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Datta—Das transistor with enhanced spin control
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We consider a two-channel spin transistor with weak spin-orbit induced interband coupling. We
show that the coherent transfer of carriers between the coupled channels gives rise to an additional
spin rotation. We calculate the corresponding spin-resolved current in a Datta—Das geometry and
show that a weak interband mixing leads to enhanced spin controRO@3 American Institute of
Physics. [DOI: 10.1063/1.1564867

The pioneering spin-transistor proposal of Datta and e?[1+cog 6,4/2)cosbr
Das' best exemplifies the relevance of electrical control of  G1.1= | 1 cog 9,/2)cosby" ()
magnetic degrees of freedom as a means of spin modulating
charge flow. In this devicé,a spin-polarized currebf in-  \we now proceed to derive Eqf) and (3).
jected from the source is spin modulated on its way to the  \iodel We consider a quasione-dimensional wire of
drain via the Rashba spin-orbits-0) interaction, Fig. (). length L with two bandsa and b described by, , (k)
The spin transistor operation relies on gate controflitig —h22/2m* +¢,, n=a,b and eigenfunctionsp '(; v)
strengtha of the Rashba interaction which has the form =e‘kx¢n(y)|o>/n\/’t, UZ,T,l where thed,(y)’s dkénhttr)te, the

cHrg;sliﬁgytf]/ea)l(?:sﬁbsat:gt)i/vznree_gigegfsIlgzgltr‘;hzgirr%g S?rr: transverse confi_nement. wave function;. In the presence of
coming electron emerges in the spin-rotated state the Rashba s-0 |nteract_|on, we can derive a Ham|Iton|aq for

the system in the basis of the uncoupled wave functions
[@kno(X,Y)]. This reads

1 cog 6r/2)
o)—’ —sin0g/2) | @ .
e (k) 0 0 —ad
where fg=2m* aL/#?=2kgL is the rotation angle and 0 e2(k) ad 0
is the electron effective madsThe corresponding spin- Hr= b , 4
resolved conductance is found to Be | =e*(1= cosér)/h. 0 ad si(k) 0
Here we extend the above picture by considering a ge- —ad 0 0 e® (k)

ometry with two weakly coupled Rashba bands in the

guasione-dimensional channel, Figb)ll We treat the degen- where d={¢.(y)|d/dy|pp(y)), eo(K)=%r>(k—skg)?/2m*
eratek states near the band crossings perturbatively in anak e,— eg, eg=#°k3/2m*, (s==+,n=a,b) and we have
ogy to the nearly free electron modeThis approach allows considered|o) to be the eigenbasis af,. For d=0 the
for a simple analytical description of the problem. We calcu-Hamiltonian in Eg.(4) is diagonal and yields uncoupled
late the spin-resolved current by extending the usual proceRashba dispersionsg(k) (thin lines in Fig. 2; the corre-
dure of Datta and Dago account for weakly coupled bands. sponding wave functions arey ns(x,y) (here |o)—|s
Our main finding is an additional spin rotation for injected = =)=[|1)=i||)]/v2). Note that ford=0 the bands cross
electrons with energies near the band crosgsee shaded for some values df. For instance, fok>0 a crossing occurs
region arounc: in Fig. 2). As we derive later on, an incom- at k.= (e, — €,)/2a. For nonzero interband couplirdy= 0.2
ing spin up electron in channal emerges from the Rashba we can diagonalizéiz exactly (see Mireles and Kirczenow

region in the rotated state in Ref. 8 to find the dispersionghick lines in Fig. 2.
1 cog 04/2)e 'KRL + glkrt
0 1| —icogfy/2)e KRt +jelkrb )
0] 73]  —isingge ket | )
0 sin(6y/2)e ke

where 64= 0rd/K. is the additional spin rotation angld,is
the interband matrix element, akgdis the wave vector at the
band crossing, Fig. 2. From E@) we can find the spin-
resolved conductance

FIG. 1. Spin transistor geometry with a two-band chan(a@I|The lengthL

of the Rashba region is smaller than the total lenigghof the wire. (b)

dAlso at: Department of Physics and Informatics, Universityaf Baulo at ~ Sketch of energy dispersions in the s-0 active region with and without in-
Sa Carlos, 13560-970%®a Carlos/SP, Brazil; electronic mail: terband couplingRashba bandsand away from it(parabolic bands Note
egues@if.sc.usp.br the small band offsets between adjacent regions in the wire.
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ke K+ Ko Ko+ Koy
&(k) 0| 1| —i(ke—k,—2kg)| 1| O
0] 2 —A/2 “2| —ar |
0 —iA/2 —iA/2
(10)

where we usedk,—k.=2kg (still valid to leading order.
The “four-vector” notation in Eq.(10) concisely specifies
the spin states in channas(upper half andb (lower hal.

W\

/

/ Note that Eq.(10) is satisfied provided thah <4kg. This
=~ inequality is satisfied in our system for realistic parameters.
k. k k., k, Underlying the ansatz in Eq9) is the assumption of

unity transmission through the Rashba region. Here we have
_F'tG~b2-n33mng(;"“tﬁgfs£htgaeCl;’i;eseizﬁ)ensf;ziEggmggﬂg-"'r']‘eggsnednce % mind the particular spin-transistor geometry sketched in
Icr:c?gsaalt, e.gk. .gFor nonzerointeprband coupling the bands anti ctdgsk F'Ig. 1(a): a gate-controlled Rashba-active reglon of qxten-
solid lines. The inset shows a blowup of the dispersion region near theSION L smaller than the total length, of the wire. In this
crossing: the approximate solutifdotted lines, perturbative approach, Eq. configuration, there are only small band offsétgich we
(6)] describes well the energy dispersions rlear neglecy of the order ofeg<er at the entrancex=0) and
exit (x=L) of the Rashba region. Hence, transmission is
Bands near k. Since we are interested in transport with indeed very close to unity, see Ref. 10. The boundary condi-
injection energies near the crossing, we follow here a simpletions atx=L are also satisfied.
perturbative approaého determine the energy dispersions Generalized spin-rotated staterom Eq.(9) we find that
and wave functions neds,. Near the crossing we can solve a spin-up electron entering the Rashba regionxatO
the reduced Hamiltonian emerges from it ak=L in the spin-rotated state

8a (k) ad e—iLA/2 eiLA/2
Hr=| ) 5 _ia—iLAR _ialLAR2
R71ad  £2(K) © — e N ikl
L=7 g iLAR —gilAr
which to lowest order yields je LA/ _jeitar
A%k 1 1 1
appro. - - - +
PP k) o + 2 et > €.+ ad. (6) i),
+5| o€t
As shown in the inset of Fig. 2, E¢6) describes very well 2
the anticrossing of the bands nelar. The corresponding 0
zero-order eigenstates are cod 0d/2)e7ik'RL + eikR'L
1 _ Eei(kc+kR)L —i cog 04/2)e " *R-+ jelkrt

—i sin(64/2)e kr- :
Sin( f4/2)e*r-

: (@)

)=o) =
* VI a— b V2 —i a_ )
where the subindices indicate the respective channel. The

analytical form in Eq.(6) allows us to determine the wave o ] i )
vectorsk,; andk,, in Fig. 2 straightforwardly: we assume Which is essentially Eq(2). Observe that in absence of in-
key=k.—A/2 and keo=k.+A/2 and solve £2PP{(k.,) terband cquplmgl.e., 04=0) Eq..(ll)'re'duces to the Datta—
— POk ) (assumed-&¢) to find Das state in Eq(1). An expression similar to Eq11) holds
for the case of an incoming spin-down electron.

(12)

~ 2m*ad _, de 8 Spin-resolved current~or x=L we have
 h%ke ke ®
¥, (x=L,y)
Note that to the lowest order used here the horizontal split- ieul 642
ting A is constant and symmetric abdkjt. _1l e j; /505( 04/2) € F:g ol ke k% ()
Boundary conditionsWe now consider a spin-up elec- 2| —ie "R%cod 6y/2) +ie'"R
tron entering the Rashba-active region of lengthn the 1[—iel%"?sin(64/2)] -
wire. Following the usual approach, we expand this incom- + 3| e2sin(g /"2) el (ke—krX g (y), (12
d

ing state in terms of the coupled Rashba states in the wire.

We consider only the statés, , kc;, andk; in the expansion  \hich describes planes waves in the uncoupled charmels
W) =1, Yelker 4 3]y _YelkeoX+ L[+ ) eikeX, (9) andb arising for an incoming spip—up electron in chanael
The total current follows straightforwardlyLandauer—
The above ansatz satisfies the boundary conditions for botButtiker) from Eq. (12):
the wave function andto leading orderits derivative atx

=0. More explicitly, the velocity operator conditidrat x
=0 for an electron wittk=Kkg yields

e
|M=He\/[1tcos{ 04/2)cosbg]. (13
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~0.05 [validity of Eqg. (10)] for the previous parameters.
Finally, we note that the most relevant spin-flip mechanism
(Dyakonov—Peregl should be suppressed in quasione-
dimensional systems such as otfrén addition, thermal ef-
fects are irrelevant in the experimentally feasible linear
regimé? we consider here.
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