing, some of the references were overlapping. These were
post-conference books and full proceedings. We excluded them as they contained little
information about specific chapters. Nevertheless, we did not reject these particular sections.
We excluded introductions to Special Issues in a journal or section, letters to editors, reviews,
post-conference books, full proceedings (but not qualified papers), and case studies.

The review protocol was published on the Open Science Framework (OSF) [64] and
then registered there [62] on 18 March 2021. All additional information about methods can
be found in the protocol.

2.2. Search Methods

We searched article databases (MEDLINE, Web of Science, dblp, EMBASE, Scopus,
IEEE, Cochrane Library) and preprint databases (medRxiv, arXiv). The complete search
was done on 31 August 2020.

To develop the MEDLINE strategy (see protocol on OSF [62]), we combined MeSH
(controlled vocabulary) and free-text words related to AAER, CV signals, and AI. Then,
these strings were translated for other sources utilised in the search. We adopted no date or
language restrictions.

Additionally, we screened full texts of included papers for otherwise not identified
studies. We included them in further steps of identification.

2.3. Definitions

We used the following definitions. AAER [65,66] refers to finding patterns with
specific signals (e.g., behavioural, physiological) consistent with detected states. AI refers
to software able to perform tasks as accurately as intelligent beings (e.g., humans) [67]. DL
refers to the architecture of neural networks comprising at least two hidden layers [68].
Performance metrics, which refer to a mathematical evaluation of model predictions with
ground truth [69]. CV signals refer to an electrocardiogram (ECG), pulse oximetry (POX),
heart rate (HR), intracranial pressure (ICP), pulse pressure variation (PPV), heart rate
variability (HRV), photoplethysmogram (PPG), blood volume pressure (BVP), and arterial
blood pressure (ABP) [53,70].

2.4. Data Collection

EndNote (Claritive Analytics®) and Rayyan [71] were utilised for deduplication of
identified references. P.J., D.S., M.S., and M.M. used the Rayyan [71] application to screen
the remaining references independently. Subsequently, full texts were assessed separately
by P.J., D.S., M.S., and M.M. for meeting inclusion criteria .

P.J., D.S., M.S., M.M., W.Ż., and M.W.G. collected all necessary data independently
using a pre-specified extraction form. We gathered bibliographic data (e.g., year, jour-
nal name) and information about authors, funding, and conflicts of interest. We also
focused on population, models, and outcomes—AI methods and additional analyses, e.g.,
interpretability, as specified in the protocol (see OSF [62]).

Pilot exercises were conducted before each phase, namely screening of abstracts and
titles, full text evaluation, and extraction of the data. By doing so, we aimed at improving
the sense of understanding among the reviewers. When discrepancies occurred (at each
step of data identification), they were resolved via discussion.

2.5. Quality Assessment

The methodological credibility of included studies was assessed using a tool developed
by our team (see Appendix C). The method was based on well-grounded techniques,
namely Quality Assessment of Diagnostic Accuracy Studies (QUADAS) [72], Prediction
model Risk Of Bias ASsessment Tool (PROBAST) [73], and an instrument provided by
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Benton et al. [74] as it was dedicated to the same study design as included by us. The
process of evaluation was preceded by pilot exercises. We rated RoB independently in pairs
(P.J., D.S., M.S., M.M., W.Ż., and M.W.G.). Discussion resolved all discrepancies.

The utilised tool constituted of eight questions (items):

1. Was the sample size pre-specified?
2. Were eligibility criteria for the experiment provided?
3. Were all inclusions and exclusions of the study participants appropriate?
4. Was the measurement of the exposition clearly stated?
5. Was the measurement of the outcome clearly stated?
6. Did all participants receive a reference standard?
7. Did participants receive the same reference standard?
8. Were the confounders measured?

Items were assessed using a three-point scale with the following answers: yes/partial
yes, no/partial no, and not reported resulting in high, low, or unclear RoB. For more details,
see Appendix C.

2.6. Analyses

We concentrate on descriptive synthesis regarding characteristics of populations and
collected datasets, i.e., stimuli, signals, devices, emotions, and affect. We also present results
regarding credibility.

The quantitative summary with sensitivity, heterogeneity, and subgroup analysis of
all papers is not the purpose of this focused review. For more details, please refer to the
protocol [62] and other papers from the project [63].

3. Results

From 4649 records, we identified 195 studies that met our eligibility criteria. Then, we
selected a sub-sample of 18 papers. Each paper provides one validated, publicly available
dataset, including CV signals with labels regarding emotions or affect.

Names of datasets described in included papers are as follows: Database for Emotion
Analysis using Physiological signals (DEAP) [75]; Multimodal Analysis of Human NOnver-
bal Behaviour in real-world settings–Human-Computer Interaction (MAHNOB-HCI) [76];
MEG-based multimodal database for DECoding AFfective physiological responses (DE-
CAF) [77]; a dataset for Affect, personality and Mood research on Individuals and GrOupS
(AMIGOS) [78]; a multimodal databASe for impliCit pERsonaliTy and Affect recogni-
tIoN using commercial physiological sensors (ASCERTAIN) [79]; AUgsburg Database of
Biosignal 4 (AuDB-4) [80]; Emotion Recognition Smartwatch (ERS) [81]; IT Multimodal
Dataset for Emotion Recognition (ITMDER) [82]; Database for Affective Gaming (DAG) [83];
Quality Adaptive Multimodal AFfect recognition system for user-centric multimedia index-
ing (QAMAF) [84]; Virtual Reality Affective Dataset (VRAD) [85]; NEME [86]; WEarable
Stress and Affect Detection (WESAD) [87]; a Multi-modal Physiological Emotion Database
for discrete emotion recognition (MPED) [88]; database of multimodal (Face, Body ges-
ture, Voice and Physiological signals) recordings (emoFBVP) [89]; a database for emotion
recognition through EEG and ECG signals from wireless low-cost off-the-shelf devices
DREAMER [90]; Multi-subject Affective Physiological Database (MAPD) [91]; and Mazeball
Dataset (MD) [92].

Supplementary File S1 (OSF [64]) and Appendices A and B contain the list of all
included studies, the subgroup of datasets analysed in this review, and the excluded
studies with reasons, respectively. The remaining included studies are considered in other
articles from the project [63]. The flow of our study is presented in Figure 1. Our reporting
is consistent with Preferred Reporting Items for Systematic Reviews and Meta-analyses
(PRISMA) guidelines with diagnostic test accuracy (DTA) extension [93].
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Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) study flow
diagram [63].

3.1. Included Studies

Included studies were published mainly in scientific journals (66.67% of papers, mean
Impact Factor = 7.01) [75–81,85,86,88,90,92]. The most popular was IEEE Transactions on
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Affective Computing. Out of all the authors, 27.78% did not report on funding [77,82,87,89,91],
while 88.89% did not inform about competing interests [75–80,82–84,86–92].

None of the studies provided source code of executed analyses, while only one study
(5.56%) reported registering protocol [92].

3.2. Experiments

The total number of elicitation experiments was 21, presented in 18 papers. Three
of the studies (16.67%) carried out two trials each [77,78,81]. It was found that 76.19%
of experiments were conducted using passive stimulation solely [75–82,84,86,88,90,91],
while 19.05% used only active elicitation (e.g., video games) [83,85,89,92]. One experiment
(described in Schmidt et al.’s paper [87]) used both passive (video) and active stimulation
(meditation and Trier Social Stress Test (TSST). The essential characteristics of experiments
regarding stimuli are presented in Table 1.

Table 1. Characteristics of stimuli in 18 included studies (21 experiments).

Variable (No. of Experiments Available for Calculations) No (%)
Mean (Range)

Type of stimuli (21)
Video (music, movie, ads) 11 (52.38)
Audio (music excerpts) 4 (19.05)
Game (FIFA 2016, Maze-Ball) 2 (9.52)
Virtual Reality (videos, scenes) 2 (9.52)
Self elicitation (actors) 1 (4.76)
Mixed (TSST 1, video and meditation in one experiment) 1 (4.76)

Length of stimuli [seconds] (17) 304.60 (32–1200)

No. of stimuli in dataset (20) 27.70 (4–144)

No. of elicited emotions [classes] (18) 6.06 (3–23)
1 Trier Social Stress Test.

Most of the experiments did not use stimuli from validated databases (71.43%, e.g.,
FIFA 2016, YouTube videos) [75,76,78,80,81,83–89,91,92], whereas public sources (e.g.,
DEAP, DECAF) accounted for 23.81% [77,79,81,90]. Pinto [82] used both forms. In 47.62%
of experiments, the justification for the choice of the database was not reported [77,79,
81,83,84,86,87,89,91,92]. Pinto [82] partially reported on it. In 42.85% of experiments,
validation was provided by conducting a pilot study or preliminary classification by
researchers [75–78,81,85,88,90]. Stimuli were described by authors most frequently in
terms of valence (52.38% of experiments) [75–78,80,82,85,86,90,92], arousal (52.38%) [75–
78,80,82,85,86,90,92], and discrete emotional tags (38.10%) [76,77,81,88,89,91]. Four experi-
ments [77,79,83,84] did not report on it at all.

The presence of diseases or disorders was the most often controlled factor in partici-
pants (61.90% of experiments) [75,76,78,81,82,85–88,90,91]. The mood was controlled using
the Positive and Negative Affect Schedule (PANAS) tool in two experiments (9.52%) [78].
In only one experiment, the authors checked if the participants were able to recognise
emotions or affective states correctly [85]. In examining factors controlled in the laboratory,
the most frequent was found to be brightness (33.33% of experiments) [75,77,78,90,91],
followed by volume (28.57%) [78,80,82,84,91], presentation of stimuli (14.29%) [75,80,85],
the comfort of participants (9.52%) [77,86], and time of the day (9.52%) [81]. In 23.81% of
experiments, it was not reported which factors were controlled [77,80,83,84,92]. Addition-
ally, in four experiments (19.05%), personality was measured in participants using the Big
Five Personality Test [78,79] or the Eysenck Personality Questionnaire (EPQ) [91].

In the assessment of emotions and affect by participants, the most prevalent instru-
ments used were: SAM (38.10% of experiments) [75,78,82,85,87,88,90] for valence, arousal
and dominance, selecting a discrete emotion from the provided list (23.81%) [76,78,83,89],
and PANAS (19.08%) [81,87,91].
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3.3. Signals and Devices

Table 2 summarises applied devices and recorded CV signals. Apart from CV sig-
nals, electrodermal activity (EDA) [75,76,78–80,82–84,87,88,91,92] is available in 66.67%
of datasets. Thus, these are the most prevalent data. The next most common are face
video [75–79,83,84,89,91], electroencephalography (EEG) [75,76,78,79,84,85,88,90], respi-
ration [75,76,80,82,83,88], and electromyography (EMG) [75,77,80,83,87] in 50%, 44.44%,
33.33%, and 27.78% of datasets, respectively. The remaining signals include, e.g., magne-
toencephalography (MEG), gyroscope, accelerometer, and audio. There is only one dataset
that focuses solely on CV signals [86]. The authors recognise devices used for recording CV
signals as wearable in 38.89% of studies [78,79,84,85,87,89,90].

Table 2. Characteristics of devices and signals in 18 included studies (21 experiments).

Variable (No. of Datasets Available for Calculations) 1 No (%)
Mean (Range)

Used devices (16)
Shimmer 2R 3 (18.75)
BIOPAC MP150 3 (18.75)
Biosemi ActiveTwo 2 (12.50)
NeXus-10 1 (6.25)
ProComp Infiniti 1 (6.25)
BIOPAC BioNomadix 1 (6.25)
BItalino 1 (6.25)
RespiBAN Professional 1 (6.25)
B-Alert ×10 1 (6.25)
Empatica E4 1 (6.25)
Polar H7 1 (6.25)
Zephyr BioHarness 1 (6.25)
IOM Biofeedback 1 (6.25)

CV 2 signals recorded (18)
ECG 3 15 (83.33)
HR 4 3 (16.67)
BVP 5 3 (16.67)
PPG 6 1 (5.56)

Sampling frequency [Hz] (12) 543.31 (32–2048)

Length of baseline recording [seconds] (7) 292.14 (5–1200)
1 some studies used more than one device or cardiovascular signal; 2 cardiovascular; 3 electrocardiogram;
4 heart rate; 5 blood volume pressure; 6 photoplethysmogram.

3.4. Validation

As we included only validated datasets in this analysis, all of the papers explored
AAER with AI. Out of all the papers, 55.56% [75–78,82,85,86,90–92] conducted experiments
with only one type of ML algorithm, while the rest explored more methods. In total, the
data were validated using AI methods 33 times. Support vector machine was used most
frequently (33.33%) [76,77,79,82–86,89–91]. Naive Bayes (NB) [75,78,79,84], random forest
(RF) [81,83,87,91], and DL [88,89] were the second most explored techniques (12.12% each).

The authors classified 61 different discrete states in total. The most commonly classified
one was sadness [81,86,89,91], occurring in 22.22% of papers. The following states were
examined in two papers each (11.11%): fear [89,91], anger [89,91], amusement [87,91],
anxiety [89,92], boredom [89,92], happiness [81,89], and neutral state [88,89]. Additionally,
the authors used affect space in 12 (66.67%) papers [75–80,82–86,90].

All of the datasets were validated in classification experiments. Authors of only two
datasets (11.11%) [86,89] compared their results with other publicly available data.
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3.5. Population

The total number of analysed people was 916, with a mean number of 43.62 partici-
pants and a range from 3 [80] to 250 [91]. However, due to, e.g., missing data, the datasets
contain complete information for only 812 of them.

The remaining characteristics of the population are shown in Table 3. five experiments
(23.81%) were approved by the ethics committee [81,85,88,90]. Participant consent was
obtained in 15 experiments (71.43%) [75–79,82,85–91]. Only one experiment ensured the
privacy (by anonymisation) of participants [90].

Table 3. Characteristics of population in 18 included studies (21 experiments).

Variable (No. of Experiments Available for Calculations) No. (%)
Mean (Range)

Participating people (21) 916
43.62 (3–250)

Eligible people (20) 812
40.60 (3–250)

Age (18) 23.8 (17–47)

Percentage of females (16) 45.13 (0–86)

Ethnicity (4)
Chinese 2 (9.52)
European 2 (9.52)

3.6. Credibility

The general RoB was analysed in two scenarios—with or without the first item of the
proposed tool (see Section 2.5). We excluded the first question in the second condition
because none of the included studies reported on pre-specification of sample size.

Of all the studies, 77.78% were of low quality in both scenarios, whereas 22.22% [78,
85,86,90] and 11.11% [86,90] were of unclear quality in the first and second conditions,
respectively. Two studies [78,85] were of high quality according to the latter scenario. The
RoB across all RoB items is presented in Figure 2. The reference standard was provided for
all participants in the same way in 16 studies (88.89%) [75–79,81–91]. For participants from
14 studies (77.78%) [75–79,81–86,89–91], the same reference standard was given. Thirteen
studies (72.22%) [75,76,78,79,81,82,85–90,92] did not show any flaws in terms of providing
eligibility criteria for the experiment. These are the most satisfied questions.

Figure 2. Risk of bias (RoB) in included studies.
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However, 14 papers (77.78%) [75–77,79,81–84,86,87,89–92] did not control confounders
or did not report it. Measurement of exposition [80,83,84,86,87,89,91] and outcomes [76,77,
79,80,83,84,89] was flawed, or authors did not mention it, in seven studies (38.89%).

All ratings are presented in Table 4. Among them, the most frequent was yes, marked
in 43.06% of cases. However, the second most prevalent was not reported, which was
assessed 27.08% times.

Table 4. Risk of Bias (RoB) among 18 included studies.

RoB Item 1 Overall Quality 2Study
ID 1 2 3 4 5 6 7 8 Scenario 1 Scenario 2
[75] NR PY PY Y Y Y Y PN Low Low
[76] NR PY PY Y PN Y Y NR Low Low
[77] NR NR NR Y PN Y Y PN Low Low
[78] NR Y PY Y Y Y Y PY Unclear High
[79] NR PY PN PY PN Y Y N Low Low
[80] NR PN N PN PN N N PY Low Low
[81] NR Y PN PY Y Y Y PN Low Low
[82] NR Y Y PY Y Y Y PN Low Low
[83] NR NR NR PN PN Y Y NR Low Low
[84] NR NR NR NR PN Y Y N Low Low
[85] NR Y Y Y Y Y Y Y Unclear High
[86] NR PY PY NR Y Y Y NR Unclear Unclear
[87] NR Y Y NR Y Y N NR Low Low
[88] NR Y Y Y Y Y PN Y Low Low
[89] NR Y PN NR PN Y Y NR Low Low
[90] NR PY PY PY Y Y Y NR Unclear Unclear
[91] NR PN PY NR Y Y Y NR Low Low
[92] NR Y NR Y Y NR N NR Low Low

1 Y, PY, NR, PN, N stands for yes, partial yes, not reported, partial no, no; 2 for more details, see Appendix C.

3.7. Additional Analyses

Please refer to the protocol [62] and our other papers [63] from the project on AAER
from CV signals with AI methods for additional analyses.

4. Discussion

The paper search conducted in this study revealed that there are 18 publicly available
validated datasets for AAER from CV signals. The methodological credibility assess-
ment showed that only two studies are of high quality, suggesting a significant need for
developing good scientific practices.

Furthermore, none of the studies provided a source code used for the validation
experiments. It opens a discussion on replicability, which we are witnessing in science
nowadays [5]. Experiments in included papers were conducted on small samples. The
number of participants exceeded one hundred only in one study.

What is more, the subjects’ background information was poorly described. Only four
studies established that the participants were either Chinese or European. According to
Wierzbicka [94,95], the history behind a person (and the language he or she speaks) may
play a crucial role in the emotional states they experience and thus should be controlled.
Feldman later disseminated this belief in her approach [7].

Another bothering aspect of the analysis is that an ethical commission approved
experiments described by only four papers, and only one study mentioned ensuring the
privacy of participants. It lights up red flags in terms of maintaining ethical standards
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or suggests negligence of reporting crucial information. Authors of experimental studies
should more carefully examine this aspect.

Additionally, the authors either selectively controlled the influence of potential con-
founders or did not do so at all. Various CV diseases, mental disorders [49], and participants’
moods and personalities may affect AAER from physiological signals [78]. Therefore, we
believe authors should include such information.

The problem in assessing quality in systematic reviews is about distinguishing how
much the authors did not take care of the methodological regime and how much they
did not report the details of the research process [60]. Therefore, it is recommended that
when submitting an article to the journals’ editorial office, the authors fill in a checklist and
mark the exact place where they have included the minimum necessary descriptions of the
operation process [32,96].

On the other hand, we observed great diversity in the choice of physiological signals,
stimuli type and length. What is more, 38.89% of the studies used wearable devices
to perform measurements. Considering the increasing popularity and facility of these
instruments [78], it gives the excellent potential for future adoption of proposed methods
in real-life scenarios. Thanks to recent advances in the field of sensors technology, such
devices are well-suited for daily usage. They do not require complicated instalments, are
comfortable to wear, and are easy to use [97]. However, one should remember that there are
still many limitations standing in the wy of the wider use of wearable devices in AAER. First
of all, the quality of physiological signals is still noticeably lower than that of medical-level
equipment [98]. What is more, the data gathered by such instruments in non-laboratory
settings are often flawed, with noise coming from motion or misplacement [99].

Similarly to our study, the CV databases were also explored by Merone et al. [100].
The authors investigated 12 datasets with the inclusion criteria of having an ECG signal.
In addition, they analysed included sets in terms of many parameters, e.g., the number of
ECG channels and electrodes type. However, they did not primarily focus on emotions
or affect. They included only one paper [101] covering this scope, which we did not
consider eligible for inclusion as it did not meet the criteria. Since datasets including CV
signals are still unexplored, we cannot discuss our results with other authors. Furthermore,
Hong et al. [102] analysed ECG data systematically using DL. Still, they identified only one
study about AAER [103], but it was not in their primary interest, so they did not describe it
in detail.

However, in the literature, there are plenty of reviews (systematic and not) focusing on
AAER from multiple signals or focusing on specific ones, e.g., EEG [104–106], or covering
multiple modalities [53,107–111]. Still, their quality has been thoroughly criticised in our
recently published umbrella review [5].

In line with these results, in the current literature, we found a shortage of highly
credible and methodologically reliable publications and thus datasets that could form
the basis of further AI research. This review shows a need to create guideline-compliant
datasets with a transparent, fully reported methodology and limited RoB.

Models able to accurately recognise emotions using physiological parameters can
contribute to the development of many disciplines. They create the possibility of reaching
more advanced levels of HCI, where a computer (or system, in general) can modify its
behaviour depending on the identified interlocutor’s state and choose the reaction closest
to natural social schemes [112].

While using wearable devices, users might be supported in maintaining a psycho-
logical and healthy life balance, e.g., by identifying sources of stress, anxiety, or tension
during their everyday activities and receiving feedback about their organisms reactions
and resources [113]. Furthermore, assessments made on the basis of their CV signals can
be used to investigate the impact of different emotional and affective states on the risk of
developing CV diseases [114].

Well-validated AI models can significantly support research in the field of health and
medical sciences and emotion theory by facilitating the simple, quick, and more matter-of-
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fact evaluation of emotions and other states and, therefore, reducing the RoB resulting from
participants’ incorrect reporting.

Among the implications of our study, we should first include the recommendation to
incorporate current, reliable guidelines and standards in the methodology development
process and use quality assessment and reporting tools, as this translates into more reliable
data, which may result in developing better recognition models [32]. For primary studies,
we suggest following the proposed checklist for RoB (see Appendix C) or other available
tools, e.g., [32].

Strengths and Limitations

The performed review has high standards [32,60,61,115]. The research question was
precisely defined. We utilised multiple resources for collecting studies mentioned in
Section 2. Inclusion and exclusion criteria were firstly discussed and recorded. Researchers
who participated in this review have knowledge in multiple disciplines: computer science,
psychology, HCI, medicine, and methodology. To ensure transparency, we provide all
necessary information in the Appendices and Supplements with a permanent DOI [64].

On the other hand, we did not search any Chinese databases. Considering the growing
amount of evidence in this language, we might not have considered a large amount of
evidence and thus weakened our conclusions. Moreover, the use of the search strategy
itself and the stages of identifying articles based on titles and abstracts may be a limitation.
Due to such action, we may miss an extraordinary piece of work that did not meet our
criteria due to its original form.

5. Conclusions

This paper systematically reviewed the datasets that include CV signals for AAER
with AI methods and assessed their quality.

Due to poor reporting and not following methodological guidelines, the evidence,
however, is limited. Nevertheless, according to our review, the most up-to-standards
research was proposed by Correa et al. [78] and Marin et al. [85].

In the future, more attention should be put into controlling bias in research to ensure
incremental knowledge gain. The quality of papers and reporting needs to be improved
in order to propose and develop models that do not introduce biases. Preferably, authors
should focus more on methodology and describe procedures thoroughly. We recommend
following standardised guidelines of reporting [116].

Our next steps include the synthesis of gathered evidence with other physiological
signals. Furthermore, we want to propose our own unbiased dataset for AAER for public
use. Based on these data, we plan to improve our affective games [117–119].

Supplementary Materials: The following supporting information can be downloaded at: https:
//osf.io/kzj8y/ (accessed on 15 February 2022) in Sensors folder: Protocol; Supplementary File S1—
list of all included studies.
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TSST Trier Social Stress Test
VRAD Virtual Reality Affective Dataset
WESAD WEarable Stress and Affect Detection

Appendix A. Papers Included in This Focused Review

The following papers were included in this focused review: [75–92].

Appendix B. Papers Excluded

Table A1. Excluded Studies.

Study ID Reason of Excluding

[120] Wrong study design
[121] Wrong study design
[122] Wrong study design
[123] Wrong study design
[124] Wrong study design
[125] Wrong study design
[126] Wrong study design
[127] Wrong study design
[128] Wrong study design
[129] Wrong study design
[130] Wrong study design
[131] Wrong study design
[132] Wrong study design
[133] Wrong study design
[134] Wrong study design
[135] Wrong study design

[136] Wrong population
[137] Wrong population
[138] Wrong population

[139] Wrong target
[140] Wrong target
[141] Wrong target
[142] Wrong target
[143] Wrong target
[144] Wrong target
[145] Wrong target

[146] Wrong index method
[147] Wrong index method

[148] Wrong type of data

[149] Wrong setting
[150] Wrong setting
[151] Wrong setting

[152] Wrong outcomes
[153] Wrong outcomes
[154] Wrong outcomes
[155] Wrong outcomes
[156] Wrong outcomes
[157] Wrong outcomes
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Appendix C. Risk of Bias Tool

Table A2. Risk of bias tool.

Domain 1 Review Authors’s
Judgement Criteria for Judgement

Sample
[74]

1. Was the sample
size prespecified?

Yes/partial yes The experiment was preceded by calculating the minimum sample
size, and the method used was adequate and well-described.

No/partial no It is stated that the minimum sample size has not been calculated, or it
has been calculated, but no details of the method used are provided.

Not reported No sufficient information is provided in this regard.

Sample
[74]

2. Were eligibility
criteria for the
experiment
provided?

Yes/partial yes The criteria for inclusion in the experiment are specified.

No/partial no The criteria for inclusion in the experiment were used, however not
specified in the article.

Not reported No sufficient information is provided in this regard.

Participants
[73]

3. Were all
inclusions and
exclusions of
participants
appropriate?

Yes/partial yes

The criteria for inclusion and exclusion are relevant to the aim of the
study. Conditions that may affect the participant’s state or collected
physiological signals and ability to recognise emotions were
considered, including cardiovascular and mental disorders.

No/partial no The established criteria for inclusion and exclusion are irrelevant to
the aim of the study.

Not reported No sufficient information is provided in this regard.

Measurement
[74]

4. Was the
measurement of
exposition clearly
stated?

Yes/partial yes The selection of stimuli is adequately justified in the context of eliciting
emotions, e.g., selection from a standardised database, pilot studies.

No/partial no The selection of stimuli was carried out based on inadequate criteria.

Not reported No sufficient information is provided in this regard.

Measurement
[74]

5. Was the
measurement of
outcome clearly
stated?

Yes/partial yes The assessment tool used for emotions measurement is described in
detail, adequate, and validated.

No/partial no The assessment tool used for emotions measurement is not described,
or the measurement method is inadequate, or not validated.

Not reported No sufficient information is provided in this regard.

Flow and
Timing [72]

6. Did all
participants
receive a reference
standard?

Yes/partial yes Emotions were measured in all participants, and the measurement
was performed after each stimulus.

No/partial no Not all participants had their emotions measured.

Not reported No sufficient information is provided in this regard.

Flow and
Timing [72]

7. Did participants
receive the same
reference
standard?

Yes/partial yes The same assessment standard was used in all participants who had
their emotions measured

No/partial no A different assessment standard was used in some of the participants
to measure their emotions.

Not reported No sufficient information is provided in this regard.

Control of
confounders
[74]

8. Were the
confounders
measured?

Yes/partial yes Adequate confounding factors were measured, and relevant
justification is provided.

No/partial no The control of confounding factors is not justified, or the measured
factors are inadequate.

Not reported No sufficient information is provided in regard to confounding factors.

Scenario 1:
Overall quality (elicitation)
Scenario 2:
Overall quality
(without judgement of 1. item)

High All judgements are yes or partial yes.

Low At least one judgement is no or partial no.

Unclear All judgements are yes or partial yes with at least one not reported.

1 the specific domain was based on an instrument provided in the reference.
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