
Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 9 | 1

NEUROINFORMATICS

ORIGINAL RESEARCH ARTICLE
published: 27 March 2009

doi: 10.3389/neuro.11.009.2009

DataViewer3D: an open-source, cross-platform multi-modal
neuroimaging data visualization tool

André Gouws*, Will Woods, Rebecca Millman, Antony Morland and Gary Green

Department of Psychology, York NeuroImaging Centre, University of York, UK

Integration and display of results from multiple neuroimaging modalities [e.g. magnetic resonance

imaging (MRI), magnetoencephalography, EEG] relies on display of a diverse range of data

within a common, defi ned coordinate frame. DataViewer3D (DV3D) is a multi-modal imaging

data visualization tool offering a cross-platform, open-source solution to simultaneous data

overlay visualization requirements of imaging studies. While DV3D is primarily a visualization

tool, the package allows an analysis approach where results from one imaging modality can

guide comparative analysis of another modality in a single coordinate space. DV3D is built on

Python, a dynamic object-oriented programming language with support for integration of modular

toolkits, and development of cross-platform software for neuroimaging. DV3D harnesses the

power of the Visualization Toolkit (VTK) for two-dimensional (2D) and 3D rendering, calling

VTK’s low level C++ functions from Python. Users interact with data via an intuitive interface

that uses Python to bind wxWidgets, which in turn calls the user’s operating system dialogs

and graphical user interface tools. DV3D currently supports NIfTI-1, ANALYZE™ and DICOM

formats for MRI data display (including statistical data overlay). Formats for other data types

are supported. The modularity of DV3D and ease of use of Python allows rapid integration of

additional format support and user development. DV3D has been tested on Mac OSX, RedHat

Linux and Microsoft Windows XP. DV3D is offered for free download with an extensive set of

tutorial resources and example data.

Keywords: visualization software, multi-modal neuroimaging, Python, VTK, fMRI, MEG, DTI, DV3D

and BrainVoyager4. Widely used open-source analysis toolboxes

for MATLAB5 are exemplifi ed by Statistical Parametric Mapping

(Frackowiak et al., 1997), Fieldtrip6, EEGLAB (Delorme and Makeig,

2004), mrVista (Teo et al., 1997; Wandell et al., 2000) and NUTMEG7.

Stand-alone, cross-platform analysis packages include FSL8 and

FreeSurfer9. In addition to analysis packages, a number of stand-

alone visualization packages have been developed, some to comple-

ment particular analysis packages (e.g. FSL’s FSLView10) and others

independently of analysis packages (MRICron11; 3D Slicer12).

Both analysis and stand-alone visualization packages are often

customized solutions developed by a site to address their specifi c

requirements. Many software packages are later extended to pro-

vide analysis frameworks for a more diverse range of hardware

platforms, data types and analysis methods. Sharing and distribu-

tion of platform independent software with unifi ed data formats

allows the neuroimaging community increased access to analysis

INTRODUCTION
This paper describes DataViewer3D (DV3D), a software package

built with Python1 and designed and optimized to address many of

the issues encountered when visualizing multi-modal neuroimag-

ing data.

The combination of analyses from multiple imaging modalities is

an important and growing trend in neuroimaging (e.g. McDonald,

2008; Stuffl ebeam and Rosen, 2007). Researchers are conscious of

the limitations of individual imaging techniques and their associated

analysis methods (e.g. Coltheart, 2006). With sites having access

to more than one data acquisition technology, the neuroimaging

community has the opportunity to compare and contrast results

from different modalities and analysis approaches. Multi-modal

techniques are used to exploit differences in results obtained from

different techniques (e.g. Liu et al., 2006) and potentially provide

converging evidence concerning researchers’ hypotheses.

A variety of neuroimaging analysis packages are available

to researchers, facilitating analysis of data from a complex and

diverse range of data acquisition techniques. The Neuroimaging

Informatics Tools and Resources Clearinghouse2 list many of these

tools. Commercial analysis software packages include ANALYZE™3

Edited by:

Rolf Kötter, Radboud University

Nijmegen, The Netherlands

Reviewed by:

Stephen C. Strother, Baycrest, Canada;

University of Toronto, Canada

David Kennedy, Harvard Medical

School, USA

*Correspondence:

André Gouws, York NeuroImaging

Centre, University of York, York Science

Park, York YO10 5DG, UK.

e-mail: andre.gouws@ynic.york.ac.uk

4http://www.brainvoyager.com/
5http://www.mathworks.com/products/matlab/
6http://www.ru.nl/fcdonders/fi eldtrip/
7http://nutmeg.berkeley.edu/
8http://www.fmrib.ox.ac.uk/fsl/
9http://surfer.nmr.mgh.harvard.edu/
10http://www.fmrib.ox.ac.uk/fslview
11http://www.sph.sc.edu/comd/rorden/mricron/
12http://slicer.org/

1http://www.python.org/
2http://www.nitrc.org/
3http://www.analyzedirect.com/Analyze/

http://www.brainvoyager.com/
http://www.mathworks.com/products/matlab/
http://www.ru.nl/fcdonders/fi eldtrip/
http://nutmeg.berkeley.edu/
http://www.fmrib.ox.ac.uk/fsl/
http://surfer.nmr.mgh.harvard.edu/
http://www.fmrib.ox.ac.uk/fslview
http://www.sph.sc.edu/comd/rorden/mricron/
http://slicer.org/
http://www.python.org/
http://www.nitrc.org/
http://www.analyzedirect.com/Analyze/

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 9 | 2

Gouws et al. DV3D in multi-modal neuroimaging

methods. Researchers may have to compare the visual outputs of

two or more different packages side by side, often comparing two-

dimensional (2D) outputs from one to 3D outputs of another. The

lack of a like-for-like comparison of results in a uniform coordinate

space can increase the potential for misinterpretation of results.

Reproducibility of results and consistency in analysis, interpreta-

tion, and display of results may be compromised when compar-

ing results from different analyses and visualization software (e.g.

Mackenzie-Graham et al., 2008).

DV3D does not attempt to compete with existing analyses pack-

ages in terms of analysis routines but rather acts as a support tool

for neuroimaging analysis packages. DV3D allows users to integrate

results from a number of different analysis packages, in a variety of

formats and in an open-source, platform independent implementa-

tion. DV3D is designed to offer 2D and 3D visualization support

for results from a number of neuroimaging acquisition modes and

analysis techniques including magnetic resonance imaging (MRI),

magnetoencephalography (MEG), positron emission tomography,

computed axial tomography and diffuse optical imaging. DV3D has

a highly modular, transparent design and is optimized for integra-

tion of additional display routines and fi le format support. DV3D

provides export routines for high-resolution images, movies and

objects created by the program for data sharing.

FSLView, 3D Slicer and MRICron are three of the most widely

used stand-alone packages for visualizing neuroimaging data, and

thus DV3D’s functionality will be most closely compared and con-

trasted to them. None of these packages (and no other single stand-

alone package to the best of our knowledge) offer support for all

of the multiple analysis outputs of the aforementioned imaging

technologies. DV3D is designed to fi ll this gap.

DV3D is built on Python, a cross-platform interpreted pro-

gramming language. In DV3D, Python is used to wrap famil-

iar, system-native Graphical User Interface (GUI) functionality

using wxWidgets13 and powerful graphics rendering using the

Visualization Toolkit14 (VTK). DV3D’s code base is completely

platform independent allowing code to run on any system with

Python, VTK and wxWidgets installed. This minimizes code trans-

lation time and system-dependent error handling, increasing the

effi ciency of software development and new process integration.

First we outline the design objectives for DV3D. Following this

we will discuss the value of using an open-source, platform inde-

pendent framework for developing such a package, focusing on

Python as the programming language to facilitate cross-platform

software development. We will then outline the current functional-

ity of the release package of DV3D and how it achieves our design

objectives. We will conclude by comparing DV3D’s functionality to

similar existing tools, highlighting how DV3D currently provides

more comprehensive functionality in a single package, as well as an

accessible framework for future development by the neuroimaging

community.

SOFTWARE DESIGN AND FRAMEWORK: DESIGN OBJECTIVES
While the exact requirements of every neuroimaging research envi-

ronment are different, we note that many researchers regularly use a

number of core functions when either exploring their data visually

or reporting results to their peers. The key requirements that we

have tried to address in the development of DV3D are discussed

below. They are:

• Dealing with different data types

• A common space for data

• Co-registration with atlases

• Export routines for sharing and publication

• An effi cient working environment.

• A fl exible, scalable and accessible open-source framework

DEALING WITH DIFFERENT DATA TYPES

Considering the number of different data sources in neuroimaging,

many different ways to display the results of neuroimaging data

have been adopted.

Due to the nature of their individual underlying analysis meth-

ods, many existing software packages are optimized for displaying

results in their own preferred way. Figure 1 summarizes some of

these conventions using FSL, SPM, DTI-Studio15, FreeSurfer, mrV-

ista and EEGLab as examples. Most packages are, understandably,

optimized for the display of imaging results from a limited number

of technologies, protocols, analysis methods and fi le formats. DV3D

provides a platform in which the user can display a wider range of

data in a number of different formats, be they 2D or 3D.

When considering the data types that a multi-modal neuroim-

aging visualization tool may be required to handle, there are at

least four levels of abstraction we need to consider. An example of

the complexity of the data structures that require consideration

for neuroimaging data processing streams is shown in Figure 2.

Analyzing and presenting data from MRI protocol subtypes alone

requires a support for a broad range of data formats. A software

package capable of supporting multi-modal data thus needs to

consider: (a) the technology being used to acquire the different

data types, (b) the acquisition settings (or protocol) being used

to acquire the data, (c) the analysis techniques used to analyze the

acquired data, and (d) the format in which the data and results

are stored.

The fi rst key objective of DV3D is to ensure fl exibility in design

that will enable users to integrate neuroimaging data whether it

comes from different technologies, from different acquisition pro-

tocols, from different analysis approaches and independently of

which data format they are saved in.

A COMMON SPACE FOR DATA

In order to sensibly overlay data for visualization of multi-modal

analyses, we need to display the data in a common reference frame.

An MEG data set, for example, will typically have a coordinate

space defi ning the sensor positions, the participant’s head shape

and head position relative to the sensors. To overlay this data onto,

for example, a surface extracted from an MRI scan, we need to

align the coordinate space of the MRI scanner to that of the MEG

scanner. Many analysis packages already have algorithms and proc-

esses for computing these alignments. Affi ne 3D transformation

matrices are used to describe linear transformations as in FLIRT

13http://www.wxwidgets.org/
14http://www.vtk.org/ 15https://www.mristudio.org/

http://www.wxwidgets.org/
http://www.vtk.org/
https://www.mristudio.org/

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 9 | 3

Gouws et al. DV3D in multi-modal neuroimaging

FIGURE 1 | Some common display conventions for neuroimaging data.

Examples of some of the methods commonly used to display neuroimaging

data. (A) FSL’s FSLView is used in this example to show the overlay of fMRI data

onto three orthogonal planes generated for a 3D MRI volume. (B) DTIStudio can

display DTI-fi ber paths as streamlines mapped onto orthogonal planes

generated from 3D MRI Volumes. (C) FreeSurfer can be used to display surfaces

extracted from MRI data. In this example the grey matter to white matter

boundary is displayed in 3D, with separate surfaces for the left (red) and right

(yellow) hemispheres of the brain. (D) SPM can be used to output 2D

projections of regions of statistical signifi cance to a ‘glass brain’ view.

(E) EEGLab can be used to show iso-contour patterns of changing

electrical fi elds over the scalp in 2D. (F) mrVista can be used to map scalar

values (here different visual areas are represented by different colors) to a

cortical surface.

FIGURE 2 | Data handling complexity in MRI analysis streams. A schematic

representation of the some of the levels of abstraction considered when

preparing software capable of handling multi-modal neuroimaging data. (A) The

technology type used: Here we use MRI as an example. (B) Some MRI

acquisition protocols or sub-types: a researcher using a combination of protocols

may, for example, be looking for changes in blood oxygenation using functional

MRI, localizing the regions of activation to specifi c brain regions using structural

MRI, and then looking for anatomical connections between these regions

using Diffusion weighted MRI. They may then wish to overlay the results from

each modality to explore spatial relationships. (C) Examples of the types of

different analysis algorithms and routines for any given protocol. (D) Examples

of data formats: although researchers may use the same technology, the

same protocol, and even the same analysis technique/algorithm, they may

save their results in different fi le formats not immediately accessible to

software utilized at other sites. *In the case of Fiber tract fi les, few standard

fi le formats have been developed specifi cally for DTI data, and even fewer

for saving the results of fi ber tracking algorithm output. The.nrrd fi le format

(http://www.na-mic.org/Wiki/index.php/NAMIC_Wiki:DTI:Nrrd_format) is used

by 3D Slicer to load DTI values and parameters into memory. Fibers are

subsequently calculated and can be saved to a vtk fi le format, unspecifi c for DTI

fi bers but useful for import and conversion by any VTK based programs,

including DV3D.

http://www.na-mic.org/Wiki/index.php/NAMIC_Wiki:DTI:Nrrd_format

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 9 | 4

Gouws et al. DV3D in multi-modal neuroimaging

(Jenkinson et al., 2002). Non-linear coregistration routines, as used

in SPM (Ashburner et al., 1999) and FNIRT16, provide nonlinear,

one-to-one coordinate mapping between data sets.

Data overlay in some existing packages is also limited by the

resolution of the inputs. In FSL’s current FSLView, for example, MRI

data with a voxel resolution of 2 × 2 × 2 mm3 cannot be overlaid

onto a data set with a 1 × 1 × 1 mm3 resolution, even if the data

sets are defi ned in the same coordinate space.

The second key objective of DV3D is to enable users to align

different data sets into a common reference space. As DV3D is not

an analytical tool, we will refrain from calculating alignments on

the fl y. The alternative is to facilitate alignment by providing tools

to load previously calculated transformations from other software

packages. Additionally, once data sets are aligned, the resolution of

the data sets should already have been interpreted and processed

accordingly to allow sensible overlay and corresponding scaling.

CO-REGISTRATION WITH ATLASES

Neuroimaging analysis results often describe spatial distributions

of signifi cant activity in the brain. These maps are typically overlaid

in 2D onto an individual or group brain data, as in Figure 1A, so

that this spatial distribution can be seen.

In addition to viewing data in an individual or across a group,

it is common practice in many neuroimaging data modalities to

compare these spatial distributions to equivalent positions, and

thus brain structures, in some reference brain space. These reference

brains, or atlases, include the MNI brain (Mazziotta et al., 2001),

the Talairach brain (Talairach and Tournoux, 1988), the Harvard-

Oxford cortical and sub-cortical structural atlases17 and the ICBM-

DTI-81 white-matter labels atlas (Wakana et al., 2004). At the time

of this submission, the current version of FSLView cross-references

and reports information for the equivalent structures in all of the

above atlases if the data set loaded has been transformed into the

MNI coordinate space. An alternative for users not using FSLView

would be to transform their data into the MNI coordinate space

and then use the online MNI-Talairach daemon18 to manually check

every point of interest – a more time-consuming process.

Incorporation of functionality to allow cross-referencing with

other standardized brain volume data is thus the third key objective

of DV3D. The ability to do this in real-time, without any additional

software dependencies is also preferable.

EXPORT ROUTINES FOR SHARING AND PUBLICATION

The production of informative, high-resolution images for com-

munication of results in publications, presentations and educa-

tional material is a fundamental requirement in neuroimaging.

Many neuroimaging data analysis packages have export routines to

capture screen contents to static reports, individual frames to high-

resolution images and even short movies of rotating 3D objects

or time-series data. Researchers using a specifi c analysis package

can also share data sets with each other. By providing another user

with a data set and a set of instructions, the secondary user can

reproduce the same analysis or visualization result.

As a fourth objective, DV3D should facilitate the export of data

from the visualization screen to a number of formats with options

for control of resolution. Movie export options should allow users

more freedom in terms of temporal and spatial interaction with

data visible on the screen. DV3D should also provide a functionality

for users to share results, even without having to provide raw data

sets from which the results have been produced.

AN EFFICIENT WORKING ENVIRONMENT

Analysis of neuroimaging data can be a very labor-intensive proc-

ess. Visualization and interpretation of obtained results adds sig-

nifi cantly to this workload. Any functionality that saves the user a

signifi cant amount of time and effort is valuable. Many approaches

can be taken to increase the effi ciency of processing pipelines in

software. Perhaps the most obvious is to ensure that, at the design

stage, the processing pipeline for a software package is optimized

for the hardware and software framework it is built on.

Current computing gives researchers access to multiple proces-

sors that can handle computations independently or in parallel.

Many computing facilities extend this model to computing clusters

with multiple nodes across which processes can be distributed or

parallelized. Access to parallel processing is already a feature of a

few of the existing neuroimaging software packages. FSL’s Bayesian

Estimation of Diffusion Parameters Obtained using Sampling

Techniques (BEDPOST) toolbox19, for example, can be easily con-

fi gured to run over Sun Grid Engine20, or even simply distributed

across any additional local processors.

While parallel processing in the context of BEDPOST is uti-

lized to reduce the amount of processing time required to generate

results, the principle can be applied to computationally expen-

sive visualization routines when viewing results. Loading surfaces

with millions of vertices and rendering them is an example; a user

wanting to load multiple surfaces into memory may still have to

wait in the order of minutes for them to load and render. While

computers have increasingly large amounts of memory, allocation

and management of memory is still a problem that any software

designer needs to take into account. This is especially poignant

when handling neuroimaging data where data sets can be very large.

It is common for MEG data sets acquired at high sampling rates to

exceed 1 GB in size. Memory allocation errors are often terminal,

causing a computer program to crash if allocation fails. This can

be both frustrating and ineffi cient.

Many of the analysis routines applied to neuroimaging data are

repetitive; analysis of data from each individual in a group is an

example. Automation of processing streams for similar data sets

is an increasing feature in neuroimaging data analysis. Users often

use scripts to pass list of arguments and settings into a program

that can be accessed via a command line. This can help to reduce

the overheads associated with repetitive GUI interaction. In this

way, a researcher can apply the same processing, thresholding, and

result export routines for each individual in a large group with a

single fi le and a single button press, even if they then do have to

wait several hours for the process to complete. This principle can

be a useful feature for the visualization of results. A user may want
16http://www.fmrib.ox.ac.uk/fsl/fnirt/
17http://www.cma.mgh.harvard.edu/
18http://www.talairach.org/applet/

19http://www.fmrib.ox.ac.uk/fsl/fdt/fdt_bedpostx.html
20http://gridengine.sunsource.net/

http://www.fmrib.ox.ac.uk/fsl/fnirt/
http://www.cma.mgh.harvard.edu/
http://www.talairach.org/applet/
http://www.fmrib.ox.ac.uk/fsl/fdt/fdt_bedpostx.html
http://gridengine.sunsource.net/

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 9 | 5

Gouws et al. DV3D in multi-modal neuroimaging

to, for example, provide an instruction list to a program to load

a particular surface, overlay a statistical result fi le, threshold to a

specifi ed value, export a high-resolution image from a top-down

view and save a movie. The user would then have a template to

process different statistical results, different thresholds, or simply

different participants without having to manually run each indi-

vidual through a GUI.

Some software packages help to increase user productivity by

saving metadata fi les that describe the current status of the work-

space the user is working in. The MATLAB toolbox, mrVista, is a

good example. In this package users have a session fi le for each

individual. Many settings, fi le paths, and associated analysis out-

puts are automatically loaded for the user the next time they load

a previously processed participant’s data. Evidently, a metadata

fi le describing the processes applied to a data set, its overlays, and

dependent thresholds is potentially time-saving when dealing with

the visualization of neuroimaging data sets. Furthermore, such a fi le

could easily be shared with another researcher to ensure a consistent

result when viewing the same input data.

Saving of processing metadata and automated processing scripts

both provide a reference which describes the processes and routines

used to produce a set of results. The use of scripts to drive analysis

and visualization routines decreases the chances of inconsisten-

cies due to user error. Provenance, the description of the history

of a set of data, is important with the recent increases in cross-

site collaboration and data sharing (e.g. Mackenzie-Graham et al.,

2008). The LONI Inspector21, an application for examining medical

image fi les, is an example of a tool developed for the compari-

son of the metadata stored with and between different fi le types.

Metadata is particularly informative when fi les are converted from

one format to another. Assumptions about default orientations,

for example, can cause left-right fl ipping of the data during the

conversion process and can cause errors in subsequent visualiza-

tion and interpretation.

Access to parallel processing, command line scripting, session or

workspace metadata and effi cient memory management are all ways

in which a neuroimaging visualization tool can increase user pro-

ductivity. As such, the fi fth objective in the development of DV3D

is to utilize a software and hardware framework that encompasses

as many of these features as possible.

A FLEXIBLE, SCALABLE AND ACCESSIBLE OPEN-SOURCE FRAMEWORK

An open-source software package with a self-supporting user com-

munity can be a viable solution for scientifi c software develop-

ment. With a community contributing to code development and

maintenance, costs can be minimized. Other factors need to be

considered when developing useful, sustainable open-source soft-

ware packages.

Transparency is a factor that concerns many researchers, although

this is more often related to the implementation of analysis algo-

rithms. While there is very little analysis per se in stand-alone visu-

alization packages, researchers should have access to processing

routines that generate the visual output (e.g. the color lookup tables

applied to thresholded statistical overlay data and interpolation

routines applied to loaded data).

Accessibility of the code base can be an issue that restricts

 interested users from understanding and developing programs.

At least three factors can be considered to affect the accessibility

of software:

• Educational resources are crucial to aid users in learning how to

use a package. Documentation and tutorial routines are often

lacking in software packages restricting the range of potential

users.

• Platform independence is an increasingly common feature in

neuroimaging software packages. Software that runs on any

hardware platform is not only more accessible to any indi-

vidual site, but aids collaboration across different sites with

potentially different hardware infrastructures.

• Coding language. Some coding languages are more complex

and / or less intuitive than others. While it is impossible to pro-

vide a coding language that every programmer would like, it

may be sensible to settle for a compromise between a language

that is simple to read and use, and one that is very powerful

and effi cient.

Extendibility and fl exibility of software is a measure of how easily

the software can be expanded to incorporate additional process-

ing routines. Since the authors have not set out to predict every

possible permutation of input-to-output requirement of poten-

tial users, it is crucial that the software framework is designed to

facilitate incorporation of additional routines with minimal effort.

A modular software framework not only facilitates such independ-

ent development, but allows for incorporation of appropriate tools

and routines often developed for completely different purposes. We

could, for example, choose to incorporate an implementation of

an algorithm for decimating surfaces, borrowing the code from an

external mathematics toolbox. Once imported into the package as

an independent module one could simply pass a brain surface to

this module as a set of vertices and run the module to down-sample

the number of vertices for increased rendering speed.

DV3D has been designed with an open-source, user commu-

nity developed model in mind. As such it is imperative that the

package is built on a software framework that is accessible to a

wide variety of users on a wide range of hardware platforms,

extendible by non-specialist developers, intuitive to use, and well

documented.

METHODS: IMPLEMENTING A Python FRAMEWORK
Having outlined the key objectives for a new multi-modal neu-

roimaging data visualization tool, we can now consider the imple-

mentation of the project. The software package can be considered

to consist of three main components:

1. The visualization engine: this is the lowest level of the pro-

gram, i.e., the functions that actually do the rendering of the

images to the screen.

2. A user interaction interface: this is the component of the pro-

gram that allows users to control the rendering routines of the

visualization engine in an interactive and intuitive manner.

3. A master control program: the component of the program

that binds or wraps the functionality of the underlying com-

ponents and allows them to run on the operating system.21http://www.loni.ucla.edu/Software/

http://www.loni.ucla.edu/Software/

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 9 | 6

Gouws et al. DV3D in multi-modal neuroimaging

We will discuss each of these components in turn, highlighting

the requirements and implemented solution for each.

THE VISUALIZATION ENGINE: VTK

The Visualization ToolKit (VTK) is a widely used, free, open-source

software package for data visualization and image processing, with

support for 2D and 3D graphics rendering. With an active and vast

international development community, VTK is a model for open-

source software development.

VTK has an extensive set of implemented visualization algo-

rithms. Routines for processing scalar, vector, tensor, texture, and

volumetric methods exist. VTK offers a large variety of complex

algorithms as part of the standard toolkit, many of which are

directly useful for visualizing neuroimaging data. Contouring,

surface decimation and triangulation, re-sampling, cutting, and

interception detection are just a few examples. Many of these

algorithms are directly integrated into widgets allowing users to

interactively interrogate combinations of 2D and 3D data in real

time. VTK is licensed under the BSD license. VTK is reported to

have been installed and tested on nearly every Unix-based platform,

Windows PC, and Mac OSX Jaguar or later. VTK is an effi cient and

fast toolkit consisting of an extensive C++ class library, access to

which is available via several interpreted interface layers including

Tcl/Tk, Java, and Python.

USER INTERFACE: WXWIDGETS

Learning to use a new software package can be challenging. In a

program with a number of complicated functions, the provision

of a highly interactive GUI and familiar workspace environment

should benefi t the user. wxWidgets is a free, open-source toolkit

that provides developers with an API (application programming

interface) for writing GUI applications on multiple platforms.

wxWidgets is licensed under the wxWindows license, essentially

the L-GPL (Library General Public License), with an exception

stating that derived works in binary form may be distributed on

the user’s own terms. By using each platform’s own native controls

rather than emulating them, wxWidgets applications look and feel

familiar to the operating system’s, and should thus be immediately

more familiar to the user. The list of widgets and features offered

is extensive and the code base is very mature. wxWidgets can be

called via interface layers for a variety of languages including C++,

Python, and Perl.

Either C++ code or Python could be used to produce a program

with a GUI in wxWidgets containing a VTK window for rendering.

The relative ease of use of Python over C++, combined with the

large array of readily accessible functionality offered by Python,

makes this the preferred choice for our application.

THE MASTER ENVIRONMENT: Python

Python is a dynamic, object-oriented programming language

that is reported to run successfully on Linux, Windows, FreeBSD,

Macintosh, Solaris, and other operating systems. Since Python is

an interpreted language, it internally converts and translates source

code into the native language of the computer and then runs it.

Once Python has been installed on a system, users do not have to

compile a Python program or worry about library linkage and load-

ing. Python programs are portable: copying the source code from

one operating system onto another (which has Python installed)

will allow the software to run.

The Python-specifi c Python license is compatible with GPL

licensing. Python is distributed with extensive standard libraries.

The list of functions implemented in Python is extensive. Additional

modules for Python include a number of mathematical, numerical

methods and plotting toolboxes that are useful for manipulating

numerical lists and arrays, before passing data into VTK for render-

ing. Some Python modules support parallel processing and thread-

ing often with as few as three lines of additional code (an example

is provided in Figure 10). Modules allowing access to system com-

mand calls and environmental variables are abundant, allowing the

user to spawn and even control external processes and applications

from within the Python environment application. Python supports

integration with other languages and tools (including wxWidgets

and VTK), which are often loaded by nothing more than using the

import command.

Python and individually distributed toolboxes can be built from

source and installed independently. At the time of this submission

an increasing number of developers are producing binary installers

for entire Python distributions with many core modules includ-

ing VTK. Using the academic download of the Enthought Python

Distribution22, users on Windows, Mac OSX, or RedHat Linux have

access to a ‘one click installation’ of the Python framework required

to run DV3D.

In short Python was chosen over C++ for the development of

DV3D because of its relative ease of use, the vast array of addi-

tional functionality available, and because it allows access to the

core underlying components (wxWidgets and VTK) in a single

programming language.

DEPENDENCIES AND INSTALLATION

Dependencies

For the reasons we have already discussed in detail above, DV3D is

designed to be as platform independent as possible.

DV3D has few software or hardware dependencies and requires

only the following to run:

• Python 2.4.1 or later

• wxPython 2.6 or later

• VTK 5.0.3 or later

• The Numpy module for the appropriate version of Python

installed

• A Windows, Mac OSX, or Linux platform.

Installation

We have already outlined that Enthought provide a binary installer

for Microsoft Windows, Mac OSX, and RedHat Linux. Use of

these installers provides a comprehensive build of the core com-

ponents and additional modules required to run DV3D. Use of the

Enthought installers is currently free for academic use. Users with

platforms not supported by these installers can often fi nd binary

installers for the individual components on operating specifi c sup-

port sites. All modules can be built from source on platforms by

users wanting additional installation options and control.

22http://www.enthought.com/products/epd.php

http://www.enthought.com/products/epd.php

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 9 | 7

Gouws et al. DV3D in multi-modal neuroimaging

DATA IMPORT

Supported formats

DV3D currently supports the following formats:

• DICOM. Digital Imaging and Communications in Medicine

is a standard for handling, storing, printing, and transmitting

information in medical imaging23. Many MRI scanners now

export their data directly to this format. The DICOM format

provides private header fi elds that can be utilized to store

additional scan information. Unfortunately many sites now

use these fi elds in a non-uniform manner (according to the

DICOM standard). Different DICOM readers do not always

correctly interpret metadata describing data acquisition and

storage protocols in the fi le. DV3D addresses inconsistencies

in DICOM headers by adjusting the DICOM reading routi-

nes provided by Python to specifi c scan protocols and scanner

types.

• ANALYZE™ (.hdr and.img) is an image processing program

developed by The Biomedical Imaging Resource at the Mayo

Foundation. This program uses the ANALYZE™ format

(www.mayo.edu/bir/PDF/ANALYZE75.pdf) which is curren-

tly widely used in neuroimaging. Many programs (including

FSL, SPM, AFNI, Cox, 1996, FreeSurfer and MRICron) are able

to read and write the format. The fi les typically store voxel-

based volumes in two fi les: the binary data itself is stored with

a fi lename extension.img; another fi le acts as a header (.hdr)

describing information about the data such as voxel size, slice

numbers and data origin. As with DICOM, some software

packages use the ANALYZE™ format header in different ways.

Some software packages interpret ANALYZE™ volumes diffe-

rently due to differences in header writing conventions across

sites. DV3D addresses inconsistencies in ANALYZE™ headers

by adjusting the reading routines to detect which program was

used to produce the fi le (where possible).

• NIfTI-1 (.nii or.nii.gz) is an adaptation of the ANALYZE™ 7.5

fi le format24. NIfTI-1 uses unassigned spaces in the ANALYZE

7.5 header to add several new features. Since it is possible to

compress data stored in NIfTI-1 fi les the nii.gz fi le format is

often utilized. DV3D supports the.nii or.nii.gz fi le formats.

• GIfTI (.gii). Support for the unifi ed XML-based GIfTI fi le for-

mat25 is provided.

• VTK polydata fi les(.vtk). VTK provides routines for expor-

ting objects in memory to its own native polygon data fi les.

Additional routines allow these objects to be read into VTK

applications at a later date. This offers an incredibly useful

tool for users wanting to save objects created in a VTK session

for sharing or later access without the need for regeneration.

DV3D offers visualization routines for.vtk fi les in binary or

ascii format.

• OFF (.off). The Object File Format is described by the Geomview

package26. It is used to represent collections of planar polygons

with possibly shared vertices. This is a useful format used to

describe surfaces by programs including SurfRelax (Larsson,

2001). DV3D offers visualization routines for.off fi les in binary

or ascii format.

• FREESURFER surfaces (lh.* and rh.* are examples). Surfaces

generated by typical default processing in FreeSurfer include

left and right hemisphere cortices representing the white mat-

ter and grey matter surfaces, with anatomically correct and

infl ated versions. DV3D offers support for these standard

surfaces and additional surfaces generated by post-processing

routines (an extracted scalp for example). DV3D is also capa-

ble of handling additional scalar descriptors for these fi les,

including curvature values. DV3D offers visualization routines

for FreeSurfer fi les in binary or ascii format.

• 4-D Neuroimaging (4DNI) MEG data (.m4d). Creation of

a.m4d fi le using the pdf2set program allows direct reading of

4DNI MEG data. DV3D currently supports the 4DNI output

format, but could easily be extended to support other MEG

and EEG time-series formats.

Although many of the formats discussed above have a standard

description, i.e., a set of instructions for fi le creation designed to

maintain conformity across sites, not all packages use these formats

to read and write fi les in the standardized way. There will always be

corner-cases where the readers used to import data into DV3D may

fail. Fortunately, the previously discussed power of Python allows

developers to easily amend existing readers or write new ones to

handle these inconsistencies. Users are actively invited to submit

failing data sets with descriptions of acquisition parameters and

header formats so that current readers can be amended or new

readers developed.

Supported software packages

Since DV3D currently supports all the data formats outlined above,

it should, in theory, support at least some of the formats from a

wide range of existing neuroimaging analysis packages. Any package

capable of writing these formats could be used. This is not so simple

in practice, as we have alluded to in the Section ‘Supported Formats’

of this paper. There are complications when different sites and pack-

ages adopt varying standards for data export to specifi c formats. We

look forward to collaborating with sites with additional data sets in

order to resolve as many of these disparities as possible.

Program processing pipeline

On startup, the user can choose to launch DV3D in one of two

modes.

• MRI-overlay mode. This mode is traditionally used where a ‘base’

MRI volume is initially loaded. Other objects aligned to the

coordinate space of this volume can then be loaded and overlaid

onto the base volume. The ‘base’ MRI volume thus defi nes the

coordinate space into which additional objects are loaded.

• Non-overlay mode. The user can choose to not load a base

volume. In this case the program will launch with an empty

renderer and pre-created 2D or 3D objects can be loaded by

the user.

A graphical representation outlining DV3D’s processing pipeline

is shown in Figure 3.

23http://medical.nema.org/
24http://nif.ti.nimh.nih.gov
25http://www.nitrc.org/projects/gifti/
26http://www.geomview.org/docs/html/OFF.html#OFF

www.mayo.edu/bir/PDF/ANALYZE75.pdf
http://medical.nema.org/
http://nif.ti.nimh.nih.gov
http://www.nitrc.org/projects/gifti/
http://www.geomview.org/docs/html/OFF.html#OFF

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 9 | 8

Gouws et al. DV3D in multi-modal neuroimaging

RESULTS
DV3D is accompanied by user documentation, example data sets

and tutorial videos. Links to this information are provided in

the Supplementary Material section of this paper. The fi ne detail

describing interaction with the application is described in these

documents and tutorials. Here instead we will discuss the broad

concepts and functions of the program, and how they satisfy our

design objectives.

DESIGN OBJECTIVE: A COMMON SPACE FOR MULTIPLE DATA TYPES

DV3D’s workspace

DV3D provides a single, common workspace for viewing neuroim-

aging data, simultaneously in 2D and 3D. The main workspace

environment of DV3D consists of two windows:

Main application window (Figure 4). This window is divided

into quadrants:

• VTK window. The bottom-right quadrant holds the

wxVTKRenderWindowInteractor, the VTK class that allows a

functional VTK session to be embedded in a wxPython pro-

gram. We will refer to this as the VTK window. When data

objects are loaded into or created by DV3D they are added to

this window. The VTK window is the core tool allowing us to

provide a common space for simultaneous multi-modal data

overlay.

• Button Panel. The top-right quadrant is constructed from a

wxNotebook object that we will refer to as the Button Panel. It

consists of a number of pages which each contain a panel of

buttons and widgets which allow the user to interact with the

VTK window. A tab labeled with the title of the panel denotes

each page. Each page is brought to the front by clicking on its

tab. Pages group functions of similar types together for ease of

navigation. The Button Panel can be extended to have many

more pages, allowing for a multitude of additional functions

to be added to DV3D at a later date without excessively clutte-

ring an individual button page. Potential developers will also

be interested to note that each page here is derived from a sepa-

rate class allowing easy parallel development and integration.

• Object List. The bottom-left panel holds a wxTreeCtrl that we

will refer to as the Object List. It displays its items in a tree

like structure similar to many operating systems’ fi le browsing

dialogs. An item may be either collapsed (meaning that its chi-

ldren are not visible) or expanded (meaning that its children

are shown). Whenever a new object is loaded into the program

FIGURE 3 | DV3D processing pipeline. A schematic representation of the processing pipeline of program startup, data loading and export user events in DV3D.

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 9 | 9

Gouws et al. DV3D in multi-modal neuroimaging

or generated by one of DV3D’s routines, a tree item is added to

this list. In addition to this, a property panel is created for each

new object. This panel has a number of different buttons and

tools used to manipulate the display properties of the objects

in the VTK window. Since a unique item identifi er identifi es

each item in the tree, it can be linked to the object in the VTK

window. This allows us to manipulate some of the properties

of the object in the VTK window associated with a specifi c item

in the Object List simply by clicking on the object in the list.

Each item has its own (optional) icon and a label. Users can

simply rename the item in the tree to a more meaningful string

without losing the interaction with the associated object in the

VTK window. The Object List offers an intuitive and effi cient

tool for managing the content of the VTK window.

• Message Dialog. The top-left quadrant, which we will refer to

as the Message Dialog, holds a wxTextCtrl. This object is effec-

tively a text box that is updated with information for the user

as the program is used. Interaction coordinates from the VTK

window (bottom right quadrant) are displayed in the Message

Dialog if a base MRI volume is loaded.

• Sizers. A vertical and horizontal sizer bar defi ne the bounda-

ries of the quadrants. Clicking and dragging these sizers allows

the user to alter the relative sizes of the quadrants of the Main

application window.

The Main application window’s VTK window allows us to display

multi-modal data, whilst the Button Panel, Object List and object

associated Property Panels allow us to manipulate the properties

of the displayed objects.

In addition to the 3D viewing capabilities of the VTK window,

DV3D provides traditional 2D orthogonal views of the 3D window

via the Orthogonal view window. This window consists of three

orthogonal projections of the VTK window’s content. The options

panel in this window allows the user to set the refresh frequency of

the viewports, increasing program performance. Plane orientation

and placement of the viewpoints is also fully customizable.

FIGURE 4 | DV3D’s main application window. The main window for data

interaction in DV3D. The bottom-right quadrant holds the VTK window where all

3D rendering takes place. The top-right holds the Button Panel, which consists

of multiple sub-pages allowing a large array of user interaction functions. The

top-left quadrant holds the Message dialog which displays the current

coordinates of the interaction cross hair in the VTK window. The bottom-left

quadrant holds the Objects List: a list of all objects loaded in the the VTK

window. Panels can be resized by clicking and dragging the vertical and

horizontal dividers between each panel. Views in the VTK window are

neurological by convention.

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 9 | 10

Gouws et al. DV3D in multi-modal neuroimaging

Viewing conventions

It is important to make the default visualization conventions of

DV3D clear at this stage.

Radiological vs. neurological. Data viewed in the 3D VTK window

of the Main application window is rendered according the neuro-

logical convention as described by FSL27. Data viewed in the 2D

Orthogonal view window also conforms to the neurological conven-

tion, but can be switched to the radiological convention.

Perspective vs. parallel projection. To make 3D visualization more

natural, the VTK window utilizes a perspective projection algorithm

during rendering to infer depth in the scene. Since the planes in

the Orthogonal view window are effectively 2D we refrain from

using this algorithm (since it carries some processing overhead)

and revert to parallel projection.

Aligning different data sets

Transformations. DV3D allows the user to add different data sets of

different types into the same coordinate space (the VTK window).

Data is loaded into a millimeter coordinate frame defi ned by the

data set’s header description (e.g. the sform or qform matrices held

in the header of NIfTI-1 fi les). By using header transformation

matrices, DV3D can automatically align data. Alternatively, the

user can provide additional affi ne transformations (4 × 4 matri-

ces) to apply previously calculated alignment parameters (typical

examples include affi ne transformations provided by FSL’s FLIRT

when coregistering an individual MRI to the MNI brain). This

principle applies to any volumes or surfaces loaded. DV3D does

not currently calculate new transformations, but rather handles

those pre-calculated in external analysis packages.

Resolution and scaling. Unlike many other visualization pack-

ages (e.g. FSLView), DV3D does not require MRI data to be at

the same resolution. DV3D uses a millimeter coordinate space.

All data loaded into the VTK window are scaled according to the

header information (e.g. the pixdim values in ANALYZE™ and

NIfTI headers describe the voxel dimensions).

DESIGN OBJECTIVE: DEALING WITH DIFFERENT DATA TYPES

Viewing volume data in 2D and 3D

The vtkImagePlaneWidget is the core tool utilized by DV3D to dis-

play and interact with volumetric MRI data and associated overlay

volumes. This widget works by creating a plane that can be interac-

tively placed in an image volume. Readers may ask why a 2D tool is

incorporated in a 3D data viewer. VTK allows the user to manipulate

this plane in real time, using the third dimension to tilt, rotate, or

translate the plane in virtually any orientation. Thus a 2D plane

becomes a diverse data exploration tool. Figure 5A shows a set of

planes created for an MRI data set. The functionality of the vtkIm-

agePlaneWidget is described in detail in the tutorial examples and

documentation. In short, it offers the following functionality:

• Coordinate lookup. DV3D captures the slice number data

displayed by the vtkImagePlaneWidget and uses it to calculate

the equivalent millimeter coordinates in the underlying data

set. The slice number and calculated millimeter coordinates

are then displayed in the Message Dialog of the Main applica-

tion window. Figure 5B shows the lookup cross-hair activated

in the plane.

• Interactive volume re-slicing. The core functionality of the wid-

get relies on the vtkImageReslice class that takes the image

volume data as an input, re-slices (or ‘reformats’) it as required

and then passes the output to the texture mapping pipeline.

This tool allows real time slicing through volumetric data at

virtually any angle. Figures 5C–E show this functionality in

action.

• Brightness and contrast. In addition to rotation and translation

of the planes, it is also possible to change the windowing and

level of the data. This effectively adjusts the brightness and

contrast of the data displayed in the window. Slider style con-

trols are provided to control the absolute values of the win-

dow width and level for more precise user control. The default

behavior allowing the mouse to control window width and

level can be re-enabled in User Preferences.

Using multiple vtkImagePlaneWidgets, DV3D allows simultane-

ous overlaying of statistical data in 2D. Once a base volume has been

loaded and its planes have been created, additional volumes can be

loaded and overlaid onto this volume. The overlay load routine is

accessed via the Functional tab on the Button Panel. Overlay vol-

umes currently have to be transformed into the coordinate space

of the base volume but do not need to be at the same resolution.

For every overlay volume loaded, an additional set of planes is cre-

ated; one for each axis in the VTK window and one for each axis in

the Orthogonal view window. The overlay data is initially assigned

a yellow (for its minimum value) to red (for its maximum) color

lookup table before it is rendered. As with the base image planes,

two additional objects are created: an Object List label and a Property

Panel. Sliders control the window width and window level of the

overlay layer only, i.e. the effective scalar range for the data that

are visible in the overlay layer. This acts as a real time 2D and 3D

statistical thresholding tool. The color map currently in use can

also be altered using the color map selection dialog.

Viewing 3D surfaces

DV3D provides methods for loading and generating surfaces for

display in the VTK window. Surfaces are created in memory as

vtkPolyData objects, which have a number of native properties

that the program is able to manipulate to increase user interactiv-

ity. Examples include access to the global transparency and color

properties of the object. These properties can then be altered using

the property panel automatically created for any surface loaded

or generated.

Loading surfaces. Surface load routines are accessed via the Surfaces

tab on the Button Panel. Clicking the Load button opens a fi le dialog

offering the import of a number of different fi le formats. Surface

inputs currently supported by DV3D include:

• FreeSurfer output surfaces (including infl ated surfaces).

• SurfRelax output surfaces in the Geomview binary.off fi le

format.27http://www.fmrib.ox.ac.uk/fslfaq/#general_radiologicaldef

http://www.fmrib.ox.ac.uk/fslfaq/#general_radiologicaldef

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 9 | 11

Gouws et al. DV3D in multi-modal neuroimaging

• mrVista.mrm outputs.

• vtkPolyDataWriter output fi les (.vtk).

• Any surface exported to the GIfTI format.

Once the surface load dialog completes the object is loaded and

automatically added to the VTK window and the Orthogonal view

window. The automatically generated property panel will also be

displayed.

Generating surfaces. VTK provides techniques for dynamically

generating surfaces from volume data in memory. DV3D uses the

vtkContourFilter to calculate and extract surfaces from underlying

MRI data volumes. The vtkContourFilter interrogates the volume

data set, fi nding points in the volume where the scalar value cor-

responds to a value stipulated by the user. It then scans through

the data volume, connecting points of the same value and creating

isocontour lines (in 2D) or isosurfaces (in 3D). Since the stipulated

search value may occur several times in the data volume, multi-

ple isolines or isocontours can be returned by the algorithm. An

additional option offered by the algorithm is to retain only the

largest connected surface, i.e., the surface with the largest number

of vertices.

It may be interesting to generate surfaces from underlying data

for a number of reasons. In Figure 6 we show an example of a

rough estimate of a scalp (Figure 6A) and rough cortical sur-

face (Figure 6B) representative of the white-matter/gray-matter

 boundary, extracted from the same individual’s data. Isosurfaces

extraction is highly sensitive to homogeneity inconsistencies in

the MRI image volume and produces better results with inten-

sity normalized volumes. In Figure 6C we show the same routine

applied to the skull-stripped 1 × 1 × 1 mm3 MNI brain distributed

with FSL 4.0. It should be evident that this result is less noisy than

that shown in Figure 6B, a result of the intensity normalization

of the MNI brain. Surface generation for cortical surfaces using

DV3D is meant to aid quick data exploration and is not nearly

as informative or accurate as the algorithms utilized by programs

like FreeSurfer, FSL’s FAST28 or SurfRelax. The speed with which

an individual can extract a rough representation of this surface

is however very useful. DV3D can give a user a quick insight into

the cortical shape in just 30 s, where other packages take between

15 min and several hours to run.

Activation color mapping. In addition to offering access to the

global transparency and color properties of the object, vtkPolyData

objects allow access to the properties of individual vertices that

defi ne the shape of the surface. Each vertex can have a scalar value

associated with it. VTK allows the user to create a color lookup table

covering the range of all scalar values associated with the vertices

of a surface. The color presented at each vertex on the surface can

FIGURE 5 | The use of plane widgets to show 3D volume data. (A) A set of

three orthogonal planes, each intersecting a single 3D MRI volume. (B) Left

clicking on any one plane with a mouse will make a cross-hair visible (in red)

allowing data from a specifi c coordinate in the data set to be displayed. Real-

time reformatting of data (re-slicing it in any plane direction) is possible by tilting

the planes around their current origin. (C) The axial plane is rotated around the

y-axis by clicking on the edge of the plane (show in red) and moving the mouse.

(D) The axial plane is rotated around the x-axis by clicking on another plane edge

(shown in red). (E) The axial plane is rotated around the z-axis by clicking in the

corner of the plane (shown in red).

28http://www.fmrib.ox.ac.uk/fsl/fast4/

http://www.fmrib.ox.ac.uk/fsl/fast4/

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 9 | 12

Gouws et al. DV3D in multi-modal neuroimaging

then be directly mapped through this lookup table to the scalar

value at that point. This offers an easy way to map patterns of

activation to a surface.

Viewing time-series data

Interactive time-series data visualization is another data exploration

technique supported by DV3D. The ability to follow real time changes

in signal amplitude at specifi ed locations in data sets relies on VTK’s

aforementioned ability to map scalar data to individual vertices of

loaded surfaces. DV3D extends the ability of VTK to map scalar data

by allowing users to pass new values into surface objects’ scalar arrays.

By allowing users to update the scalar values mapped to surfaces with

data from any time point in a time-series, DV3D allows dynamic

viewing of time-series data in 2D and 3D by stepping through succes-

sive time points. DV3D also supports extraction of sensor time-series

data for MEG and EEG data (e.g. Butterfl y plots).

Numpy29 is a mathematical methods module for Python that

allows, amongst many other mathematical functions, the use

and manipulation of arrays and matrix mathematics in Python.

Python’s automatic memory management, coupled with the power

of Numpy matrix manipulations means that DV3D has access to

effi cient temporary data storage of large data arrays. VTK also offers

techniques for data arrays to be passed directly into VTKArray

classes, further increasing processing effi ciency.

Two time-series objects are shown in Figure 7. A 3D contour plot

and a minimum norm solution (techniques used for visualizing and

analyzing MEG and EEG data) for two MEG data sets are shown in

Figures 7A,B, respectively. The user fi rst provides a coordinate fi le

that describes the surface that is to be added to the VTK window.

This fi le provides the coordinates for the vertices and edges of the

surface to be generated. The user then provides a time-data fi le that

holds an array of scalar values. This fi le holds multiple values for

each vertex, arranged chronologically to represent the time-series at

each location or vertex in the coordinate fi le. Independently of the

exact fi le formats, DV3D generates a surface from the coordinate

fi le, and then loads the time-data fi le into memory, constructing a

Numpy array to hold the time-series data. As the user interacts with

the object, stepping to subsequent or previous time points, DV3D

simply steps to the appropriate point in the array and extracts the

relevant values. These values are then converted to a VTKArray

and passed directly to the scalar value representation of the object.

Although this process may seem rather complex, it is an extremely

effi cient technique for managing large data arrays without restrict-

ing rendering speed when visualizing time-series data.

Advanced interaction techniques

We have shown the way in which DV3D can load surfaces or gener-

ate them from underlying data, or re-slice volume data in real time

using image planes. We will now briefl y describe three of the more

advanced features demonstrated in the user documentation and

tutorials to show the data exploration potential of DV3D.

3D overlay data. This visualization technique relies on the pre-

viously described method for extracting isosurfaces from MRI

volumes using the vtkContourFilter. We previously described

extracting a rough representation of the cortex by passing a base

sMRI volume to the vtkContourFilter. Following the same princi-

ple, we can pass an overlay volume to the vtkContourFilter in the

place of the structural volume. This volume could, for example, be

a statistical z-score map of the activation resulting from a contrast

analysis of fMRI data. This is illustrated with a visual motion fMRI

data set in Figure 8. The 2D overlay data is shown in Figure 8A.

Isocontouring with depth-dependent transparency mapping is

a technique that can be applied to a variety of neuroimaging data

types or result fi les. Figure 8E shows how this technique can be

applied to probabilistic DTI visualization (e.g. FSL’s Probtrack30

FIGURE 6 | Viewing 3D Surfaces in DV3D. (A) Example of a rough estimate of a scalp using the surface extraction technique. (B) Example of a rough estimate of a

cortex using the same technique. Here the data set has been skull stripped fi rst using FSL’s Brain Extraction Tool. (C) A rough cortical extraction of the 1 × 1 × 1 mm3

MNI brain distributed with FSL 4.0.

29http://numpy.scipy.org/ 30http://www.fmrib.ox.ac.uk/fsl/fdt/fdt_probtrackx.html

http://numpy.scipy.org/
http://www.fmrib.ox.ac.uk/fsl/fdt/fdt_probtrackx.html

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 9 | 13

Gouws et al. DV3D in multi-modal neuroimaging

output) to give a clear representation of the entire extent of prob-

able connectivity between regions. In addition to being a tool for

producing interesting 3D images of the connectivity probability

distribution of the DTI data set, this technique has another poten-

tial benefi t for DTI. Standard DTI fi ber tracking techniques tend

to represent 3D results at streamlines or stream-tubes in 3D space.

With this technique, the colors mapped to each surface have actual

probabilistic value and can be mapped along the length of the tract

or network path with a visible color bar.

Surface interrogation of overlay volume data. The vtkContourFil-

ter interrogates data volumes, fi nding specifi c scalar values and then

extracting the 3D coordinates with corresponding scalar values,

constructing isolines or isosurfaces by effectively ‘connecting the

FIGURE 7 | Viewing time-series data in DV3D. (A) Evolution of an MEG fi eld displayed via 3D-contour plot. (B) Evolution of a minimum norm projection via surface

scalar lookup table. In both instances frames can be automatically generated by cycling data and exported for movie creation.

FIGURE 8 | 3D overlay data using isosurface transparency. (A) 2D overlay

data from an fMRI experiment overlaid onto a structural MRI volume. (B) The

vtkContourFilter can be applied to create an isosurface through the data at a

specifi c threshold value, say z = 2.3. The returned 3D surfaces will encompass

all areas in the data set that have a z-score of z = 2.3 or above. We could

repeat the process, asking the vtkContourFilter to return smaller surfaces as

we increase the threshold. (C) A 2D representation (using isocontours shown

in blue) of 2 separate isovalues used to extract surfaces. (D) If we

simultaneously render fi ve sets of surfaces, at z-scores of z = 2.3, 3.3, 4.3, 5.3,

and 6.3, for example, the only set of surfaces visible would be that at z = 2.3,

since all other surfaces are inside this surface. We can manipulate the

transparency and color of the vtkPolyData class to make the distribution of

activation visible and overcome this problem. By making the outermost

surface (at the lowest threshold value) 80% transparent, the second

outermost 60% transparent, the third 40% transparent, the fourth 20%

transparent, and the highest threshold surface completely opaque, we make

all surfaces simultaneously visible. To emphasize this effect, we can also apply

a color gradient (yellow to red) across the surface threshold range.

Interacting with this mode of visualization in 3D gives an instantaneous

percept of the entire distribution of the activation in 3D. (E) This image shows a

number of tracts output from FSL’s Probtrack toolbox rendered using the

3D overlay technique. The tracts are seen as yellow to red isosurfaces. The

green spheres indicate the positions of seed and target points as defi ned in

Probtrack.

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 9 | 14

Gouws et al. DV3D in multi-modal neuroimaging

dots’. VTK also offers techniques to do the reverse: having a surface

in the same coordinate space as a data volume, we can fi nd where

each vertex of the surface intercepts with the data volume and

extract the volume’s scalar value at this point. We have already

shown (in Figure 7) that when a scalar values are provided for

each vertex of a surface, we can use a color lookup table to over-

lay a color map of the distribution of the scalar value amplitudes

across the surface.

Figure 9 demonstrates the usefulness of this technique. An

overlay volume can be loaded into sMRI space (Figure 9A). The

user can then create or load a surface (Figure 9B) into the same

space. From the property panel of this surface the user can choose

to map statistical data to the surface (at the current threshold and

color map defi ned by the overlay plane’s property set). This gives

the user a very quick way to visualize activation distributions in

3D (Figure 9C).

DESIGN OBJECTIVE: COREGISTRATION TO ATLASES

Automatic atlas lookup

DV3D provides methods for real-time cross referencing with brain

atlases. Atlas lookups are currently only possible on MRI-overlay

mode. Once the user has loaded a base MRI volume, they can load

a second volume into memory. On the Reference tab of the Button

Panel, the user can select a fi le to load as the reference volume to

compare to the base volume. Once the user selects a volume, they

are prompted to supply a transformation matrix describing the

mapping of the base volume (e.g. an individual’s brain) to the ref-

erence volume (e.g. the MNI brain). DV3D is currently optimized

for use with FSL output data, allowing referencing with the MNI

and Talairach brains. If a user supplies the MNI brain as a refer-

ence, the user can select to automatically lookup the equivalent

Talairach coordinates and brain label. DV3D uses the MTT-pooled

transform for the MNI brain to the Talairach brain (Lancaster et al.,

2007). Coordinates and slice numbers of the current and reference

data set are displayed in the Message Dialog of the Main applica-

tion window. The Talairach label, slice number and coordinate is

displayed in the Message dialog if the supplied reference volume is

the MNI brain and the user has checked the Ref is MNI and Show

Talairach Transform check boxes on the Button Panel. Interaction

with a base MRI volume, with cross referencing to the MNI and

Talairach atlas is demonstrated in Figure 4.

DESIGN OBJECTIVE: EXPORT ROUTINES FOR SHARING AND

PUBLICATION

Surfaces

Any surface currently displayed in DV3D’s VTK window can be

written out to a fi le for sharing or reloading at a later time. Export

routines for surfaces can be called by selecting the required surface’s

label in the Object List, clicking on the list item with the right mouse

button and selecting the Export surface option. This will launch

the operating system’s native ‘Save fi le as’ dialog. The fi le can then

simply be saved and re-loaded where required.

Images

DV3D offers a number of different options for saving out images,

capturing the content of the VTK window and the Orthogonal view

window as required. The user has full control over the resolution of

the image output and is given the option of multiple output formats

(including JPEG, TIFF, BMP and PNG). Controls enable the user

to export the current view to single image, or export a sequence

of views as separate frames (e.g. 360° rotation of the viewport to

multiple, sequential images).

Movies

DV3D offers options for saving and creating movies from of the

VTK window. The user has full control over the resolution of the

image output since the frames of the movie are simply captured

at the dimensions of the VTK window as it is displayed on the

computer monitor. On the Export tab of the Button Panel the user

can select:

• Export 360° directly to.AVI movie. VTK provides a vtkAVIWri-

ter class that is capable of writing renderer contents directly to

AVI format video fi les. Currently this export routine does the

same as the Export 360° to multiple images routine, rotating

the camera through 360° around the object over 180 frames

FIGURE 9 | A demonstration of surface interrogation of overlay volume data. (A) Structural MRI space with fMRI data overlay. (B) Rough cortical extraction from

underlying structural MRI data. (C) Rough cortex with overlay intersection data rendered onto the surface at the user defi ned thresholds.

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 9 | 15

Gouws et al. DV3D in multi-modal neuroimaging

and creating the output as a movie. Depending on the build

options used at VTK installation time or the installer that the

user has chosen to use, the vtkAVIWriter class is not always

automatically compiled. The Enthought Python distribution,

for example, builds this class on Windows by default, but not

on OSX. Users wanting access to this functionality should con-

sider manual installation of the VTK modules, or see the more

advanced functionality of the streaming routine described in

Start interactive streaming.

• Start interactive streaming. This is the most advanced interac-

tion capture technique currently available with DV3D. It has

the capability to capture user interactions in real time, periodi-

cally capturing frames from the VTK window as the user chan-

ges objects in it. Clicking the start interactive streaming button

launches the operating system’s ‘Choose folder dialog’, allowing

the user to specify a folder for the output to be saved in. With

this routine, frames are saved to memory as they are captu-

red rather than being written out immediately. The user will

notice very little jittering during interaction due to the decrea-

sed processing load. The individual frames are then written

out when the Stop stream button in pressed. Individual frames

can then be combined into a move format by external software

programs such as Apple’s QuickTime Pro.

Examples of all export routines are provided at the software

website references in the Supplementary Material section of this

paper.

DESIGN OBJECTIVE: AN EFFICIENT WORKING ENVIRONMENT

A number of features of DV3D are designed to aid users to optimize

the working environment of the package.

User preferences

A user preferences fi le can be accessed via the Preferences panel.

This allows users access to environmental variables including:

• Automatic property panel display: users can choose whether

the property panels generated for each loaded object are auto-

matically displayed or not.

• Orthogonal window orientations: these settings allow the

user fi ner control over the layout of the orientations of the

Orthogonal view window panels.

• Automatically render orthogonal window: this setting tog-

gles whether the program default is to automatically render

the Orthogonal window when the VTK window changes, or

whether the user calls this manually.

Parallel processing

Python offers access to parallel processing via a number of differ-

ent modules. While there is little need for this at present, we have

included a sample of how Python can manage separate threads with

this release as a demonstration of how easy it is to implement, and

how much potential there is for speeding up user interaction. The

demonstration can be run from the Threading tab on the Button

Panel. This function runs the load routine for a surface fi le with over

one million vertices. The routine is run in the background while

the user continues to interact with the program. Loading the same

surface without threading requires the user to wait between 20 and

45 s for the process to complete. An example of the simplicity of the

code required to access this functionality is shown in Figure 10.

Workspace saving

At any point during use of DV3D, users can choose to save the

current status of the workspace to a fi le. This fi le holds metadata

that an be loaded at the start of a later session to load the current

working environment, with many of the current settings in use

by the user, including all loaded objects and color / transparency

settings. This fi le hard-codes the paths of input fi les and will fail if

fi les are moved between sessions.

Surface decimation

Upon loading surfaces into memory, DV3D can be set to run a

decimation routine to down-sample the number of vertices of each

surface by between 10 and 90%. This surface is not shown automati-

cally (the high-resolution surface is visible by default), but the user

can choose to toggle between the decimated and original surface

during interaction to help increase the speed of rendering.

Command line access for scripting

In addition to handling workspace fi les, DV3D offers the ability

to handle explicit arguments passed to the program on the com-

mand line. This allows users access to advanced scripting options

for automation of processing streams.

FIGURE 10 | A demonstration of code simplicity in Python: enabling

threading. (A) This code example demonstrates how a function may be linked

to a button press in a standard Python script using the thread running the main

program. On the button click, the program asks the user to choose a fi le to

load. The program then passes the fi le to the subroutine (Load_surface_fi le)

and runs the subroutine. While the subroutine is running the user has to wait

for the object to be loaded and returned to the main program before

continuing. (B) This second code example shows that we can produce the

same result using Python’s threading module. First the threading module is

imported. The functionality of code example in (A) is then added as a function

(RunFunctionInThread). The button click in this instance calls a thread (my_

thread.start) and runs the load routine will run in the background allowing the

user to continue working while it is prepared. Note that threading only

requires a few extra lines of simple code.

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 9 | 16

Gouws et al. DV3D in multi-modal neuroimaging

DESIGN OBJECTIVE: A FLEXIBLE, SCALABLE AND ACCESSIBLE

OPEN-SOURCE FRAMEWORK

Our implementation of a fl exible, scalable and accessible open-

source framework is described largely in the Section ‘Methods:

Implementing a Python Framework’ of this paper. We show that

the combination of Python, wxWidgets and VTK gives us the ability

to produce a code base that is freely distributable and platform inde-

pendent. This implementation has all the functionality required

to process a number of different fi le types and formats, is highly

modularized for ease of understanding and promotes future user

development due to the relative simplicity of Python as a program-

ming language (for an example, see Figure 10).

DISCUSSION
The ‘Results’ Section of this paper shows that DV3D satisfi es each

of the key design objectives identifi ed as important for a multi-

modal neuroimaging data visualization package. In summary,

DV3D allows users to view data from many different imaging

modalities and analysis streams in a single coordinate space. Data

can be cross-referenced with standard spaces in real-time, from

2D or 3D objects. DV3D supports the display of a large number of

input data formats, and allows the user to export data in a number

of different formats. The user workspace can be customized to

allow optimum productivity and allows access for both casual and

power users (command line scripting and parallelization). DV3D’s

platform independence (due to Python) makes it fl exible, and the

modularity and simplicity of the code base makes it both acces-

sible and scalable.

Readers may ask about the novelty of DV3D. While we (to the

best of our knowledge) are unaware of any other software pack-

age that utilizes isocontouring with depth-dependent transparency

mapping to display 3D statistical overlays (see Advanced Interaction

Techniques), we do not claim that any other techniques utilized

by DV3D are novel. Table 1 summarizes the features of DV3D,

Table 1 | Feature summary and comparison of imaging data visualization packages. This table summarizes some of DV3D’s key features and compares

DV3D’s functionality with three commonly used imaging data visualization tools, FSLView, MriCron and 3D Slicer. Features are accurate as at the time of initial

development of DV3D.

Software feature FSLView MRICron 3D Slicer DV3D

NEUROIMAGING DATA SUPPORT

Optimised for neuroimaging –

Structural MRI

Functional MRI

DTI – probabilistic – –

DTI – tractography – – Calculated online Loaded from memory

DTI – 2d vectors – –

DTI – 3d vectors – –

MEG/EEG contour plots (2D and/or 3D) – – –

MEG/EEG 3d time-series on surface – Single instant – Full dynamic

MEG/EEG dipoles – – –

MEG/EEG butterfl y plots – – –

DATA EXPLORATION

2D statistical map overlay

3D statistical map overlay – –

Interactive surface extraction – – Complex watershed Simple isosurfaces

Real-time atlas cross-referencing If data in MNI space – – 4 × 4 Transform required

COMPLEX VISUALIZATION FUNCTIONS

Real-time reformatting – – Single plane Multiple planes

Interactive data intersection – – –

Interactive time-series interrogation 2d fMRI only – – 2D and 3D fMRI, EEG and MEG

Batch processing from command line – –

EXPORT

Static images –

Movies – –

Real-time streaming – – –

TECHNICAL

Main code base language C,C++,Tcl/Tk Pascal C++,Tcl/Tk Python

Platform independent code base – – –

Access to parallel processing – – –

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 9 | 17

Gouws et al. DV3D in multi-modal neuroimaging

 comparing the resulting functionality achieved by DV3D with simi-

lar packages already available. We show that, while DV3D is not an

entirely comprehensive solution for visualizing neuroimaging data,

it does represent a utility that can offer a single solution to users

of a variety of neuroimaging analysis packages. Being optimized

for neuroimaging data, this single package offers more options to

researchers interested in multi-modal neuroimaging data analysis

than any alternative stand-alone visualization package.

While visualization packages are primarily used to display the

results output by analysis packages, many visualization tools have

developed to include techniques to physically manipulate loaded

results fi les with complex analytical algorithms. 3D Slicer, for

example, utilizes complex segmentation algorithms to allow tis-

sue segmentation from any MRI volume acquired at any part of

the body. This allows 3D Slicer to be regarded as a tool that is suited

to generalized medical imaging analysis and visualization rather

than being neuroscience specifi c. When handling neuroimaging

data, 3D Slicer is also more analytically driven than MRICron or

DV3D. 3D Slicer does not load fi ber-tracking results from exter-

nal analysis packages. Rather it analyzes diffusion-weighted MRI

data to calculate fi ber tracts31. This move away from being a pure

visualization tool, specifi c for neuroimaging data, does mean that

3D Slicer has more demanding development and maintenance

overhead and can take longer to become familiar with, compared

to MRICron or DV3D.

DV3D was designed to be a tool optimized for the visualization

of neuroimaging data and not an analysis tool per se. Although

many algorithms and calculations underlie the functionality of

DV3D, they are primarily image processing functions allowing VTK

to display results of analyses conducted in other software pack-

ages. If DV3D were solely a data visualization tool, it would simply

take user input and display it in its raw format. We have shown

however that DV3D offers routines for manipulating loaded data

to add value to the visualization environment: DV3D can average

raw MEG time series data by epoch and display this average as a

contour plot; DV3D can manipulate volume grid data and extract

and interpolate 3D surfaces from this data to display isosurfaces

and isovolumes; DV3D offers the ability to decimate large surface

data sets to increase rendering speed. DV3D has thus already began

to evolve from a pure visualization tool to a tool that allows users

to interact with their data. DV3D does not, however, lose focus of

its optimization for neuroimaging data processing.

Since DV3D has the potential to be more than a visualization

tool, we have considered extending its functionality. Including more

functions in DV3D will allow a more extensive range of tools for

users to interrogate data. The modularity of the framework and

platform independence of the code base allows access for rapid

development and extension to include additional fi le format sup-

port and processing routine extension. Many functions have already

been requested by interested parties and are under current consid-

eration for inclusion in subsequent releases. Python offers modules

for handling pipes on operating systems, allowing the potential

for system calls and data exchange between system processes. We

are currently exploring the capability to include calls to DV3D

to/from a number of packages. Other examples of user requests

currently under development include the ability to align volumes

and/or surfaces manually or with automated error-minimization

routines, and functions to measure distances, areas, and volume

size between/on displayed objects. Future development of DV3D

will focus on support for additional formats, increased automa-

tion of processing streams, extended local settings customization,

and more extensive data sharing options. We will also consider

including the GIfTI format as a surface export option due to the

signifi cant increases in performance reported when handling these

fi les relative to the.vtk format (Harwell et al., 2008).

Python has a large and diverse international user base, and pro-

motes the development of increasingly accessible and comprehen-

sive solutions for current computing and analysis requirements. The

use of Python as the base for DV3D allows a cross-platform, trans-

parent, and extendible code base for user development. By using

Python to wrap existing toolkits, including tools for visualization,

rendering, parallelization and GUI generation, DV3D development

has required minimal new code to be written to solve complex com-

putations. In addition to the functionality DV3D currently offers,

DV3D can also be easily expanded to meet users’ changing needs

because of its modular, open-source design. DV3D’s framework is

intentionally modularized to provide concise working examples,

illustrating the power of VTK and how easily this power can be har-

nessed by Python. While the authors are keen to extend the package,

provision of an open-source package is intended to stimulate and

facilitate further development of the software by the user commu-

nity. Example code illustrating the extension of the functionality of

the package is provided for users interested in contributing code or

developing the package for their own purposes. DV3D’s code base

currently consists of circa 12,000 lines of Python code. 3D Slicer

has over 550,000 lines of C++ code, although this includes a large

amount of additional analytical functionality that DV3D does not

have. We suggest that the simplicity of Python relative to C++, and

the vastly smaller code base, make DV3D more accessible in terms

of community extension and development prospects.

DV3D’s primary function is to allow easy, interactive display

of multi-modal neuroimaging data. DV3D has been successfully

implemented on many platforms and is currently used by local

users from a variety of disciplines. DV3D is provided as a free, open-

source package built on Python’s platform independent model.

DV3D can thus be used and, more importantly, developed by the

wider neuroimaging community.

ACKNOWLEDGMENTS
The authors would like to acknowledge the developers of Python,

VTK and wxWidgets for their ongoing support of open-source soft-

ware provision. The reviewers are to be thanked for their insight-

ful comments, some of which have already resulted in additional

functionality being incorporated into the package.

SUPPLEMENTARY MATERIAL
DOWNLOADING THE SOFTWARE, EXAMPLES AND EDUCATIONAL

RESOURCES

DV3D, examples output and input fi les and interactive user

tutorials can be freely downloaded from http://www.ynic.york.

ac.uk/software/dv3d.31http://www.slicer.org/slicerWiki/index.php/Slicer3:DTMRI

http://www.slicer.org/slicerWiki/index.php/Slicer3:DTMRI
http://www.ynic.york.ac.uk/software/dv3d
http://www.ynic.york.ac.uk/software/dv3d

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 9 | 18

Gouws et al. DV3D in multi-modal neuroimaging

REFERENCES
Ashburner, J., Andersson, J., and

Friston, K. J. (1999). High- dimensional

nonlinear image registration using

symmetric priors. NeuroImage 9,

619–628.

Coltheart, M. (2006). What has functional

neuroimaging told us about the mind

(so far)? Cortex 42, 323–331.

Cox, R. W. (1996). AFNI: software for

analysis and visualization of functional

magnetic resonance neuroimages.

Comput. Biomed. Res. 29, 162–173.

Delorme, A., and Makeig, A. (2004).

EEGLAB: an open-source toolbox for

analysis of single-trial EEG dynamics.

J. Neurosci. Methods 134, 9–21.

Frackowiak, R. S. J., Friston, K. J.,

Frith, C. D., Dolan, R. J., and

Mazziotta, J. C. (1997). Human Brain

Function. San Diego, Academic Press.

Harwell, J., Bremen, H., Coulon, O.,

Dierker, D., Reynolds, R. C.,

Silva, C., Teich, K., Van Essen, D. C.,

Warfi eld, S. K., and Saad, Z. S. (2008).

GIfTI: Geometry Data Format for

Exchange of Surface-Based Brain

Mapping Data. OHBM – Poster

Presentation

Jenkinson, M., Bannister, P. R.,

Brady, J. M., and Smith, S. M. (2002).

Improved optimisation for the robust

and accurate linear registration and

motion correction of brain images.

NeuroImage 17, 825–841.

Lancaster, J. L., Tordesillas-Gutiérrez, D.,

Martinez, M., Salinas, F., Evans, A.,

Zilles, K., Mazziotta, J., and Fox, P. T.

(2007). Bias between MNI and

Talairach coordinates analyzed using

the ICBM-152 brain template. Hum.

Brain Mapp. 28, 1194–1205.

Larsson, J. (2001). Imaging Vision:

Functional Mapping of Intermediate

Visual Processes in Man. Ph.D. thesis,

Karolinska Institute, Stockholm.

Liu, Z., Kecman, F., and Bin, H. (2006).

Effects of fMRI–EEG mismatches in

cortical current density estimation

integrating fMRI and EEG: A simu-

lation study. Clin. Neurophysiol. 117,

1610–1622.

Mackenzie-Graham, A. J., Van Horn, J. D.,

Woods, R. P., Crawford, K. L., and

Toga, A. W. (2008). Provenance in neu-

roimaging. NeuroImage 42, 178–195.

Mazziotta, J., Toga, A., Evans, A., Fox, P.,

Lancaster, J., Zilles, K., Simpson, G.,

Woods, R., Paus, T., Pike, B. et al.

(2001). A four-dimensional atlas of

the human brain. J. Am. Med. Inform.

Assoc. 8, 401–430.

McDonald, C. R. (2008). The use of

neuroimaging to study behavior in

patients with epilepsy. Epilepsy Behav.

12, 600–611.

Stufflebeam, S. M., and Rosen, B. R.

(2007). Mapping cognitive func-

tion. Neuroimaging Clin. N. Am. 17,

469–484.

Talairach, J., and Tournoux, P. (1988). Co-

planar Stereotaxic Atlas of the Human

Brain: 3-Dimensional Proportional

System – An Approach to Cerebral

Imaging. New York, Thieme Medical

Publishers.

Teo, P. C., Sapiro, G., and Wandell, B. A.

(1997) . Creat ing connected

 representations of cortical gray

matter for functional MRI visualiza-

tion. IEEE Trans. Med. Imaging 16,

852–863.

Wakana, S., Jiang, H., Nagae-Poetscher, M.,

van Zijl, P. C. M., and Mori, S. (2004).

A fi ber-tract based atlas of Human

white matter anatomy. Radiology

230, 77–87.

Wandell, B. A., Chial S., and Backus, B.

(2000). Visualization and measure-

ment of the cortical surface. J. Cogn.

Neurosci. 12, 739–752.

Conflict of Interest Statement: The

authors declare that the research was con-

ducted in the absence of any commercial or

fi nancial relationships that could be con-

strued as a potential confl ict of interest.

Received: 12 September 2008; paper pend-

ing published: 25 October 2008; accepted:

05 March 2009; published online: 27 March

2009.

Citation: Gouws A, Woods W, Millman R,

Morland A and Green G (2009)

DataViewer3D: an open-source, cross-

 platform multi-modal neuroimaging data

visualization tool. Front. Neuroinform. (2009)

3:9. doi: 10.3389/neuro.11.009.2009

Copyright © 2009 Gouws, Woods, Millman,

Morland and Green. This is an open-access

article subject to an exclusive license agree-

ment between the authors and the Frontiers

Research Foundation, which permits unre-

stricted use, distribution, and reproduc-

tion in any medium, provided the original

authors and source are credited.

