
DATASPREAD: Unifying Databases and Spreadsheets

Mangesh Bendre, Bofan Sun, Ding Zhang, Xinyan Zhou
Kevin ChenChuan Chang, Aditya Parameswaran

University of Illinois at UrbanaChampaign (UIUC)
{bendre1 | bsun6 | dzhang13 | xzhou14 | kcchang | adityagp}@illinois.edu

ABSTRACT

Spreadsheet software is often the tool of choice for ad-hoc tabu-

lar data management, processing, and visualization, especially on

tiny data sets. On the other hand, relational database systems of-

fer significant power, expressivity, and efficiency over spreadsheet

software for data management, while lacking in the ease of use

and ad-hoc analysis capabilities. We demonstrate DATASPREAD, a

data exploration tool that holistically unifies databases and spread-

sheets. It continues to offer a Microsoft Excel-based spreadsheet

front-end, while in parallel managing all the data in a back-end

database, specifically, PostgreSQL. DATASPREAD retains all the

advantages of spreadsheets, including ease of use, ad-hoc analysis

and visualization capabilities, and a schema-free nature, while also

adding the advantages of traditional relational databases, such as

scalability and the ability to use arbitrary SQL to import, filter, or

join external or internal tables and have the results appear in the

spreadsheet. DATASPREAD needs to reason about and reconcile

differences in the notions of schema, addressing of cells and tu-

ples, and the current “pane” (which exists in spreadsheets but not

in traditional databases), and support data modifications at both the

front-end and the back-end. Our demonstration will center on our

first and early prototype of the DATASPREAD, and will give the

attendees a sense for the enormous data exploration capabilities of-

fered by unifying spreadsheets and databases.

1. INTRODUCTION
Since the early days of computing, spreadsheet software, such

as VisiCalc, Lotus 1-2-3, and more recently Microsoft Excel and

Google Sheets, have found ubiquitous use in ad-hoc tabular data

analysis, especially by non-programmers; including statisticians,

finance professionals, consultants, and physical scientists. The main

advantages of spreadsheets include the ability for direct manipula-

tion of data, an intuitive user interface, and a flexible data model

with the ability to add new rows, columns, or tuples, seamlessly.

However, spreadsheet software has many limitations, making it

unsuitable for present-day big data analysis, primarily due to poor

performance on large data sets, and the low expressivity of the

spreadsheet syntax [1, 2]. For the former issue, i.e., poor perfor-

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivs 3.0 Unported License. To view a copy of this li
cense, visit http://creativecommons.org/licenses/byncnd/3.0/. Obtain per
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 12
Copyright 2015 VLDB Endowment 21508097/15/08.

mance, for example, in Microsoft Excel, it is common knowledge

that beyond a few 100s of thousands of rows, the software is no

longer responsive [1]. For the latter issue, there are a number of

common data analytics operations that are either very cumbersome

or not easy to do in spreadsheet software. To illustrate this, consider

a simple example, where a user is studying a spreadsheet contain-

ing course assignment scores and eventual grades for students from

rows 1–100, columns 1–5 in one sheet, and demographic informa-

tion for the students from rows 1–100, columns 1–10 in another

sheet. Consider the following operations that the user may want to

do to compute some intermediate tabular result (The user may then

visualize or study this result in some way.) :

• Say the user wants to understand the impact of assignment

grades on the course grade, for which they want to select the

students having points higher than 90 in at least one assign-

ment. There is no way for the user to sub-select a set of rows

of this form for further analysis, except manually identifying

these rows, and then copy-pasting each one into another area.

• Say the user wants to plot the average grade by demographic

group (undergrad, MS, PhD). This requires a “join” of the

two sheets of the spreadsheet to generate the desired result,

also very cumbersome to do on current spreadsheet software.

• Say the course management software outputs actions per-

formed by students into a relational database or a CSV file;

there is no easy way for the user to study this data within the

spreadsheet, as the data is continuously added.

There are many other data analysis operations that are similarly

very cumbersome on current spreadsheet software.

Therefore, we propose to bring the power of relational databases

to bear on spreadsheets. Relational databases are efficient and ex-

pressive, and are certainly capable of natively handling the opera-

tions described above via SQL. On the contrary, relational databases

are not as easy-to-use or as amenable to direct manipulation as

spreadsheet software, e.g., seamlessly adding a new column, copy-

pasting data. Thus, we unify relational databases with spreadsheet

software, in order to preserve the benefits of both.

We propose a system, DATASPREAD, that is a holistic unification

of relational databases and spreadsheets. Here we use spreadsheet

as an intuitive user interface and database as a back-end engine.

However, designing DATASPREAD is not trivial since databases

and spreadsheets adopt very different architectures and ideologies.

In particular, we need to deal with the following challenges:

• Schema: databases have a strict schema-first data model,

which is based on tables and tuples, while the spreadsheet

data model is based on sheets with rows and columns, and

no explicitly defined schema.

• Addressing: spreadsheets treat rows and columns as identi-

cal, while databases operate on sets of tuples.

• Window: spreadsheet have the notion of the current window,

which is the portion of the spreadsheet that the user is cur-

rently looking at; there is no such notion in databases.

• Modifications: spreadsheets support updates at any level and

granularity: rows or columns, while databases only support

modifications that correspond to a SQL query.

• Computation: spreadsheets support value-at-a-time formulae

to allow derived computation, while databases support arbi-

trary SQL queries operating on groups of tuples at once.

We have identified these as research issues and have build the

first version of DATASPREAD to explore them, among others. Ex-

ternally, DATASPREAD retains many of the front-end user interface

aspects of spreadsheets that make it as easy to use, while at the same

time enhanced and supported by a back-end relational database,

providing efficiency and expressivity. In the front-end, in addition

to all the traditional spreadsheet commands, DATASPREAD sup-

ports the use of arbitrary SQL via custom DBSQL and DBTable com-

mands, enabling the import, and constant updating of data from

relational databases, as well as the computation of selections and

joins of data contained in the spreadsheets. Conceptually, these

commands, along with other spreadsheet commands, are stored as

interface views in the underlying database. In the back-end, an

optimizer, optimizes for keeping the user window up-to-date and

in-sync with the underlying relational database. Even though the

spreadsheet can only support a few rows, as the user pans through

the spreadsheet, the burden of supplying or refreshing the current

window is placed on the relational database, which is very efficient.

Demonstration. In our demonstration, we will allow conference

attendees to interact with our prototype of DATASPREAD (built us-

ing Microsoft Excel and PostgreSQL), enabling them to interac-

tively analyze a two-way synchronized view of relational data using

more expressive DBSQL, DBTable commands to filter, join, project,

and export data residing in multiple sheets.

Related Work. With the goal to achieve the benefits of spread-

sheets and relational databases while dealing with tabular data, our

holistic unification strives to unify the notion of table in both sys-

tems. Recent works have proposed to enrich spreadsheets and rela-

tional databases with features from one another in three orthogonal

directions: a) Use of spreadsheets to mimic the relational database

functionalities [3]: Although this approach achieves expressivity

of SQL, it is unable to leverage the scalability of databases. b) Use

of databases to mimic spreadsheet functionalities [4, 5]: Although

this approach achieves scalability of databases, it is does not sup-

port ad-hoc tabular management provided by spreadsheets. c) Use

of spreadsheet interface for querying data [6]. This approach pro-

vides an intuitive interface to query data, but looses the expressivity

of SQL as well as ad-hoc data management capabilities.

Rest of the Paper. In the next section we propose a desired design

by developing a unification semantics. We then use the semantics

to propose an architecture for DATASPREAD. Finally, we discuss

demonstration scenarios for our DATASPREAD prototype.

2. DESIGN OF DATASPREAD

In this section, we describe the semantics for DATASPREAD. In

particular, we discuss some important concepts and challenges that

arise due to the unification of the two disparate ideologies: spread-

sheets and databases.

2.1 DATASPREAD Overview
With a goal of unifying databases and spreadsheets, we now pro-

pose a framework for DATASPREAD based on two key ideas. First,

to leverage the intuitiveness and the richness of a spreadsheet inter-

face, rather than changing it significantly, we enhance it with con-

cepts borrowed from databases. Underneath the interface, we pro-

pose to have a relational database that is enhanced to support the

spreadsheet interface. Second, to improve the expressivity of the

interface, we expose some database features, for example, declara-

tive querying, from the underling database to the interface. Using

these two key ideas, we enable users to leverage the strengths of

both spreadsheets and databases for dealing with tabular data.

2.2 Semantics and Syntax
Although spreadsheets and databases have both been designed

to manage data in form of tables, their treatment of this data is

vastly different. Spreadsheets have been developed primarily with

presentation of data in mind and hence their design focuses pri-

marily on simplicity, intuitiveness and a rich user interface. On

the other hand databases have been designed with powerful data

management capabilities to work with large tables. Hence, certain

data manipulation operations, e.g., queries, joins, summarization,

are very naturally expressed as SQL statements in databases.

We propose semantics for DATASPREAD such that we are able to

naturally leverage the strengths of both systems. Since we plan to

enrich databases to effectively support interfaces, we use the strong

points of spreadsheets to motivate our semantics.

Support for Dynamic Schema. Spreadsheets enable users to ef-

fortlessly create tables and update their schema. A user typically

structures data on a spreadsheet as tables, with columns and rows,

where columns generally correspond to attributes and rows to tu-

ples. Here, adding an attribute, which is essentially a change to

schema, is as natural and convenient as adding a tuple. This is due

to the fact that spreadsheets do not treat columns and rows differ-

ently when we consider the operations possible on each. On the

other hand, relational databases have a schema-first data model.

Relational tables, which belong to a database’s schema, need a pre-

defined structure in terms of attributes. Since changing the structure

of a table in a database requires an update to all its tuples, it is not

efficient as adding, deleting or updating the tuples of the table.

To make relational table creation as effortless as table creation on

a spreadsheet, we propose the ability for a user to select an arbitrary

range on the spreadsheet and use it to define the structure and the

data for a table within the database. Once created it should behave

like a regular table within the database, and the user should be able

to refer to it and use it in queries.

To streamline the concept of a dynamic schema, we propose that

a user is able to update a table’s schema and tuples that are dis-

played on a spreadsheet, which in turn updates the schema and tu-

ples of the underlying table in the database. Further, the database

should be able to handle this schema change with an efficiency sim-

ilar to tuple updates. This makes table updates within a database as

natural as updating them on a spreadsheet.

Make Databases Interface Aware. Since spreadsheets have been

designed with an interface in mind, they very naturally lay out data

that is both consumed and manipulated by users. This interface has

a very strong influence on functionality offered to the user. Features

like laying out a table in a desired format and obtaining the totals

of some attributes beneath the table (using a spreadsheet formula)

feel natural. Thus, the interface provides a context to the operations

performed on a spreadsheet.

Positional addressing, which enable users to address data based

on its position on a spreadsheet, is an intuitive and effective way to

refer to presented data. By laying out data on a spreadsheet, a po-

sition gets implicitly assigned to the displayed data, due to which a

spreadsheet is able to use positional referencing, e.g., a cell refer-

ence of A2 from cell C2 implies a cell that is two columns left and in

the same row. The positional referencing is a commonly used fea-

ture while building expressions as it enables us to copy expressions

across cells while still maintaining the relative references.

Conversely, databases completely lack interface aspects. Once a

query result is output, the database is no longer cognizant of how

that result is consumed. This disconnect is a key weakness due

to which a database cannot be used as-is to effectively support a

spreadsheet interface. For instance, when a user wants to update a

specific attribute of a displayed table, the database is unable to help

because it is not aware of the tuple or attribute being modified.

We propose to make databases aware of the interface’s data lay-

out. This enables them to understand interactions on the presented

data, e.g., for a join using displayed tuples, the database is able to

identify the tuples just based on their implicit context. This further

enables the databases to optimize the query execution by prioritiz-

ing the displayed tuples over the ones that are not displayed.

After making the database interface aware, we propose to lever-

age this to enable positional addressing in databases. This implies

that the user should be able to refer to a value by its location on the

spreadsheet and use it in any arbitrary query.

Novel Spreadsheet Constructs. We now describe how the po-

sitional addressing is leveraged in the front-end spreadsheet, en-

abling users to pose rich SQL queries while referring to data in the

spreadsheet as well as the underlying relational table.

We encapsulate SQL references within the spreadsheet using one

of two formulae: DBSQL and DBTable. DBSQL enables users to pose

arbitrary queries combining data present on the spreadsheet, and

data stored in the relational database. DBTable enables users to de-

clare a portion of the spreadsheet as being either exported to or im-

ported from the relational database, i.e., that portion of the spread-

sheet directly reflects the contents of a relational database table.

In order to support arbitrary positional addressing or referenc-

ing of data on the spreadsheet for DBSQL, we add two new con-

structs: RangeValue and RangeTable. This enables users to refer to

a cell and a table on a sheet respectively relative to the cell where

the query is entered. RangeValue enables a user to refer to scalar

values contained in a cell, e.g., SELECT FROM Actors WHERE ActorId

= RangeValue(A1), referring to the value in cell A1. RangeTable on the

other hand enables a user to refer to a range, and perform operations

on it assuming it is a regular database table. This enables any range

on a spreadsheet to be potentially a table, and all the operations,

e.g., join, that the database allows on a table can be performed,

e.g., SELECT FROM Actors NATURAL JOIN RangeTable(A1:D100).

Other Semantic Issues. Although we have discussed two impor-

tant concepts, there are still many semantics that require attention

if we want to realize a complete unification. Due to the space re-

striction, rather than discussing them in detail we have listed a few

of them below: a) SQL support on spreadsheets: To leverage the

expressiveness of SQL and the simplicity of formulae we propose

to support both, and give flexibility to the user to interchangeably

use either. b) Real-time sync: Using spreadsheets users are ac-

customed to having an always updated copy with them. For this we

propose a real time two way synchronization of the displayed on the

spreadsheet with the underlying database. c) Data typing: Spread-

sheets dynamically type the data stored as cells. To make this work

with databases, we propose the idea of automatically assigning data

types within the databases based on the tuples. d) Computation op-

timization: By scaling up the amount of data, which can be pre-

sented on a spreadsheet, efficient computation become a necessity.

We propose to leverage the presentation information for prioritizing

computations for the data that is displayed. e) Lazy Computation:

To maintain interactivity, we propose that the calculations of the

Query Processor

Records Indexes Positional
Indexes

Buffer Manager

Relational Storage
Manager

Interface Storage
Manager

Physical Storage

Compute Engine

Interface Manager Transactional
Manager

Concurrency
Control

Main
Memory

Buffers: data,
index, log, etc.

Figure 1: DATASPREAD Architecture.

visible cells should be prioritized and the remaining long running

computations should be performed in background.

Challenge. Realizing the unified semantics is not a trivial task,

since it stretches the capabilities of today’s relational databases be-

yond what is available. For example, consider the semantics of

schema, for today’s databases a table’s schema change requires an

update to all the tuples of the table. Further, the activity is con-

sidered as “data definition language” and generally cannot partici-

pate in transactions. This requires us to propose the architecture of

DATASPREAD by radically rethinking the databases’ architecture.

3. PROPOSED ARCHITECTURE
Since relational databases are not designed to be interface-aware,

when we unify the presentation layer of spreadsheets with databases,

we need to redesign the underlying architecture of the database, as

well as the interaction with the front-end interface.

To enable databases to support the semantics described earlier,

we propose a redesigned database architecture as shown in Fig-

ure 1, where the shaded blocks represent new or enhanced com-

ponents. The interface manager is tasked with the goal of mak-

ing databases interface-aware. The query processor is enhanced to

support and optimize the execution for positional addressing, a nat-

ural way to locate data presented on the interface. The compute

engine leverages interface aspects, e.g., windowing, to optimize

execution. We introduce a new type of index, positional, which

makes interface-oriented operations, e.g., ordered presentation, ef-

ficient. The interface storage manager stores data that is presented

on the interface but not designated as a relational table. The rela-

tional storage manager is enhanced to effectively support interface

related operations such as schema changes.

While we have identified the extent of modifications needed for

databases to effectively support an interface, our current implemen-

tation and discussion focuses on enhancing some core components.

Naturally, there are other components that require modification,

such as the transaction manager, and we leave them for future work.

Interface Storage Manager. In this unified framework, a spread-

sheet not only has tabular data, corresponding to relational tables

in the underlying database, but also has other interface data, e.g.,

formulae or data entered by the user. This interface data requires

special treatment as it does not have a schema. The interface stor-

age component stores this data as a collection of cells. To enable

efficient retrieval for a given range, the component groups the cells

together by proximity and splits the groups into data blocks as re-

quired by the underlying storage. To enable efficient access, the

blocks are further indexed by a two-dimensional indexing method.

Relational Storage Manager. Our unification semantics demand

that the schema changes to the tabular data, which we persist in the

Figure 2: (a) Executing SQL with relative referencing. (b) Table creation. (c) Two-way table sync.

database as relational tables, should be very efficient, almost as effi-

cient as changes to tuples. With an insight to reduce the disk blocks

to update during a schema change, the relational storage manager

uses a hybrid of column-store and row-store to physically store the

table. Here, data is structured along a collection of attribute groups,

thereby radically reducing the disk blocks that need an update dur-

ing a schema change.

Interface Manager. The interface manager keeps close tabs on the

data presented to the user. For every data item, e.g., the output of

a query, a table imported from the database, that is displayed on

the interface, the presentation manager assigns a context; a context

comprises a positional address along with a reference to the sheet.

This context can then be utilized to enable functionalities such as

two-way sync and relative addressing.

Along with positional addressing, the interface manager allows

a two-way synchronization for the tables displayed on the inter-

face. Since primary keys are a natural way to identify tuples in a

relational database, the interface manager maintains a mapping be-

tween a tuple’s key attribute and its corresponding location. This

enables translation of an update on the interface, having a locational

context, to the underlying relational database, which requires a key

to uniquely identify a tuple.

Compute Engine. To optimally support interface interactions and

data updates, we introduce a new component termed as “compute

engine”. By using ideas like shared computation, the compute en-

gine enables efficient handling of formulae and queries with po-

sitional referencing, e.g., DBSQL. It performs computations asyn-

chronously, free from a user’s context, as updates are made to ei-

ther the interface or the database. It further improves the interface’s

interactivity by prioritizing the computation for visible cells.

4. DEMONSTRATION DESCRIPTION
Our DATASPREAD prototype is implemented using Microsoft

Excel (that presumably most conference attendees as well as even-

tual users are already familiar with) as the front-end spreadsheet

application, backed by PostgreSQL as the relational database back-

end. All the screenshots we depict are from our current prototype.

A video demonstrating the features of DATASPREAD can be found

at http://dataspread.cs.illinois.edu.

We demonstrate the following features of the DATASPREAD pro-

totype: a) analytic queries that reference data on the spreadsheet,

as well as data in other database relations. b) importing or ex-

porting data from the relational database. c) demonstrating that

DATASPREAD keeps data in the front-end and back-end in-sync

during modifications at either end.

Feature 1: Querying. Consider Figure 2a. Here, expressed using

the DBSQL spreadsheet function, the SQL query in B3 uses data from

three relations in the database (movies, movies2actors, actors), and ref-

erences the two cells above (B1 and B2), via special relative ref-

erencing commands (RangeValue(B1) and RangeValue(B2)). The out-

put of the query is not limited to a single cell, but spans the range

B3:B10. This enables the collection of cells to be computed collec-

tively in a single pass (as opposed to traditional spreadsheet formu-

lae that are one-per-cell). This will demonstrate how DATASPREAD

provides the ability to naturally query the underlying database, and

other data in the spreadsheet.

Feature 2: Import/Export. Consider Figure 2b. Here, on select-

ing a range in the sheet and selecting the create table command

from the add-ins menu, we provide the ability to users to trans-

form it into a relational database table. The schema of this table is

automatically inferred using the column heading and the data. Op-

tionally, users will be allowed to specify constraints on the table,

such as primary keys. On completion, the table is created in the

underlying database. The data on the sheet is replaced by DBTable,

which is a spreadsheet function that selects data from the database

and displays it on the spreadsheet. DBTable could also be used to

directly import data already present in the relational database into

the spreadsheet. This will demonstrate how DATASPREAD allows

us to import or export data to and from the relational database.

Feature 3: Modifications. Consider Figure 2c. Here, after a table

is displayed on the spreadsheet using DBTable, and formatted in cells

A3 to B5, as modifications are made to the table on the front-end the

data in the relational database is updated, and the data displayed

in cells from A10 to B12 (corresponding to a DBSql command ref-

erencing that data) is immediately updated. This will demonstrate

how DATASPREAD provides the ability to keep data in-sync during

modifications at both the front-end and back-end

Overall, the aforementioned demonstration scenarios will convince

attendees that our DATASPREAD system offers a valuable hybrid

between spreadsheets and databases, retaining the ease-of-use of

spreadsheets, and the power of databases.

5. REFERENCES
[1] S. Clemens, “5 Ways To Tell You Have Outgrown Excel.”

http://www.insightsquared.com/2011/06/
5-ways-to-tell-you-have-outgrown-excel/.

[2] R. Collie, “Big Data is Just Data, Why Excel “Sucks”, and 1,000
Miles of Data.” http://www.powerpivotpro.com/2012/10/
big-data-is-just-data-why-excel-sucks-and-1000-miles-of-data/.

[3] J. Tyszkiewicz, “Spreadsheet as a relational database engine,” in
SIGMOD, pp. 195–206, ACM, 2010.

[4] A. Witkowski, S. Bellamkonda, T. Bozkaya, G. Dorman, N. Folkert,
A. Gupta, L. Shen, and S. Subramanian, “Spreadsheets in rdbms for
olap,” in Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’03, (New York, NY,
USA), pp. 52–63, ACM, 2003.

[5] A. Witkowski, S. Bellamkonda, T. Bozkaya, A. Naimat, L. Sheng,
S. Subramanian, and A. Waingold, “Query by excel,” in Proceedings
of the 31st International Conference on Very Large Data Bases,
VLDB ’05, pp. 1204–1215, VLDB Endowment, 2005.

[6] B. Liu and H. Jagadish, “A spreadsheet algebra for a direct data
manipulation query interface,” in Data Engineering, 2009. ICDE’09.
IEEE 25th International Conference on, pp. 417–428, IEEE, 2009.

http://dataspread.cs.illinois.edu
http://www.insightsquared.com/2011/06/5-ways-to-tell-you-have-outgrown-excel/
http://www.insightsquared.com/2011/06/5-ways-to-tell-you-have-outgrown-excel/
http://www.powerpivotpro.com/2012/10/big-data-is-just-data-why-excel-sucks-and-1000-miles-of-data/
http://www.powerpivotpro.com/2012/10/big-data-is-just-data-why-excel-sucks-and-1000-miles-of-data/

	Introduction
	Design of DataSpread
	DataSpread Overview
	Semantics and Syntax

	Proposed Architecture
	Demonstration Description
	References

