PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

51

datreant: persistent, Pythonic trees for heterogeneous
data

David L. Dotson®™*, Sean L. Seyler?, Max Linke®, Richard J. Gowerslll, Oliver Beckstein®

https://youtu.be/enLHDZoch0U

Abstract—In science the filesystem often serves as a de facto database, with
directory trees being the zeroth-order scientific data structure. But it can be
tedious and error prone to work directly with the filesystem to retrieve and
store heterogeneous datasets. datreant makes working with directory structures
and files Pythonic with Treants: specially marked directories with distinguishing
characteristics that can be discovered, queried, and filtered. Treants can be
manipulated individually and in aggregate, with mechanisms for granular access
to the directories and files in their trees. Disparate datasets stored in any format
(CSV, HDF5, NetCDF, Feather, etc.) scattered throughout a filesystem can
thus be manipulated as meta-datasets of Treants. datreant is modular and
extensible by design to allow specialized applications to be built on top of it, with
MDSynthesis as an example for working with molecular dynamics simulation
data. http://datreant.org/

Index Terms—data management, science, filesystems

Introduction

In many scientific fields, especially those analyzing experimental
or simulation data, there is an existing ecosystem of specialized
tools and file formats which new tools must work around. Conse-
quently, specialized database systems may be unsuitable for data
management and storage. In these cases the filesystem ends up
serving as a de facto database, with directory trees the zeroth-order
data structure for scientific data. This is particularly true for fields
centered around simulation: simulation systems can vary widely in
size, composition, rules, parameters, and starting conditions. And
with ever-increasing computational power, it is often necessary to
store intermediate results from large amounts of simulation data
so that they may be accessed and explored interactively.

These problems make data management difficult, and ulti-
mately serve as a barrier to answering scientific questions. To
address this, we present datreant, a Pythonic interface to
the filesystem. datreant deals primarily in Treants: specially
marked directories with distinguishing characteristics that can be
discovered, queried, and filtered. Treants can be manipulated indi-
vidually and in aggregate, with mechanisms for granular access

7 These authors contributed equally.

Corresponding author: dldotson@asu.edu

Arizona State University, Tempe, Arizona, USA

§ Max Planck Institut fiir Biophysik, Frankfurt, Germany
q University of Manchester, Manchester, UK

Il University of Edinburgh, Edinburgh, UK

Copyright© 2016 David L. Dotson et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

to the directories and files in their trees. By way of Treants,
datreant adds a lightweight abstraction layer to the filesystem,
allowing researchers to focus more on what is stored and less on
where. This greatly reduces the tedium of storing, retrieving, and
operating on datasets of interest, no matter how they are organized.

Treants as filesystem manipulators

The central object of datreant is the Treant. A Treant is a
directory in the filesystem that has been specially marked with a
state file. A Treant is also a Python object. We can create a
Treant with:

>>> import datreant.core as dtr

>>> t = dtr.Treant ('maple')
>>> t
<Treant: 'maple'>

This creates a directory maple/ in the filesystem (if it did not
already exist), and places a special state file inside which stores
the Treant’s state. This file also serves as a flagpost indicating that
this is more than just a directory:

> 1ls maple
Treant.ldcbb3bl-c396-4bc6-975d-3aeledc2983a. json

The name of this file includes the type of Treant to which
it corresponds, as well as the uuid of the Treant, its unique
identifier. The state file contains all the information needed to
generate an identical instance of this Treant, so that we can start
a separate Python session and immediately use the same Treant
there:

python session 2

>>> import datreant.core as dtr

>>> t = dtr.Treant ('maple')
>>> t
<Treant: 'maple'>

Making a modification to the Treant in one session is imme-
diately reflected by the same Treant in any other session. For
example, a Treant can store any number of descriptive tags to
differentiate it from others. We can add tags in the first Python
session:

python session 1

>>> t.tags.add('syrup', 'plant')
>>> t.tags
<Tags(['plant', 'syrup'])>

And in the other Python session, the same Treant with the same
tags is visible:

https://youtu.be/enLHDZoch0U
https://docs.python.org/2/library/csv.html
https://www.hdfgroup.org/HDF5/
http://www.unidata.ucar.edu/software/netcdf/
https://github.com/wesm/feather
http://mdsynthesis.readthedocs.io/
http://datreant.org/
mailto:dldotson@asu.edu

52

python session 2
>>> t.tags

<Tags(['plant', 'syrup'])>

Internally, advisory locking is done to avoid race conditions,
making a Treant multiprocessing-safe. A Treant can also be
moved, either locally within the same filesystem or to a remote
filesystem, and it will continue to work as expected.

Introspecting a Treant’s Tree

A Treant can be used to introspect and manipulate its filesystem
tree. We can, for example, work with directory structures rather
easily:

>>> data = t['a/place/for/data/"']
>>> data
<Tree: 'maple/a/place/for/data/'>

This Tree object points to a path in the Treant’s own tree, but it
need not necessarily exist. We can check this with:

>>> data.exists
False

This behavior is by design for Tree objects (as well as Leaf
objects; see below). We want to be able to work freely with paths
without creating filesystem objects for each, at least until we are
ready.

We can make a Tree exist in the filesystem easily enough:

>>> data.makedirs ()

and if we also make another directory, too:

>>> t['a/place/for/text/"'] .makedirs ()
<Tree: 'maple/a/place/for/text/'>

we now have:

>>> t.draw()

maple/
+-- Treant.ldcbb3bl-c396-4bc6-975d-3aeledc2983a. json
+-— a/

+-— place/
+—— for/
+-- data/
+-— text/

Accessing paths in this way returns Tree and Leaf objects,
which refer to directories and files, respectively. These paths need
not point to directories or files that actually exist, but they can be
used to create and work with these filesystem elements. It should
be noted that creating a Tree does not create a Treant. Treants
are considered special enough to warrant having a state file with
metadata, and making every directory a Treant would make them
less useful.

We can, for example, easily store a Pandas [McK10]
DataFrame somewhere in the tree for reference later:

>>> import pandas as pd

>>> df = pd.DataFrame (pd.np.random.randn (3, 2),
columns=["A', 'B'])

>>> data = t['a/place/for/data/"']

>>> data

<Tree: 'maple/a/place/for/data/'>

>>> df.to_csv(data['random_dataframe.csv'].abspath)

take a look at the contents of ‘data’
>>> data.draw()
data/

+—— random_dataframe.csv

PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

and we can introspect the file directly:

>>> csv = datal['random_dataframe.csv']
>>> csv
<Leaf: 'maple/a/place/for/data/random_dataframe.csv'>

file

this should look like a CSV
>>> print (csv.read())

,A,B
0,-0.573730932177663,-0.08857033924376226
1,0.03157276797041359,-0.10977921690694506
2,-0.2080757315892524,0.6825003213837373

Using Treant, Tree, and Leaf objects, we can work with the
filesystem Pythonically without giving much attention to precisely
where these objects live within that filesystem. This becomes
especially powerful when we have many directories/files we want
to work with, possibly in many different places.

Aggregation and splitting on Treant metadata

What makes a Treant distinct from a Tree is its state file. This
file stores metadata that can be used to filter and split Treant
objects when treated in aggregate. It also serves as a flagpost,
making Treant directories discoverable.

If we have many more Treants, perhaps scattered about the
filesystem:
>>> for path in ('an/elm/', 'the/oldest/oak',
'the/oldest/tallest/sequoia') :

make a Treant in filesystem at

dtr.Treant (path)

path

we can gather them up with datreant.core.discover:

>>> b = dtr.discover('.")

>>> b

<Bundle ([<Treant: 'oak'>, <Treant: 'sequoia'>,
<Treant: 'maple'>, <Treant: 'elm'>])>

A Bundle is an ordered set of Treant objects. This collection
gives convenient mechanisms for working with Treants as a single
logical unit. For example, it exposes a few basic properties for
directly accessing its member data:

>>> b.relpaths
['the/oldest/oak/"',
'the/oldest/tallest/sequoia/’,
'maple/"',
'an/elm/ "]

>>> b.names
['oak', 'sequoia', 'maple', 'elm']

A Bundle can be constructed in a variety of ways, most com-
monly using existing Treant instances or paths to Treants in the
filesystem.

We can use a Bundle to subselect Treants in typical ways,
including integer indexing and slicing, fancy indexing, boolean
indexing, and indexing by name. But in addition to these, we can
use metadata features such as tags and categories to filter and

group Treants as desired.

Filtering Treants with tags

Tags are individual strings that describe a Treant. Setting the tags
for each of our Treants separately:

>>> b['maple'].tags = 'plant']

>>> b['sequoia'].tags

'furniture’,

["syrup',
= ['plant']

'huge',

http://pandas.pydata.org/

DATREANT: PERSISTENT, PYTHONIC TREES FOR HETEROGENEOUS DATA 53
>>> b['oak'].tags = ['for building', 'plant', 'building*}> b['maple'].categories = {'age': 'young',
>>> b['elm'].tags = ['firewood', 'shady', 'paper', 'type': 'deciduous',
'plant', 'building'] 'bark': 'mossy'}
>>> b['sequoia'].categories = {'age': 'old',
we can now work with these tags in aggregate: 'type': 'evergreen',
'bark': 'fibrous',
will only show tags present in #all* members 'home': 'california'}
>>> b.tags
<AggTags (['plant'])> # add value 'tree' to category 'plant'
for all members
will show tags present among *any#* member >>> b.categories.add({'plant': 'tree'})

>>> b.tags.any
{'building"',
'firewood',
'for building',
'furniture',
'huge',
'paper’',
'plant’',
'shady',
'syrup'}

and we can filter on them. For example, getting all Treants that are
good for construction work:

gives a boolean index for members with this tag
>>> b.tags['building']
[True, False, False, True]

we can use this to index the Bundle itself
>>> b[b.tags['building']]
<Bundle ([<Treant: 'oak'>,

<Treant: 'elm'>])>

or getting back Treants that are both good for construction and
used for making furniture by giving tags as a list:

a list of tags serves as an
>>> b[b.tags[['building',
<Bundle ([])>

xintersection+ query
'furniture']]]

which in this case none of them are.

Other tag expressions can be constructed using tuples (for
orlunion operations) and sets (for a negated intersection), and
nesting of any of these works as expected:

we can get a #unionx by using a tuple

>>> b[b.tags['building', 'furniture']]

<Bundle ([<Treant: 'maple'>, <Treant: 'oak'>,
<Treant: 'elm'>])>

we can get a =negated Intersectionx by using a set

>>> b[b.tags[{'building', 'furniture'}]]

<Bundle ([<Treant: 'sequoia'>, <Treant: 'maple'>,

<Treant: 'oak'>, <Treant: 'elm'>])>

Using tag expressions, we can filter to Treants of in-
terest from a Bundle counting many, perhaps hundreds,
of Treants as members. A common workflow is to use
datreant.core.discover to gather up many Treants from
a section of the filesystem, then use tags to extract only those
Treants one actually needs.

Splitting Treants on categories

Categories are key-value pairs that provide another mechanism for
distinguishing Treants. We can add categories to each Treant:

add categories to individual members

>>> b['oak'].categories = {'age': 'adult',
'type': 'deciduous',
'bark': 'mossy'}

>>> b['elm'].categories = {'age': 'young',
'type': 'deciduous',
'bark': 'smooth'}

and we can access categories for individual Treants:

>>> seq = b['sequoia'][0]
>>> seq.categories

<Categories ({'home': 'california',

'age': 'old',
'type': 'evergreen',
'bark': 'fibrous',
'plant': 'tree'})>

The aggregated categories for all members in a Bundle are
accessible via Bundle.categories, which gives a view of
the categories with keys common to every member Treant:

>>> b.categories

<AggCategories({'age': ['adult', 'young',
'young', 'old'l],
'type': ['deciduous', 'deciduous',
'deciduous', 'evergreen'],
'bark': ['mossy', 'smooth',
'mossy', 'fibrous'],
'plant': ['tree', 'tree',
'tree', 'tree'll})>

Each element of the list associated with a given key
corresponds to the value for each member,
ber order. Using Bundle.categories 1is equivalent to
Bundle.categories.all; we can also access categories
present among any member:

in mem-

>>> b.categories.any

{'age': ['adult', 'young', 'young', 'old'],
'bark': ['mossy', 'smooth', 'mossy', 'fibrous'],
'home': [None, None, None, 'california'l],
'type': ['deciduous', 'deciduous',

'deciduous', 'evergreen']}

Members that do not have a given key will have None as the
corresponding value in the list. Accessing values for a list of keys:

>>> b.categories[['age', 'home']]
[['adult', 'young', 'young',6 'old'],
[None, None, None, 'california']]
or a set of keys:
>>> b.categories[{'age', 'home'}]
{'age': ['adult', 'young', 'young', 'old'l],
'home': [None, None, None, 'california']l}

returns, respectively, a list or dictionary of lists of values, where
the list for a given key is in member order. Perhaps the most pow-
erful feature of categories is the groupby method, which, given
a key, can be used to group specific members in a Bundle by
their corresonding category values. If we want to group members
by their 'bark', we can use groupby to obtain a dictionary of
members for each value of 'bark':

>>> b.categories.groupby ('bark")
{'fibrous': <Bundle ([<Treant: 'sequoia'>])>,
'mossy': <Bundle([<Treant: 'oak'>,

54

<Treant:
<Bundle ([<Treant:

'maple'>]) >,
'smooth': 'elm'>])>}

Say we would like to get members grouped by both their 'bark’
and 'home':

>>> b.categories.groupby ({ 'bark', 'home'})

{('fibrous', 'california'):
<Bundle ([<Treant: 'sequoia'>])>}

We get only a single member for the pair of keys ('fibrous’,
'california') since 'sequoia’' is the only Treant having
the 'home' category. Categories are useful as labels to denote
the types of data that a Treant may contain or how the data were
obtained. By leveraging the groupby method, one can extract
Treants by selected categories without having to explicitly access
each member. This feature can be particularly powerful in cases
where many Treants have been created and categorized to handle
incoming data over an extended period of time; one can quickly
gather any data needed without having to think about low-level
details.

Treant modularity with attachable Limbs

Treant objects manipulate their tags and categories using Tags
and Categories objects, respectively. These are examples of
Limb objects: attachable components which serve to extend
the capabilities of a Treant. While Tags and Categories
are attached by default to all Treant objects, custom Limb
subclasses can be defined for additional functionality.

datreant is a namespace package, with the dependency-
light core components included in datreant.core. The de-
pendencies of datreant.core include backports of standard
library modules such as pathlib and scandir, as well as
lightweight modules such as fuzzywuzzy and asciitree.

datreant.core remains lightweight because other pack-
ages in the datreant namespace can have any dependencies
they require. One such package is datreant.data, which
includes a set of convenience Limb objects for storing and
retrieving Pandas and NumPy [vdW11] datasets in HDF5 using
PyTables and h5py internally.

We can attach a Data limb to a Treant with:

>>> import datreant.data
>>> t = dtr.Treant ('maple')
>>> t.attach('data')

>>> t.data

<bData([])>

and we can immediately start using it to store e.g. a Pandas
Series:

>>> import numpy as np
>>> sn = pd.Series (np.sin(
np.linspace (0, 8*np.pi,

.. num=200)))
>>> t.data['sinusoid'] = sn

and we can get it back just as easily:

>>> t.data['sinusoid'] .head()
.000000
.125960
.249913
.369885
.483966
float64

0
1
2
3
4

o O O oo

dtype:

PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

Looking at the directory structure of "maple", we see that the
data was stored in an HDF?5 file under a directory corresponding
to the name we stored it with:

>>> t.draw()
maple/
+-- sinusoid/
+-— pdData.hb5
+-— Treant.ldcbb3bl-c396-4bc6-975d-3aeledc2983a. json

What’s more, datreant.data also includes a corresponding
AggLimb for Bundle objects, allowing for automatic aggrega-
tion of datasets by name across all member Treant objects. If we
collect and store similar datasets for each member in our Bundle:

>>> b = dtr.discover('.")

>>> b

<Bundle ([<Treant: 'oak'>, <Treant: 'sequoia'>,

<Treant: 'maple'>, <Treant: 'elm'>])>

we want to make each dataset a bit different

>>> b.categories['frequency'] = [1, 2, 3, 4]

>>> for mem in b:
freq = mem.categories['frequency']
mem.data['sinusoid'] = pd.Series (np.sin(

freqg » np.linspace (0, 8*np.pi, num=200)))

then we can retrieve all of them into a single, multi-index Pandas
Series:

>>> sines = b.data.retrieve('sinusoid',
>>> sines.groupby (level=0) .head ()
sequoia 0.000000
.125960
.249913
.369885
.483966
.000000
.369885
.687304
.907232
.998474
.000000
.249913
.483966
.687304
.847024
.000000
.483966
.847024
.998474
.900479

by="name")

oak
maple

0
1
2
3
4
0
1
2
3
4
0
1
2
3
4
elm 0
1
2
3

O O OO OO OO ODODOOOOOoOOoooo

4

dtype: float64

which we can use for aggregated analysis, or perhaps just pretty
plots (Figure 1).

>>> for name, group in sines.groupby (level=0) :
s = group.reset_index (level=0, drop=True)
s.plot (legend=True, label=name)

The Data limb stores Pandas and NumPy objects in the HDF5
format within a Treant’s own tree. It can also store arbitrary (but
pickleable) Python objects as pickles, making it a flexible interface
for quick data storage and retrieval. However, it ultimately serves
as an example for how Treant and Bundle objects can be
extended to do complex but convenient things.

Using Treants as the basis for dataset access and manipula-
tion with the PyData stack

Although it is possible to extend datreant objects with limbs
to do complex operations on a Treant’s tree, it isn’t necessary

http://www.numpy.org/
http://www.pytables.org/
http://www.h5py.org/
https://www.hdfgroup.org/HDF5/

DATREANT: PERSISTENT, PYTHONIC TREES FOR HETEROGENEOUS DATA

elm
maple
oak
sequoia

Fig. 1: Plot of sinusoidal toy datasets aggregated and plotted by
source Treant.

to build specialized interfaces such as these to make use of the
extensive PyData stack. datreant fundamentally serves as a
Pythonic interface to the filesystem, bringing value to datasets and
analysis results by making them easily accessible now and later.
As data structures and file formats change, datreant objects
can always be used in the same way to supplement the way these
tools are used.

Because each Treant is both a Python object and a filesystem
object, they work remarkably well with distributed computation
libraries such as dask.distributed [Roc15] and workflow execution
frameworks such as Fireworks [Jail5]. Treant metadata features
such as tags and categories can be used for automated work-
flows, including backups and remote copies to external compute
resources, making work on datasets less imperative and more
declarative when desired.

Building domain-specific applications on datreant

Built-in datreant.core objects are general-purpose, while
packages like datreant .data provide extensions to these ob-
jects that are more specific. But it is possible, and very useful, for
domain-specific applications to define their own domain-specific
Treant subclasses, with tightly-coupled limbs for domain-
specific needs. Not only do objects such as Bundle work just
fine with Treant subclasses and custom Limb classes; they are
designed explicitly with this need in mind.

The first example of a domain-specific package built around
datreant is MDSynthesis, a module that enables high-level
management and exploration of molecular dynamics simulation
data. MDSynthesis gives a Pythonic interface to molecular dy-
namics trajectories using MDAnalysis [MiA11], giving the ability
to work with the data from many simulations scattered throughout
the filesystem with ease. This package makes it possible to write
analysis code that can work across many varieties of simulation,
but even more importantly, MDSynthesis allows interactive work
with the results from hundreds of simulations at once without
much effort.

Leveraging molecular dynamics data with MDSynthesis

MDSynthesis defines a Treant subclass called a Sim. A Sim
featues special limbs for storing an MDAnalysis Universe
definition and custom atom selections within its state file, allowing

55

for painless recall of raw simulation data and groups of atoms of
interest.

As an example of effectively using Sims, say we have 50
biased molecular dynamics simulations that sample the confor-
mational change of the ion transport protein NhaA [Leel4] from
the inward-open to outward-open state (Figure 2). Let’s also say
that we are interested in how many hydrogen bonds exist at any
given time between the two domains as they move past each other.
These Sim objects already exist in the filesystem, each having a
Universe definition already set to point to its unique trajectory
file(s).

We can use the MDAnalysis HydrogenBondAnalysis
class to collect the data for each Sim using Bundle .map for pro-
cess parallelism, storing the results using the datreant .data
limb:
import mdsynthesis as mds
import MDAnalysis.analysis.hbonds as hbonds
import pandas as pd
import seaborn as sns

b = mds.discover ('NhaA_i2o_transitions')

def get_hbonds (sim) :

dimerization = sim.atomselections['dimer']

core = sim.atomselections|['core']

hb = hbonds.HydrogenBondAnalysis (
sim.universe, dimerization, core)

hb.run ()

hb.generate_table ()

sim.data['hbonds'] = pd.DataFrame (hb.table)

process parallelism provided internally
with "multiprocessing’

b.map (get_hbonds, processes=16)

Then we can retrieve the datasets in aggregate using the Bundle
datreant .data limb and visualize the result (Figure 3):

df = b.data.retrieve('hbonds', by='name')

counts = df['distance'].groupby (df.index) .count ()

counts.index = pd.MultiIndex.from_tuples (
counts.index)

counts.index = counts.index.droplevel (0)

sns.jointplot (counts.index, counts, kind='hexbin')

By making it relatively easy to work with what can often be
many terabytes of simulation data spread over tens or hundreds
of trajectories, MDSynthesis greatly reduces the time it takes to
iterate on new ideas toward answering real biological questions.

Final thoughts

datreant is a young project that started as a domain-specific
package for working with molecular dynamics data, but has
quickly morphed into a powerful, general-purpose tool for man-
aging and manipulating filesystems and the data spread about
them. The dependency-light datreant .core package is pure
Python, BSD-licensed, and openly developed, and the dat reant
namespace is designed to support useful extensions to the core
objects. It is the hope of the authors that datreant continues
to grow in a way that benefits the wider scientific community,
smoothing the common pain point of data glut and filesystem
management.

http://distributed.readthedocs.io
https://pythonhosted.org/FireWorks/
http://mdsynthesis.readthedocs.io/
http://www.mdanalysis.org/
http://mdsynthesis.readthedocs.io/
http://www.mdanalysis.org/
http://mdsynthesis.readthedocs.io/

56

Fig. 2: A cartoon rendering of an outward-open model (top) and
an inward-open crystallographic structure (PDB ID: 4AUS5 [Leel4])
(bottom) of Escherichia coli NhaA.

of hydrogen bonds
w

“o%0e
2 . e
L

100 200 300 400 500
time (ps)

o 1

Fig. 3: The number of hydrogen bonds between the core and dimeriza-
tion domain during a conformational transition between the inward-
open and outward-open state of EcNhaA.

PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016)

Acknowledgements

DLD was in part supported by a Molecular Imaging Fellowship
from the Department of Physics at Arizona State University. SLS
was supported in part by a Wally Stoelzel Fellowship from the
Department of Physics at Arizona State University. ML was sup-
ported by the Max Planck Society. RG was supported by BBSRC
grant BB/J014478/1. OB was supported in part by grant ACI-
1443054 from the National Science Foundation; computational
resources for OB’s work were in part provided by the Extreme Sci-
ence and Engineering Discovery Environment (XSEDE), which
is supported by National Science Foundation grant number ACI-
1053575 (allocation MCB130177 to OB).

REFERENCES

[vdW11] Stéfan van der Walt, S. Chris Colbert and Gaél Varoquaux. The
NumPy Array: A Structure for Efficient Numerical Computation,
Computing in Science & Engineering, 13, 22-30 (2011)

[Roc15] Matthew Rocklin. Dask: Parallel Computation with Blocked algo-
rithms and Task Scheduling, Proceedings of the 14th Python in
Science Conference, 130-136 (2015)

[Jail5] A. Jain, S. P. Ong, W. Chen, B. Medasani, X. Qu, M. Kocher, M.

Brafman, G. Petretto, G.-M. Rignanese, G. Hautier, D. Gunter, and
K. A. Persson. FireWorks: a dynamic workflow system designed
for high-throughput applications. Concurrency Computat.: Pract.
Exper., 27: 5037-5059. doi: 10.1002/cpe.3505 (2015)
[McK10] Wes McKinney. Data Structures for Statistical Computing in
Python, Proceedings of the 9th Python in Science Conference, 51-56
(2010)
N. Michaud-Agrawal, E. J. Denning, T. B. Woolf and O. Beckstein.
MDAnalysis: A toolkit for the analysis of molecular dynamics
simulations, J Comp Chem, 32: 2319-2327. doi: 10.1002/jcc.21787
(2011)
C. Lee, S. Yashiro, D. L. Dotson, P. Uzdavinys, S. Iwata, M. S.
P. Sansom, C. von Ballmoos, O. Beckstein, D. Drew, and A. D.
Cameron. Crystal structure of the sodium-proton antiporter NhaA
dimer and new mechanistic insights, J Gen Physiol, 144:529-544.
doi: 10.1085/jgp.201411219 (2014)

[MiA11]

[Leeld]

	Introduction
	Treants as filesystem manipulators
	Introspecting a Treant's Tree

	Aggregation and splitting on Treant metadata
	Filtering Treants with tags
	Splitting Treants on categories

	Treant modularity with attachable Limbs
	Using Treants as the basis for dataset access and manipulation with the PyData stack
	Building domain-specific applications on datreant
	Leveraging molecular dynamics data with MDSynthesis

	Final thoughts
	Acknowledgements
	References

