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Abstract. We revisit private optimization and learning from an information processing view. The main contribution

of this paper is twofold. First, different from the classic cryptographic framework of operation-by-operation obfusca-

tion, a novel private learning and inference framework via either random or data-dependent transformation on the

sample domain is proposed. Second, we propose a novel security analysis framework, termed probably approximately

correct (PAC) inference resistance, which bridges the information loss in data processing and prior knowledge.

Using the entropy of private data, we develop an information theoretical security amplifier with a foundation of PAC

security.

We study the applications of such a framework from generalized linear regression models to modern learning tech-

niques, such as deep learning. On the information theoretical privacy side, we compare three privacy interpretations:

ambiguity, statistical indistinguishability (Differential Privacy) and PAC inference resistance, and precisely describe

the information leakage of our framework. We show the advantages of this new random transform approach with

respect to underlying privacy guarantees, computational efficiency and utility for fully-connected neural networks.

1 Introduction

Machine Learning (ML) is a generic concept to build mathematical models based on data (samples) to make predictions

or decisions. Within the broad category of data analysis, private ML is receiving significant attention. Depending on

whether analysis results (outputs) need to be disclosed or not, there are two typical secure learning scenarios: One can

be modelled as that a user asks a server to securely compute some function of its data without information leakage on

either the input (data) or output (result). The other has a different goal, which is to disclose the result of a function on a

given data set but trading off the dataset privacy and result utility, for example, the Census Bureau publishes the average

salary of the population in the Boston area.

As for the former case, homomorphic encryption (HE) provides a solution. HE allows computation over encrypted

data and only the user with the secret key can decrypt the output [AAUC18, MSM17]. Many existing secure learning

works follow a protocol where optimization is implemented over encrypted data (ciphertext). Theoretically, if an

honest server follows the protocol, the final decrypted model/output matches the result of the training as if it had been

performed on the plaintext data.

As for the second case, where results are disclosed, Differential Privacy (DP) [DMNS06] is a representative example.

Most existing DP frameworks utilize an additive noise to randomize an algorithm such that from its outputs, it is hard

for one to distinguish the participation of a single datapoint. The noise added should be in a scale of the sensitivity of

an algorithm. In the DP context, sensitivity is defined as the worst-case difference on the output of the algorithm that

two adjacent datasets can produce. Therefore, through the noise, one can control the privacy loss. Existing DP setups

generally require computation to be implemented by the data holder so only aggregate information is exposed: for

example, gradient descent perturbed with well-scaled noise across iterations [BST14] can be used to train a private

model. In general, determining the sensitivity of an algorithm is an NP-hard problem [XT08]. Even with the assistance

of homomorphic encryption, if a neural network is securely trained via a cloud service, making the model differentially

private when applying it for inference is not easy.

If a user just wishes to privately release her data rather than privately computing, the only formal privacy notion as far

as we know is Local DP (LDP) [DJW13], rooted in randomized response [War65]. In the context of LDP, each attribute

of the user’s data has to be perturbed before release, which makes distinguishing every single sample hard. LDP comes

with a heavy cost that the perturbation added to each sample is in a scale of Θ(d), where d denotes the dimensionality.

Provided such heavily noisy data, most medium-size learning tasks become impossible [PCS+20]. Therefore, this raises



an interesting question: How can a user first privately release her data and resort to outside computation power for

model training, while afterwards, the trained model can be also used by others for further prediction or decision while

maintaining privacy? One straightforward approach could be a hybrid of cryptography and DP, where the model is first

trained over homomorphically encrypted data and then the model is perturbed every time it is used. This apparently

universal framework indeed encounters some obstacles in practice. Besides the above-mentioned sensitivity challenge,

so far, even partial homomorphic encryption based learning protocols encounter large computational and communication

overhead. Even training over MNIST data will take tens of hours in many state-of-art works [WGC19, ZLX+20] with

dozens of gigabytes of traffic to have reasonable accuracy. From an information processing perspective, in this paper,

we set out to propose a unified framework to preserve security in both scenarios described earlier.

In the context of private learning, one key fact that sometimes gets overlooked is that the purpose of learning is to

develop efficiently a usable model, where either the optimum of the model or the approaches to construct the model

may not be unique. As mentioned earlier, through (partial) homomorphic encryption, one can securely obtain the exact

same model as when the training algorithm is applied on the original data. Differently, the framework proposed in this

paper implements the training procedure on a transformed sample domain to produce a usable model.

We start from a view of statistical supervised learning where we assume samples si = (xi, yi), i = 1, 2, ..., n, are

i.i.d. from certain distribution P , which we lack full knowledge of in most cases. Here, xi ∈ X denotes the feature and

yi ∈ Y corresponds to the label. The goal of training is to find a model f∗ such that

f∗ = argmin
f

E(x,y)∼P l(f(x), y). (1)

Here, l(·, ·) is some loss function selected, for example, square loss, where l(f(x), y) = ‖f(x) − y‖2. Given the

model f , for newly incoming feature x+, one can make a prediction or decision based on f(x+) to approximate the

true label y+. For a certain model f(·), usually, we call E(x,y)∼P l(f(x), y) as the generalization error of f(·) and
1
n

∑n
i=1 l(f(xi), yi) as the empirical error.

Taking the generalization error as the performance metric of a model, the following observation shows the

relationship amongst a class of optimal models in different sample domains. Consider applying a transform T on the

sample (feature) domain, where instead our focus becomes figuring out f∗T such that

f∗T = argmin
f

E(x,y)∼P l(f(T (x)), y). (2)

Given the relationship between f∗ and f∗T , we have the following fact: If the transformation T is bijective and the

optimum of (1) is unique, then f∗T = f∗ ◦ T−1. We then have the following identity that

E(x,y)∼P l(f(T (x)), y) = E(x,y)∼P l(f ◦ T−1((T (x)), y).

Fig. 1: The Dauntless Framework for Private Learning

Therefore, theoretically, under an arbi-

trary bijection transform over X , an equiva-

lent transformed optimal model exists. This

provides a natural secure learning frame-

work, where the transformation T can be

viewed as a key and T (x) is viewed as

an encryption procedure. Ideally, one can

select some one-way function and the in-

formation leakage on T (x) is negligible at

least in a sense of computational hardness.

A workflow of proposed framework is

presented in Fig. 1, which is similar to ho-

momorphic encryption but in an informa-

tion theoretical way. On the user side, af-

ter some preprocessing (such as normaliza-

tion or data augmentation) 1, data is uni-

formly transformed by a function T (·); On

1 Temporally, we may take the sample s = (x, y) defined above as data after preprocessing for simplicity.
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the server side, a model f(·) is trained over the transformed data which will then be sent back to the user; Finally, the

user takes f ◦ T (·) as the reconstructed model for further prediction or decision. However, this apparently simple and

elegant framework faces three challenges.

1.1 Challenges

Proper Transformation: First, the above framework relies on an assumption that a magically powerful learning

protocol exists which can always discover the optimal model in the stochastic optimization of (1). However, in practice,

there is limited or even no prior knowledge regarding the sample distribution P , which instead needs to be approximated

by samples observed. In an extreme case, one can imagine, without any prior knowledge on P , after applying a (pseudo)-

random function ((P)RF) on X , the distribution of transformed samples T (P ) may not be concentrated. Transformed

samples T (x) only carry the information of T (P ) at selected discrete sampled points while the generalization to

un-sampled points becomes impossible. 2 A second related issue is the learning capacity. In practice, optimization of (1)

is over a bounded class of models f rather than arbitrary functions. The class of candidate models is characterized with

finite parameters. For example, if the generation of (x, y) can be captured by a noisy linear model where y = 〈a, x〉+ e
for some noise e, and we set out to find the optimal linear regression model, then (1) becomes

ω∗ = argmin
ω

E(x,y)∼P l(〈ω, x〉, y). (3)

Clearly, if one applies some quadratic function T on x, then T (x) and y may not be well approximated by any linear

model. In other words, after transformation, a linear regression model may not be suitable any more and we need a

larger function class to guarantee controllable generalization error. Therefore, ideally a transformation T is expected

to satisfy that, with high confidence, transformed model f∗ ◦ T−1 can still be well approximated within the class of

candidate functions Cf , where Cf is dependent on the training capacity and strategy of a learner.

Multiple Encryptions with the Same Key: It is well known that if one applies the same key to encrypt multiple

messages, the ciphertext has the potential to be statistically dependent and thus may be vulnerable to be attacked. Since

the transformation T has to be carried out uniformly over the sample domain, a composition of privacy loss across all

transformed samples T (x) is unavoidable. In large-scale learning, public data may be utilized for training, where the

adversary can conduct a “chosen-plaintext attack”.

Privacy v.s. Utility Dilemma or Trapdoor: Information theoretical privacy is a mature field, where many statistical

metrics have been developed to quantify the hardness of distinguishing the true input. However, indistinguishability

never comes for free. Many (tight) lower bounds between utility and the indistinguishability measurement are known,

for example in convex optimization [BST14] and Principal Component Analysis (PCA) [CSS12], [DTTZ14]. Notably,

the accompanying utility compromise when naively releasing data with reasonable LDP is often unaffordable.

Similarly, in the transformation framework proposed, if T renders stronger privacy preservation, intuitively, the

preimage of T (x) should be harder to recover or distinguish, which simultaneously also weakens the learning efficiency

over transformed data T (X ). Although uniform transformation seems like a smarter way to obfuscate data compared

to purely random noise, so far it is still a strict tradeoff between utility and privacy. Ideally, it is expected that such

transformation T behaves like a trapdoor where the user who holds T enjoys efficient learning while the adversary

without T must pay much more compared to the user’s cost. We know in cryptography, NP complete problems can be

built as trapdoors in an encryption scheme, where what the adversary pays is quantified as the computational complexity.

In the context of information processing without restrictions on computation power, will a trapdoor still be possible?

1.2 Paper Organization and Contributions

We set out to address the three challenges posed above. In general, there are two possible kinds of transformations to

meet the requirements.

The first can be modelled as a random selection of T from a set of functions CT of good continuity and locality.

This allows information carried by data to be propagated through the transmission channel. We focus on this approach

2 From a view of sampling theory, without proper prior knowledge, finite samples can never be a sufficient interpretation of an

arbitrary population.
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in Section 2, where we provide a protocol for data mixing and random transformation that uses the entropy of private

data as an information-theoretic security amplification. In Section 2, we first describe the three privacy interpretations

we will use to analyze the protocol, namely, ambiguity, statistical indistinguishability and Probably Approximately

Correct (PAC) inference resistance, and then describe the protocol. In particular, PAC inference resistance is a novel and

generic security framework proposed in this paper to handle adversarial data recovery under limited prior knowledge. In

Section 3, we analyze our protocol and provide security guarantees under these three privacy interpretations. In Section

4, we present a unified framework to accommodate both private learning and private inference, controlling both data

privacy leakage as well as the privacy of the user’s model.

The second kind of transformation is data-dependent which maps the private data to some fixed or independent

output, for example, some public data. In this case, the transformed data is totally independent of the private data, and

perfect secrecy is achievable. However, it is noted that no information is propagated through the transformation and

such operation usually needs some specific assumptions, like some proper prior knowledge on the sample distribution

P . In Section 5, we will provide a concrete example for linearly separable data.

In Section 6, we review related works. In Section 7, we mention the experiments we have run to validate our theory,

which are detailed in Appendix A. We conclude in Section 8.

2 Random Transformation and Information Theoretical Privacy

We first define three privacy interpretations in Section 2.1, give an overview of our strategy for PAC inference resistance

in Section 2.2, and present our protocol in Section 2.3.

2.1 Information Theoretical Privacy

Additional Information: A primary strategy in both cryptography and information theoretical security is to measure

how much additional information (knowledge) is provided by the output of a mechanism. It is expected that no matter

what prior knowledge is assumed for the adversary, after observing outputs of a privacy-preserving mechanism, the

difference between the prior and the posterior belief w.r.t. the input should be limited. The first formal definition, perfect

secrecy, was proposed by Shannon in [Sha49], where a mechanism M is perfectly secure if for arbitrary output o, the

likelihood L(o|I) = Pr(M(I) = o) should be identical for any possible input I . In Section 5, we provide a concrete

example to achieve perfect secrecy: a protocol always outputs a constant identity matrix independent of inputs. Perfect

secrecy is ideal but costly (or limited): information is not propagated under a perfectly secure mechanism. One natural

relaxation is to quantify such additional information with well-defined metrics. Inspired by the ideas of K-anonymity

[Swe02], we introduce the following notion.

Ambiguity Set Towards more interesting tradeoffs, one strategy is to preserve identical likelihoods within a subset of

the input domain rather than globally. We first formalize the definition of ambiguity set.

Definition 1 (Ambiguity Set). For a mechanism M, we call S an ambiguity set of M if for any elements X1, X2 ∈ S,

the distribution of outputs M(X1) and M(X2) are the same.

Another interpretation of the above definition is through a view of indistinguishability.

Definition 2 (Indistinguishability). For a mechanism M, with respect to any possible output o, two inputs X1 and

X2 are indistinguishable if the likelihood Pr(M(X1) = o) = Pr(M(X2) = o). 3

Thus, any two elements within an ambiguity set are indistinguishable with respect to any outputs. Said another

way, elements within an ambiguity set produce outputs in the same distribution 4. To provide an example, we set the

transformation T to be linear on an input matrix X as T (X) = X · A for some matrix A and prove the following

lemma in Appendix D.

3 Here, we abuse a bit the notion Pr(·), which denotes the probability density if the distribution is continuous.
4 One important security issue is the composition of information leakage from multiple observations of a mechanism on one private

dataset. Ambiguity set is resistant to composition leakage: the ambiguity set is maintained regardless of multiple arbitrary calls to

M on one input dataset X .
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Lemma 1. If A is a zero-mean Gaussian matrix, of which each entry is i.i.d. generated by a zero-mean Gaussian

distribution, then such a random linear transformation provides an ambiguity set w.r.t. X which includes all matrices

X ′ such that X ′ = X · U for some unitary matrix.

In our context, if X ∈ R
n×d, where each row represents a sample, under the above transformation, one cannot

distinguish two sets of n samples whose respective pairwise distances are the same. In Appendix B, we give another

example of how a linear transformation can generate an ambiguity set as the column space of its input matrix.

Distribution Divergence (Differential Privacy) Another direction is to consider the difference between the output

distributions generated by two inputs. A representative approach is Differential Privacy (DP). At a high level, we call an

algorithm differentially private if from its output, it is hard to distinguish the participation of an individual sample. In

the following, we generalize the idea of (ǫ, δ)-DP to quantify such indistinguishability as follows:

Definition 3 ((ǫ, δ, d, τ)-Privacy). A mechanism M is (ǫ, δ, d, τ) private if for any two inputs X1 and X2 such that

under metric d, d(X1, X2) ≤ τ , and for any possible output set S,

Pr(M(X1) ∈ S) ≤ eǫ Pr(M(X2) ∈ S) + δ.

Such a definition measures the difference between the likelihoods of two close enough X1 and X2 (d(X1, X2) ≤ τ ) to

produce an output o in the worst case. This can be interpreted as a tradeoff between type I and II error in a view of

hypothesis testing [DRS19]. If we select d to be the Hamming distance and τ = 1, then it becomes (ǫ, δ)-DP.

Definition 4 ((ǫ, δ)-DP [DMNS06]). A mechanism M is (ǫ, δ) differentially private if for any two adjacent datasets

X1 and X2, which differ only in one sample, and any possible output set S,

Pr(M(X1) ∈ S) ≤ eǫ Pr(M(X2) ∈ S) + δ.

Many variants can be easily derived with other selections of the metrics to measure the difference between the distribu-

tions of M(X1) and M(X2), for example, KL [WLF16] or α-Renyi [Mir17] divergence.

Data Recovery with Limited Prior Knowledge: As a short summary, a mechanism with ambiguity set or DP

guarantees indicates that there is no additional information provided by the outputs w.r.t. the inputs within one ambiguity

set, or the additional information is limited and quantified by the parameters (ǫ, δ) for inputs close enough to each

other (sensitivity restriction). Though rigorous metrics are provided, the above two privacy notions still fail to answer

one of the most intuitive questions about privacy leakage: how much information an adversary can recover w.r.t. the

private data given an observation. Therefore, we propose another line to define privacy by the performance of adversary

approximation of the private input. To answer how much information is leaked, we typically need more specific

assumptions on the prior knowledge, which is also necessary in this context. One can imagine an extreme case where an

adversary already has the full knowledge of the true input and thus a perfect recovery can always be produced regardless

of any mechanism or observations.

Probably Approximately Correct (PAC) Approximation We mimic PAC learning theory to set the privacy metric in

a form that given observations, can an adversary approximate, with error smaller than ǫ, the true input with confidence

at least (1− δ)? More formally,

Definition 5 (Resistance to (ǫ, δ)-PAC Approximation). We call a mechanism M(·, θ), with a random seed θ ∈ Θ,

resistant to (ǫ, δ)-PAC approximation for private input data X in a distribution P , if given the output M(X, θ), there

does not exist an algorithm which returns an estimator g(·) ∈ {M−1(·, θ), θ ∈ Θ} based on M(X) such that

Pr
X∼P,θ

(‖g(M(X, θ))−X‖ < ǫ) ≥ 1− δ. (4)

Here, {M−1(·, θ), θ ∈ Θ} denotes the set of the inverses of transformations applied. 5

5 If transformations in M are not invertible, we may consider an approximate form of them as M−1.
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In the above definition, for example, if the transformation mechanism M is designed to select a function T from a

set CT = {Ti, i ∈ N} with certain distribution, then M−1 corresponds to the set {T−1
i , i ∈ N}. The data distribution

P captures the prior knowledge from the adversary’s view. Also, it is notable that in Definition 5, which we abbreviate to

PAC security, no restriction is put on the algorithm to find the estimator g, an ǫ-approximation of the true transformation

with high probability. In some sense, PAC security is a more comprehensive characterization of data security/privacy

compared to merely additional information measurement. That is, an adversarial recovery is determined both by

the additional information provided by ciphertext and the adversary’s prior knowledge on plaintext. With the above

preparation, we now proceed to describe how to construct an information theoretical security amplification by using the

entropy of private data samples and private transformation of (mixed) data samples.

2.2 Overview of Strategy

To begin, we formalize the knowledge of an adversary w.r.t. the training dataset. For a training dataset S =
{s1, s2, ..., sn} of size n, we assume that an adversary has complete knowledge of k samples {s1, s2, ..., sk} within

S, termed the public part of S, and denoted SA = {s[1:k]}. The remaining (n− k) samples {s[n−k+1:n]}, where the

adversary may have some prior but not full knowledge, are termed the private part of S, and denoted SP = {s[k+1:n]}.

As in the information flow shown in Fig. 1, privacy leakage is due to the exposure of the transformed data T (S) =
{T (s1), T (s2), ..., T (sn)}6, because the subsequent training procedure is merely postprocessing. We will model the

adversary inference to recover the private SP = {s[k+1:n]} given the observation set T (S) = {T (s1), T (s2), ..., T (sn)}
and the public part SA = {s[1:k]}.

After quantifying the power of the adversary and user by the number of samples that each has access to, we now

turn to characterize the selection of CT in two ways. On the utility side, it is hoped that the generalization error of

transformed data described below is not compromised significantly:

min
f∈Cf

Es∼Pn,T∼CT
l[f(T (s))], (5)

where we use Pn to denote the joint distribution of n i.i.d. samples and Cf as the candidate model set to be optimized

over. On the other hand, CT is set to maximize the adversary inference error:

max
CT

Pr
T∼CT

(

‖Adv
(

T (s)
)

− s‖ > ǫ, s ∈ SP | SA, T (S)
)

, (6)

where Adv denotes an arbitrary inference/learning algorithm that an adversary can apply to invert the transformed

private part SP . Note that the distribution of elements in SA may not necessarily equal the global sample distribution P .

For example, the adversary may only know a specific class of samples used in a classification task.

As both the user and the adversary will address their own learning task, before proceeding, let us first provide a

rough estimation of their respective expected learning performances. Described in a Probably Approximately Correct

(PAC) model, we assume that the true data generation model of S is from a function (concept) class Co, i.e., the sample

s = (x, y) is generated in a form y = h(x) for some h ∈ Co. For simplicity, we temporarily assume both Co and CT
are finite function sets. In a PAC setup, given samples, the goal of a learner is to determine the true function/concept h
from the candidate set Co, where the performance metric is defined as the error rate that one outputs a wrong function

h′ 6= h. Here, we denote the Vapnik-Chervonenkis (VC) dimension [BEHW89] of Co as V C(Co). Intuitively, V C(Co)
captures the hardness of the learning task. After transformation, the function class now becomes the Cartesian product

of CT and Co, i.e., CT × Co. It is not hard to prove that the VC dimension of the product of two function classes

is upper bounded by the product of the VC dimension of each. Here, we consider the worst case and approximate

the VC dimension of CT × C0 by V C(CT ) · V C(C0). Since the user holds n samples, we know the error rate is

Θ(V C(CT )V C(C0)
n ) [AD96].

With a similar reasoning, adversary inference to approximate the inverse of T can also be described by a PAC model.

In this learning task, take the feature as T (s) and label as s. If CT is formed by invertible functions, the data generation

is in a form s = T−1(T (s)). Clearly, the corresponding concept set CT−1 of the inverse transform T−1 is bijective to

6 In the following, without loss of generality, we assume the transformation may be applied on both feature domain X and the label

domain Y , and denote the transformed sample as T (s).
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CT , where determining the true inverse of T is equivalent to determining T itself. Thus, even with the restriction that

the adversary only knows SA and T (SA) = {T (s1), T (s2), ..., T (sk)} instead of T (S), the error rate is Θ(V C(CT )
k ).

Naturally, the relationship between utility and privacy appears as a tradeoff in terms of V C(CT ): a larger V C(CT )
implies a potentially better data obfuscation but also a greater utility loss. However, the advantage rate, i.e., how much

more the adversary has to pay compared to the cost of a user, is merely linear in the ratio n/k, and is far from a trapdoor.

Thus far, we have only resorted to additional information loss to preserve privacy. To amplify the advantage and force

an unfair game between adversary and user, we need to further explore underlying uncertainty in data.

Subsampling and Entropy of Private Data: First, a natural resource is permutation. A particular sequence of different

samples is in general not needed in the learning procedure. Shuffled transformed data has great potential to incur an

exponential computational complexity for an adversary to approximate the correct correspondence between s[1:k] and

T (s[1:k]) before any meaningful inference. But permutation is not sufficient to show information theoretical hardness.

With a closer look at the earlier analysis, note that we restricted the transformation on the training dataset such

that each sample in either SA or SP is separately transformed. Though the fundamental structure of our framework

is multiple encryptions with the same key, we can force adversary inference without full knowledge of plaintext and

learning with errors. However, the trick here is we do not plan to introduce real noise but utilize the entropy of private

data SP . 7

To utilize the entropy of private data as an obfuscation, a straightforward approach is to mix public and private

original data before the uniform transformation T .8 Indeed, data augmentation provides various candidates for a mix

strategy. Roughly speaking, data augmentation is a large class of methods to modify or reconstruct training data, which

may improve the generalization and robustness especially in deep learning. Most data augmentation approaches are

heuristic but widely applied in practical training. In the following, we take mixup [ZCDLP18], which has received

considerable attention recently, as a concrete example.

Mixup can be simply described by two steps. Provided n samples S = {s1, s2, ..., sn}, where si = (xi, yi), mixup

first randomly subsamples, say si1 , si2 ∈ S, and a random weight λ within (0, 1). Then, a new virtual sample s̄ = (x̄, ȳ)
is defined by the natural weighted average of si1 , si2 with λ:

x̄ = λxi1 + (1− λ)xi2 , ȳ = λyi1 + (1− λ)yi2 . (7)

Imagine the case that we apply mixup on SA and SP such that si1 and si2 are randomly selected from SA and

SP , respectively. Hence, even with the prior knowledge on SA, the adversary now loses the full knowledge of sample

generation: she now only has partial information of the preimage of transformed data. We formalize adversary inference

under the mixup setup in Algorithm 1, termed Learning with Incomplete Labels. To quantify the information theoretical

Algorithm 1 Learning with Incomplete Labels by Adversary

1: Adversary queries for a new sample.

2: Oracle randomly selects sa ∈ Sa and sp ∈ Sp and applies a mixup protocol MIX on (sa, sp) and returns s̃ =
(sa, T

(

MIX (sa, sp)
)

.

3: Adversary approximates the inverse of T where we quantify the security level as, for sample ŝ ∼ P ,

Pr(‖Adv(T (ŝ))− ŝ‖ < ǫ) < δ.

hardness of adversary inference, we set out to lower bound the sample complexity that one needs to conduct any

efficient inference. Assume that an adversary has access to the oracle for m queries and Adv to be an algorithm (can

be randomized) which will output some approximation with required performance dependent on the m observations,

denoted by s̃m =
(

sma , T
(

MIX (sa, sp)
)m)

.9 Let us consider the mutual information between T and Adv [GH01]:

I(T ;Adv) ≤ I(T ; s̃m) = mI(T ; s̃). (8)

7 The computational hardness of, for example, Ring Learning with Errors must count on its finite algebra structure. If the oracle is

over the real domain, many statistical or optimization approaches can break it easily.
8 If all original data is private, mixing is not required.
9 These observations include the correspondence between the public sample and the resultant mixed sample, which is not exposed

to the adversary in the Dauntless framework, but could conceivably be inferred through prior knowledge.
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In the following, we use I(a; b) to denote the mutual information between two variables a and b and H(a) to denote the

entropy where I(a, b) = H(a)−H(a|b). Here, the first inequality in (8) is because Adv is a function of observations

s̃m and the second equality is because we assume the mixed sample is generated independently. This renders a lower

bound on the sample complexity, namely,

m ≥ I(T ;Adv)

I(T ; s̃)
. (9)

(9) coincides with our intuition: the numerator represents how much information is needed for required approximation

error with satisfied confidence, while the denominator represents how much information is provided per mixed sample

on average. Detailing I(T ; s̃), we have

I(T ; s̃) = I
(

T ; sa, T
(

MIX (sa, sp)
))

= I
(

T ; sa
)

+ I
(

T ;T
(

MIX (sa, sp)
)

|sa
)

= I
(

T ; sa
)

+H(T |sa)−H
(

T |sa, T
(

MIX (sa, sp)
))

.
(10)

As a comparison, let us consider the case without data mix and the transformation T separately applied to each

sample. It is noted that the sample bound (9) on m still holds, whereas the observation s̃ becomes simpler, namely,

(sa, T (sa)). In such a case, the denominator I(T ; s̃) is

I(T ; s̃) = I(T ; sa, T (sa)) = I(T ; sa) + I(T ;T (sa)|sa)
= I(T ; sa) +H(T |sa)−H(T |sa, T (sa)).

(11)

Comparing (11) with (10), since mixed data is more fuzzy, provided the transformed data, the differing term, the condi-

tional entropy H
(

T |sa, T
(

MIX (sa, sp)
))

should be larger than H
(

T |sa, T (sa)
)

, which implies better obfuscation

and a larger sample complexity will be required under data mix.

We have to stress that the above analysis is based on the view of an adversary, where the entropy of private data

is determined by her prior knowledge. When the private sample sp and the weight λ both become constant, there

will be no difference between (11) and (10). Though entropy is a relative notion, in practice, especially in computer

vision, the great diversity of large datasets implies a huge amount of entropy under reasonable assumptions. Our lower

bounds on sample complexity rely on this entropy; non-zero entropy also implies the adversary cannot conduct a chosen

plaintext attack. Different from a cryptographic encryption, a user determines a transformation strategy on her own data

depending on her secrecy confidence. More formal analysis will be provided in Section 3.1 along with concrete lower

bounds on the sample complexity.

2.3 Algorithm Description

We now flesh out the main protocol as Algorithm 2.

The data processing on the user side can be summarized in three steps, which is formally presented in Algorithm 2.

The first step is to encode the label. Please note in mixup [ZCDLP18], the labels are encoded as one-hot vectors.10 For

example, in a binary classification, we have a picture x1 of a cat and a picture x2 of a dog, where (1, 0) denotes the cat

label and (0, 1) the dog. When one mixes the two pictures with weights 0.3 and 0.7, respectively, the feature of the

mixed sample becomes 0.3x1 + 0.7x2 with the corresponding label as (0.3, 0.7). From a privacy perspective, one-hot

vector encoding exposes the random weight used in the data mix. To avoid this, in Phase 1, we randomly generate a set

of (almost) orthogonal vectors to alternatively encode the label, which can be viewed as a random transformation on the

label domain.

The second step is a straightforward data mix, which has been formally discussed before. Public data known by the

adversary and private data are mixed into m new samples. Finally, the last step is applying a random transformation over

the mixed feature domain. Here, we select the function in a form of an L-layer neural network with random weights.

With the sample transformation procedure described in Algorithm 2, the transformed samples will then be sent to the

server, who is expected to train a model fT over
(

NW (x̄j), ȳj
)

, j = 1, 2, ...,m. With the knowledge of transformation

T and label encoding bases Ȳ , the user can then conduct (private) inference on new samples via fT , as shown in Fig. 1,

and allow others to query the model with privacy guarantees as described in Algorithm 3 of Section 4.

10 Generally speaking, in mixup we cannot take the label as a real number unless the learning task can be addressed by a regression.
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Algorithm 2 Main Protocol in Dauntless Framework: Data Mix and Random Transformation

Input: Training Dataset of n samples S = s[1:n] =
(

(x1, y1), (x2, y2), ..., (xn, yn)
)

with feature xi ∈ R
1×d and label yi ∈ [1 :

c] = {1, 2, ..., c} for c classes. S = SA ∪ SP .

Phase 1 - Random Label Encoding

1: Randomly generate Ȳ ∈ R
c×c′ , for some c′ ≥ c, such that the c rows of Ȳ are (almost) orthogonal to each other.

2: For each sample si = (xi, yi), replace the label yi by the yi-th row of Ȳ (yi, :).

Phase 2 - Data Mix

1: for j = 1 : m do

2: Independently and uniformly sample sa ∈ SA and sp ∈ SP , respectively.

3: Randomly generate λ ∈ (0, 1).
4: Reconstruct mixed sample s̄j = λsa + (1− λ)sp, with the weighted average on both feature and label.

5: end for

Phase 3 - Transformation

1: Randomly generateLweight matricesW1 ∈ R
d×d1 ,W2 ∈ R

d1×d2 , ...,WL ∈ R
dL−1×dL , in which each entry is independently

generated from a distribution Q.

2: Construct a neural network structure of L hidden layers with an activation function σ and weights W[1:L]: NW (x) =
σ(..., σ(σ(x ·W1) ·W2), ...,WL).

3: For each mixed sample s̄j = (x̄j , ȳj), compute the transformation T (s̄j) as
(

NW (x̄j), ȳj
)

.

Output: m transformed samples
(

NW (x̄j), ȳj
)

, j = 1, 2, ...,m.

3 Privacy Analysis

Given the three privacy notions defined in Section 2.1, we will study the privacy guarantees provided by Algorithm 2

from the three perspectives.

To give a high-level picture, consider a random transformation T (X, θ) on dataset X , where T (·, θ) : Rn×d → R
n

with randomness seeds θ. Given X , if T is bijective w.r.t. θ, then for output z = (z1, z2, ..., zn)
T = T (X, θ), we have

Pz(z) = Pθ(θ = T−1(X, z))|det(∂zT−1(X, z))|, (12)

where the Jacobian ∂zT
−1(x, z) ≡ ∂T−1

i (x, z)/∂zj . Here, T−1(X, z) denotes the unique inverse of the random seeds

θ such that T (X,T−1(X, z)) = z. Recall the definitions in Section 2.1, if two data matrices X1 and X2 are within an

ambiguity set, then the outputs T (X1, θ) and T (X2, θ) are distributed identically. Similarly, substituting the density

function (12) into Definition 3, one can derive corresponding DP parameters. We flesh out the privacy analysis for all

three privacy notions in this section.

3.1 PAC Security

In Section 2.1, we formally introduced the PAC security definition and in Section 2.2, we provided a generic framework

to lower bound the sample complexity for required estimation performance. In this section, we follow the strategy to

concretely connect the PAC security budget, i.e., the (ǫ, δ) inference restriction given in (4), with the sample complexity

in two important scenarios: First, towards Corollary 1, we continue the focus on the PAC security of data, which

captures how much information can be recovered w.r.t. private samples; Second, we change the security objective to be

the transformation T itself and study how (statistically) closely an adversary can approximate T in Theorem 3. PAC

security studied in the above two cases will be the building blocks to characterize the privacy in two dimensions: the

data privacy loss during model training and later model applications, and defending against model extraction (stealing)

through multiple accesses [CJM20], which we will explore in Section 4.

PAC Security of Samples We flesh out the analysis of adversarial inference with specification on the data and

transformation. To ease the analysis, we assume the private mixing weights is known to the adversary, as clarified below,

and we instead focus on the PAC security of the feature: For the data, we assume every mixed sample is formed by

a private sample and a public sample, which are random Gaussian vectors: sa, sp ∈ R
1×d and every entry of sa and
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sp independently follows a Gaussian distribution N(0, τa) and N(0, τp), respectively. 11 We assume the mix weight

to be fixed as (1, 1) (without normalization). As shown in (9) and (10), compared to fixed weights, random weights

and permutation will always lead to a smaller I(T ; ŝ), the average information provided by a single sample, which

implies better privacy. Following the definition of PAC approximation in Section 2.1, for a mixed sample s̄ generated

by sa + sp with the transformation T , an estimator g(sa,T (s̄))m , based on m observations denoted by (sa, T (s̄))
m, can

return an ǫ-approximation to the inverse of T−1 (if it exists) to recover the input with confidence (1− δ), if

Pr
s̄∼sa+sp,T

(‖g(sa,T (s̄))m(T (s̄))− s̄‖ < ǫ) ≥ 1− δ. (13)

Note that in the observations, we are conservatively assuming that the adversary knows the correspondence between

each mixed sample and the public sample that was used to generate it. Further, in this subsection, we assume T is a one

layer neural network with some activation function σ, i.e., T (s̄) = σ(s̄W ). We will assume the weight matrix W to be

an invertible matrix within R
d×d. Without loss of generality, the activation function σ is not necessarily invertible but

can be regarded as a truncation or a compressed function on the linearly transformed sample s̄W with finite precision.

For simplicity, we assume T (s̄) is a d-dimensional vector within a bounded discrete set K, and we use |K| in the

following to denote the total number of elements in K. As for the random weight W , we assume W is selected to be an

inverse of a β-uniform matrix. Here, a β-uniform matrix denotes a random matrix whose elements are i.i.d. randomly

selected from [−β, β], denoted by U [−β, β].
We first present a high-level picture of the subsequent analysis on the lower bound of sample complexity. With

a similar reasoning as shown in Section 2.2, the process of data generation and inference forms a Markov Chain,

s̄→ s̄W → σ(s̄W ) → Adv, for any estimator of the inverse of T , which can be regarded as a composition of W−1

and σ−1. 12 Thus, I(W−1, σ−1;Adv) ≤ I(W−1, σ−1; (sa, T (sa + sp)))
m) which implies

m ≥ I(W−1, σ−1;Adv)

I(W−1, σ−1; sa, T (sa + sp))
.

A closer look at the numerator gives I(W−1, σ−1;Adv) = I(σ−1;Adv) + I(W−1;Adv|σ−1) ≥ I(W−1;Adv|σ−1),
leading us to shift our focus to the approximation error of W−1. The following lower bound on I(W−1;Adv|σ−1)
involves an application of Fano’s inequality. Before proceeding, we first introduce the notion of an (ǫ, δ) packing set.

Definition 6 ((ǫ, δ) packing set of C). For z following a distribution P and a given function set C, an element subset

{c1, c2, ..., cn} of C is called an (ǫ, δ) packing set if for any i 6= j,

Pr
z
(‖ci(z)− cj(z)‖ ≥ ǫ) ≥ δ.

Now, in the context where z = s̄W and C is [−β, β]d×d, the domain of W−1, we have the following lemma w.r.t.

the approximation to W−1.

Lemma 2. For any given W and an arbitrary (2ǫ, 2δ) packing set in the support domain of W−1, there exists at most

one element W̃−1 within the packing set such that

Pr(‖(s̄W )W̃−1 − s̄‖ < ǫ) ≥ 1− δ.

It remains to use the above packing set notion to construct a covering over the support set of W−1. Then, we can

generalize Fano’s inequality to derive a lower bound for the numerator. The conclusion is stated as follows.

Theorem 1. Let T be a one-layer random neural network with input data and a weight matrix W that is an inverse

of a d× d β-uniform matrix, as assumed above. Given an arbitrary estimation algorithm Adv satisfying (ǫ, δ) PAC

approximation (13) to find out the true inverse (W−1, σ−1), then

I(W−1, σ−1;Adv) ≥ d2 log(β/∆)− 1

where ǫ and δ satisfy the following, δ = (1 − Φ(2ǫc/
√
τ∆))(1 − 2d · exp(− c2

2dβ2 ). Here, τ = τa + τp, and ∆ and

c are free parameters. φ(t) is the cumulative distribution function of the normal distribution N(0, 1), i.e., Φ(t) =

1/
√
2π

∫ t

−∞ e−t
2/2dt.

11 Gaussian input assumptions on training data are commonly used in existing works [CSZ20, DKS17, DKKZ20].
12 With a slight abuse of notations, when the activation function σ is not invertible, we take σ−1 as an oracle such that σ−1(σ(s)) = s.
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The proof of Theorem 1 is in Appendix G. As mentioned before, I(W−1, σ−1;Adv) measures how much informa-

tion is required to support an efficient (ǫ, δ)-PAC approximation. Theorem 1 matches our intuition: the lower bound

gets larger with a bigger τ , i.e., input data of higher entropy (since ∆ can be smaller for a larger τ to achieve the same

δ), or a bigger β, which corresponds to a larger concept size of transformation. In the following theorem, we provide an

upper bound on the denominator I(W−1, σ−1; sa, T (sa + sp)).

Theorem 2. Under the same setup on W,σ and the input data,

I(W−1, σ−1; sa, T (sa + sp)) ≤ I(T (sa + sp);T ) +
d

2
log(

τa + τp
τp

) ≤ log |K|+ d

2
log(

τa + τp
τp

).

The proof of Theorem 2 is included in Appendix H. Putting Theorems 1 and 2 together, we have the following PAC

approximation resistance guarantee for Algorithm 2:

Corollary 1. With the above setup, when the number of samples

m ≤ d2 log(β/∆)− 1

log |K|+ d
2 log(

τa+τp
τp

)

Algorithm 2 is resistant to arbitrary (ǫ, δ)-PAC approximation, where ǫ and δ satisfy the following, δ = (1 −
Φ(2ǫc/

√
τ∆))(1− 2d · exp(− c2

2dβ2 ), with τ = τa + τp, and free parameters ∆ and c.

PAC Security of Transformation In this section, we will set the privacy concern as whether an adversary can

approximate the transformation itself well. In this case, we will not impose any restrictions on the activation function.

Without loss of generality, in the transformation σ(s̄W ), we simply assume σ to be the identity or equivalently any

invertible function and the random weight W ∈ R
d×d′ , d′ ≤ d. We call an arbitrary adversary Adv mechanism,

returning an estimator g(·) based on the observation (sa, T (s̄))
m, an (ǫ, δ) PAC-approximation to the random weight

W used 13 in transformation T if

Pr
s̄,W

(‖g(s̄)− s̄W‖ < ǫ) ≥ 1− δ. (14)

Here, we assume W ∈ U [−β, β]d×d′ to be a random uniform matrix, where each entry is randomly selected from

[−β, β]. With a similar reasoning as Theorem 1 and Theorem 2, we have the following theorem whose proof is in

Appendix I.

Theorem 3. Under the above assumptions, when

m ≤ d′d log(β/∆)− 1

d′H(s̃)− EΣ=WTW
1
2 log

(

(2πe)d′det(τpΣ)
) ,

there does not exist any (ǫ, δ)-PAC approximation to the random weight W of transformation T , where ǫ and δ
satisfy δ = 1 − Φ(2ǫ/(

√
τ∆)), for some free parameter ∆. Here, H(s̃) denotes the entropy of the random variable

s̃ = N(0, τ‖w‖2) for w ∼ U [−β, β]d×1, and det(Σ) denotes the determinant of the matrix Σ. 14

As a short summary, either in data privacy (Corollary 1) or model security (Theorem 3), the numerator of sample

bound is in a scale of Θ(d2) or Θ(dd′), while the denominator is in a scale of Θ(d) or Θ(d′). Thus, a Θ(d) lower bound

is provided in both cases. It is also noted that the private sample entropy, captured by τp, improves both the numerator

and denominator of the sample complexity bound. With the assistance of private samples, the total information required

13 Since we do not put any specific assumptions on the activation function σ, we stick to the recovery of the random weight W in the

following. But with some proper assumptions on the continuity, one can generalize the results to the approximation to T = σ ◦W .
14 In particular, when d = d′, the denominator has a simpler form

I(T ;T (s̄), sa) = H(T (sa + sp), sa)−H(sa, sp).
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for a satisfied adversarial inference gets larger while the information provided per mixed sample decreases. The bounds

presented above give concrete examples for PAC security analysis and can be further improved by more sharpened

high-dimensional probability techniques. Asymptotically, for the transformation characterized by a weight matrix W

in a bounded domain [−β, β]d×d, one can find eΘ(d2) many packing sets. For any particular packing set, a constant

fraction of remaining sets are in a Frobenius distance of at least Θ(d), and produce an ǫ = Θ(
√
τd) divergence with

constant probability, which captures the hardness of recovering the secret input with limited prior knowledge.

3.2 Ambiguity

The ambiguity set of the sample transformation described in Algorithm 2 should be characterized by the resultant

ambiguity from both the feature and label transformation. On the feature side, two operations, data mixing (Phase 2

in Algorithm 2) and uniform transformation (Phase 3 in Algorithm 2) are applied on the feature set X . The resultant

ambiguity should be at least that which is produced by one operation on them. Therefore, according to Lemma 1, if

the weights of the uniform transformation T are i.i.d. generated by a zero-mean Gaussian, then Algorithm 2 produces

ambiguity w.r.t. X that one cannot distinguish two feature sets which have the same respective pairwise distance.

For the ambiguity w.r.t. the labels, we shift our focus to the private weights applied during mixing. We first describe

the label encoding (Phase 1 in Algorithm 2) and the label mixing (Phase 2 in Algorithm 2) in a matrix form. There are

many ways to generate (almost) orthogonal vectors. Here, we consider Ȳ to be a randomly generated zero-mean Gaussian

matrix in a form Y = [vT1 , v
T
2 , ..., v

T
c ]
T as the label bases. Each vi represents a label for a class. Thus, equivalently we

can represent the original training dataset S = {(x1, y1), (x2, y2), ..., (xn, yn)} by {(x1, vy1), (x2, vy2), ..., (xn, vyn)}.
Note that, during the data mixing (Phase 2), every mixed sample is a linear combination of the two original samples

selected. Therefore, we can use a matrixM to describe the mixing procedure. Let (j1, j2) be the indices and (λj , 1−λj)
be the corresponding weights used of original samples to be mixed for the j-th mixing with j = 1, 2, ...,m, respectively.

Then, the matrix M is in a form where the j-th row of M , i.e., M(j, :), is all zeroes except for the yj1-th and yj2-th

entries, the two classes of labels to be mixed, which are λj and (1− λj), respectively. Therefore, the encoded label Ỹ

of mixed data can be written as, Ỹ = M · Y. Clearly, the mixing matrix M ∈ R
m×c is stochastic, where the sum of

each row equals 1. The following theorem (proof in Appendix E) presents an ambiguity set w.r.t. M .

Theorem 4. Algorithm 2 renders an ambiguity set w.r.t. the private mixing matrix M where two mixing matrices M
and M ′ belong to one ambiguity set if M = U ·M ′ for some unitary matrix U .

As a corollary, note that in Algorithm 2, we only mix two samples each time. If we do not restrict the mixing matrix

M but randomly select M to be a stochastic matrix, then the ambiguity set can be further described as follows:

Corollary 2. If the mixing matrix M is randomly selected to be a stochastic matrix, then in the above label encoding

and mixing procedure, every M enjoys an ambiguity set which includes all elements in a form M · U , where U is some

stochastic unitary matrix.

3.3 Differential Privacy

In this section, we turn to analyze the obfuscation from a statistical divergence or DP perspective. In such a view, an

algorithm is more private if the output of an algorithm is less sensitive to the input, which implies more information

loss during the transform. Recall in Section 2.2, we used the VC dimension to interpret the tradeoff between privacy

and utility of a transformation. The results presented in this subsection can supplement that analysis by quantifying the

dependence between input and output.

DP mechanisms have been widely studied wherein the most common tool is additive noise such as Gaussian or

Laplace Mechanism [BST14]. However, in our context, both the uniform transformation T and data mixing can be

viewed as an multiplicative operator on the data. We take the feature dataset X as an example. In Algorithm 2, recall the

analysis shown in Section 3.2, the mixing procedure can be described by a left-multiplication matrix M asM ·X , where

M represents the mixing weight. On the other hand, the uniform transformation T can be captured by a (generalized)

right-side linear transformation. For each layer, the neural network is in a form σ(X ·W ), where W and σ represent

the weight and activation function, respectively. This raises an interesting question: what kind of DP guarantee can be

provided by a multiplicative mechanism? Of independent interest, [BBDS12], [KKMM13] study a related problem that
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through random projection, how the Johnson–Lindenstrauss (JL) Lemma preserves DP. 15 In this section, we set out to

provide a more systematic study on this topic. Without loss of generality, in the following, we restrict our focus to what

DP guarantees are achievable by a linear transformation X ·A w.r.t. the private input matrix X ∈ R
n×d.

First, to avoid some tedious discussion, we assume some normalization on input X . It is noted that after any linear

transformation, X · A is always within a linear space spanned by the columns of X (column space). Therefore, for

non-trivial DP guarantees, we have to restrict the private inputs X to share a same column space. To overcome the

restriction, we assume a normalization processing step on X which expands X to be an invertible square matrix R
n×n if

n > d. A simple expansion is that we duplicate X in a concatenated form [X|X|...|X] until it becomes a square matrix.

If n cannot be divided by d, we randomly select (n mod d) columns from X to be the last copy. In Section 5, we

mention two approaches to make a matrix invertible, such as diagonal perturbation and SVI. Thus, to ease presentation,

in the following, we just assume X to be an n× n invertible matrix.

In additive DP mechanisms, it is well known that (Laplace/Gaussian) noise of greater variance produces stronger

DP guarantees (smaller ǫ, δ under the same setup). However, multiplicative DP does not match this intuition, i.e., a

linear operator A generated by a more heavy-tailed distribution does not simply strengthen DP in general. One of the

main reasons is that the multiplicative sensitivity depends not only on the input difference but also on the singularity of

X . (We include an interesting result for the special case if X is diagonal in Appendix C.) In general, for two invertible

matrices X1, X2 ∈ R
n×n where E = X2 −X1 denotes their difference, the transformed distribution of X1α and X2α

for some random vector α ∈ R
n in distribution Q, is equivalent to studying

P(X1α = z)

P(X2α = z)
=
det(X2)

det(X1)
· P(X−1

1 z)

P(X−1
2 z)

=
det(X1 + E)

det(X1)
· P(X−1

1 z)

P((X1 + E)−1z)
. (15)

Replacing z by (X1 + E)α in (15), it is equivalent to considering
det(X1+E)
det(X1)

· P(α+X−1

1
Eα)

P(α) . Thus, a natural question

raised is how to select the distribution of α to minimize the ratio.

We provide a framework to study this problem. Without loss of generality, we assume P(α) ∝ eψ(‖α‖2) for some

function ψ(·) : R → R such that
∫

Rn e
ψ(‖α‖2)dα < +∞. In addition, we assume the Lipschitz constant of ψ(·) is

L in the following, i.e., |ψ(a) − ψ(b)| ≤ L|b − a|. Clearly, to control the difference quantity ‖X−1Eα‖, we need

proper assumptions on the norms of E and the tail bound of ‖α‖. Following the idea in [BBDS12], to avoid any

further restrictions on the data matrix X , when X is singular or close to being singular, we will perform the following

modification before transformation. Similar to SVI, assume that the SVD of X is X = UΣV . We modify X to

X̂ = U(Σ + υ · I)V , thereby the least singular value of X̂ is at least υ 16.

Theorem 5. Let P (α) ∝ eψ(‖α‖2), where Pr(‖α‖ > r) < δr. For a random matrix W ∈ R
n×d′ such that each row

of W i.i.d. follows the distribution of α, the following transformation on private data matrix, X ∈ R
n×n, namely,

X → X̂ = U(Σ + υ · I)V → X̂ ·W , satisfies (ǫ, δ)-DP, where

ǫ = d′ǫ0(e
ǫ0 − 1) + ǫ0

√

2d′ log(1/δ̃), and δ = d′(δ0 + δr) + δ̃.

Here,

ǫ0 =
B
υ
+ 4L

B
υ
(1 +

B
υ
)

−r2log(δ0/32)
n+ 2

√

n log(δ0/16)
,

and δ0 and δ̃ are free parameters to be selected. The sensitivity parameter B is defined as the upper bound of the l2
norm of the difference between any two samples.

The proof of Theorem 5 can be found in Appendix J. Taking Theorem 5 as the building block, one can further

characterize the DP guarantees produced by a multi-layer neural network with random weights. Equipped with non-

linear activation functions, for example, the sigmoid function, the sensitivity may contract when data passes through

15 The JL Lemma states that there exists a dimensional reduction mapping which preserves pairwise distance of elements within a

set with high probability. The JL Lemma has a close relationship to compressive sensing and locality-sensitive hashing. In our

context, the uniform transformation T is not necessarily designed to preserve the pairwise distance.
16 SVI is not the only way to improve the sensitivity. Ideally, in the learning after transformation context, it is expected that we can

apply some uniform transformation on the data matrix to increase the small singular values.
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Algorithm 3 Private Application of a c-classification Model for Inference

Input: A private dataset D; Label bases of c classes b1, b2, ..., bc and Transformation T generated by user; Model fT trained over

transformed dataset with T by server and sent back to user;

1: A query with a feature x is sent to the user by some query client;

2: User randomly selects a sample (x′, y′) from D and produces a mixed feature 0.5(x+ x′);
3: Apply transformation T over 0.5(x+ x′) and calculate fT (T (0.5(x+ x′)));
4: Approximate the true label of x by 2[fT (T (0.5(x+ x′)))− 0.5y′] and compute the nearest label basis:

i∗ = arg min
i∈[1:c]

‖2[fT (T (0.5(x+ x′)))− 0.5y′]− bi‖;

Output: i∗-th class as the inference result.

more layers. From Theorem 5, ǫ is proportional to the ratio B/υ, while, in our case, a larger υ implies a heavier

regularization on the data and may compromise the performance. From our experiments on MNIST and CIFAR-10, we

find that if we set d′ = d and the sensitivity B in a scale of 1/d, with a Gaussian matrix and proper selection of υ to

produce ǫ = 1, there is no obvious performance drop.

4 Private Model Release and Model Extraction Defense

With the above preparation, we now return to the challenges we pointed out in Section 1, i.e., a unified framework to

accommodate both private learning, outsourced to a server, and private inference, controlling both data privacy leakage

as well as the privacy of the user’s model. Recent studies have shown that even with black-box accesses, one can

recover sensitive information or even the full machine learning model [FJR15] [TZJ+16]. Such inversion can heavily

compromise the privacy of data, which the model is trained over, and the intellectual property of the model holder.

For the former challenge, i.e., the privacy leakage of training data during the post-processing of the private model,

if the training procedure is differentially private, for example an SGD protocol perturbed by Laplace or Gaussian

Mechanism [ACG+16], there will not be any problems since DP is resistant to postprocessing. However, as we

mentioned in Section 1, almost all existing DP works assume that the computation has to be implemented by the

user. To resort to untrusted cloud service, an LDP mechanism on the original data seems to be the only approach. On

the other hand, even if the computing process is protected through a cryptographic approach, such as homomorphic

encryption, the sensitivity calculation in general is NP-hard [XT08] and thus it is hard to apply a DP mechanism for the

postprocessing operations. In the following, we describe how to quantify such leakage when applying the model for

inference.

Data Privacy Protection: Algorithm 3, an inference protocol over mixed samples, is inspired by [LWG+20] which

shows that mixup can not only improve the performance of training but also inference. This coincides with our intuition

that, taking 0.5(x+x′) as input, a well-trained predictor should output the mixed label of 0.5(x+x′). We may consider

the worst case that the query client and server are colluding and thus fT is also known to the adversary. In Algorithm 3,

y′, the private label, is unknown to the adversary. Also in practice, most commonly used predictors, such as a neural

network with non-linear activation functions, are not invertible. To relax the restrictions, we still assume fT is invertible

and that the adversary can even recover T (x+ x′). Therefore, provided the query feature x and T (x+ x′), the privacy

loss caused during inference is reduced to the PAC security model described in Section 3 when analyzing Algorithm 2.

Hence, through Algorithms 2 and 3, the PAC security model provides a unified analysis for privacy leakage during both

learning and inference over transformed data. Applying Corollary 1 which connects the privacy budget (ǫ, δ) to the

sample complexity, when we take the entire data privacy loss during model training and model application into account,

the sample complexity m should cover both the training samples exposed and the later inference queries.

Model Extraction Defense: The second challenge, i.e., one may steal the model or approximate fT ◦ T through

multiple accesses, is indeed also resolved by Algorithm 3. Such approximation hardness is quantified in Theorem

3, where we measure the sample complexity to find a mapping which is statistically close to T . Thus, even if the

query client and the server are colluding where fT is known, adversaries cannot steal the model without efficient

approximation of T . Similarly, provided (ǫ, δ) security budget of the model itself, the sum of the numbers of exposed

training samples and the later inference queries should be no bigger than the sample complexity m.
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Putting things together, a unified private learning and inference framework is constituted through a combination of

Algorithms 2 and 3. The proposed protocols with PAC security represent a framework where the privacy/security losses

in four dimensions, namely, the data privacy and the model security loss [CJM20], during the training and the model

application (inference) are uniformly measured 17.

5 Perfect Secrecy for Generalized Linear Model

In previous several sections, we focused on the first type of transformation, where T is randomly selected from some

predefined smooth function set CT . In the following, we provide an example to show that perfect secrecy is possible

with data-dependent transformation.

As a warm-up, we start with a binary classifier with the assumption that the feature space is linearly (hyper-plane)

separable. To be formal, we say two sets X1 and X2 whose elements are in R
d are linearly separable if there exist

ω∗, b∗ ∈ R
1×d such that x · (ω∗)T > b∗ for x ∈ X1 while x · (ω∗)T < b∗ for x ∈ X2. So, it is natural to ask what

kind of transformation T can preserve the linear separability of T (X1) and T (X2). The following lemma provides a

sufficient condition:

Lemma 3. If the transformation T (·) is an injective affine mapping, then for X1,X2 ∈ R
d which are linearly separable,

T (·) preserves linear separability.

Proof. If an affine transformation represented by T (x) = x ·A+ c is injective, it is equivalent to that A ·AT should be

of full rank. We assume that a line x · (ω∗)T − b∗ separates the two sets X1 and X2, i.e., x · (ω∗)T > b∗ for x ∈ X1

while x · (ω∗)T < b∗ for x ∈ X2. Now, consider the following identity:

x · (ω∗)T = (x ·A) ·AT · (A ·AT )−1 · (ω∗)T .

Thus, in the codomain of T (·), 〈T (x), AT · (A ·AT )−1 · (ω∗)T 〉− c ·AT · (A ·AT )−1 · (ω∗)T − b still separates T (X1)
and T (X2).

As a special case, if we set T to be a bijective linear transformation in a form T (x) = x ·A for some invertible matrix

A ∈ R
d×d, then it is not hard to verify the following: if X1 and X2 can be separated by a hyperplane x · (ω∗)T = b∗,

then the hyperplane x ·A−1(ω∗)T = b∗ separates T (X1) and T (X2). For data which can be almost linearly separable

under small noise perturbation, a classifier can be efficiently found through a linear regression. Indeed, the above

separability preservation intuition can be further generalized, where the data generation can be described in a form

y = g(〈ω∗, x〉+ b∗) (16)

for some function g(·) with parameters ω∗ and b∗. (16) is called Generalized Linear Model (GLM). Interested readers

may refer to [NW72] which elaborates the various applications of GLM. Under the prior knowledge that data can be

well captured by some GLM, a standard approach to approximate (ω∗, b∗) is through Empirical Risk Minimization

(ERM), i.e.,

(ω∗
e , b

∗
e) = argmin

ω,b

n
∑

i=1

l(g(〈ω, xi〉+ b), yi). (17)

The key observation w.r.t. GLM is the following identity: for an arbitrary matrix A such that its right inverse exists, i.e.,

A ·A−1
r = Id, then 〈x ·A,A−1

r · ωT 〉 = 〈ω, x〉. Therefore, with a similar reasoning, if the data generation can be well

approximated by some GLM, after an injective linear transform on the sample domain, the true optimum is recoverable

from the optimization over transformed data.

To formalize the analysis, consider applying a right-invertible matrix A on each sample xi and construct the ERM

problem on transformed samples as

(ω∗
A,e, b

∗
A,e) = argmin

ω,b

n
∑

i=1

l(g(〈ω, xi ·A〉), yi). (18)

17 If one wants to achieve the PAC security w.r.t. both data, with budget (ǫ1, δ1), and the model, with budget (ǫ2, δ2), simultaneously,

the sample budget should be the minimum of that determined by their respective security budgets.
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Clearly, if the optimum (ω∗
e , b

∗
e) of (17) is unique, then (ω∗

A,e)
T = A−1

r · (ω∗
e)
T while b∗A,e = b∗e . Please note that this

does not require any assumptions on the function l(·) and g(·) such as convexity or smoothness 18.

5.1 Perfect Secrecy

It should now be clear that proper transformation can still guarantee the learnability of a class of transformed data.

But what kind of privacy preservation can be provided by a linear transformation? In this section, we stick to an

intuitive perfect privacy preservation. We say a (randomized) mechanism has perfect secrecy or security if the output

(distribution) is fully independent of its input.

Definition 7. A mechanism M is perfectly secure if for arbitrary input I , the distribution of output M(I) is independent

of I .

If so, observation on the output M(I) cannot provide any further information with respect to (w.r.t.) the sensitive

input I . In the following, we will show that efficient learning with perfect privacy is achievable in linearly-separable

data. For the input matrix X ∈ R
n×d which contains n samples each within R

d, we first consider a special case where

n = d and X is invertible. It is noted that once X−1 exists, the transformation TX−1(x) = x · X−1 is a bijective

mapping over Rd. On the other hand, TX−1(X) always returns the identity Id, a constant, which achieves prefect

privacy w.r.t. input X . In practice, the number of samples n is usually larger than the dimensionality d. To generalize

the above idea, for input matrix X ∈ R
n×d with n ≥ d, we consider the following transformation X̂ = X · A, for

some matrix A ∈ R
d×n of rank d to expand X to be a square matrix. Clearly, X̂ is singular (of rank at most d) and we

cannot find the inverse of X̂ . However, it can be proved that after an arbitrarily small perturbation on X̂ , we can make it

invertible.

Lemma 4. For a singular matrix X̂ ∈ R
n×n, X̂ 6= 0, of which the least non-zero eigenvalue in absolute value is γ0,

then for any γ such that 0 < |γ| < γ0, X̂ + γIn is invertible.

Proof. We use the following identity that

det(γ · I − X̂) =

n
∏

i=1

(γ − γi),

where γ[1:n] denote the eigenvalues of X̂ in an ascending order. Clearly, if γ ·I−X̂ is invertible, then det(γ ·I−X̂) 6= 0.

On the other hand, to guarantee det(γ · I − X̂) 6= 0, a sufficient condition is γ 6= γi for any i and γ 6= 0. For n discrete

reals γ[1:n], one can always find an arbitrarily small but nonzero γ such that it is not equal to any eigenvalue of X̂ .

To summarize, the above described a perfectly secure protocol from R
n×d → In in three steps. First, one randomly

selects A ∈ R
d×n and computes X̂ = X ·A. Second, a small perturbation is added to X̂ to form X̃ = X̂ + γIn. Third,

take the inverse of X̃ , i.e., X̃−1, as the multiplicative transform, which maps the data to the constant In. Here, we

assume that the labels are unchanged. For example, in a binary classification problem, one always randomly encodes

the two classes by 0 and 1 and the ratio between the numbers of respective samples is set to be 1:1. Thus, the exposed

information is independent of the input and perfect secrecy is achieved.

18 In linear regression for heavy-tailed distributions, usually the loss function has to be selected to be non-convex, for example, in

[ZZ18], the loss function is defined as 1
α
ψ(α|yi − xi · ω

T |), where

− log(1− z + z2/2) ≤ ψ(z) ≤ log(1 + z + z2/2)

for some positive number α. This complicated min-max estimator is shown to be more robust but also requires intensive

computation [AC11].
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5.2 Utility Analysis and Regularization

We say two sets X1,X2 ∈ R
d are δ-strongly linearly separable, if, besides the existence of a hyperplane separating

them, their margin satisfies minx1∈X1,x2∈X2
‖x1 − x2‖ ≥ δ > 0. To obtain a straightforward corollary of Lemma 4,

when X1 and X2 are δ-strongly linearly separable, consider the above mentioned transformation X ·A+ γIn on input

dataset X . Assuming A ∈ R
d×n of rank d where the least singular value of A is σ0, then for transformed X1 and X2,

min
x1∈X1,x2∈X2

‖(x1 − x2) ·A‖ ≥ σ0δ.

Therefore, after a γI perturbation on X , the l2 norm of perturbation on each sample is at most γ and thus the minimal

distance of transformed X1 and X2 under perturbation is at least σ0δ − 2γ.

With a similar reasoning, for GLM optimization, let GL(ω, b) =
∑n
i=1 l(g(〈ω, xi〉+ b), yi) while GLA,γ(ω, b) =

∑n
i=1 l(g(〈A−1

r · ωT , xi ·A+ γei〉+ b), yi), where ei is the ith natural basis of Rn. Thus, with some mild Lipschitz

assumptions on functions l(·) and g(·), the difference GL(ω, b) − GLA,γ(ω, b) can be well controlled while the

perturbation γ can be arbitrarily small. The abovementioned techniques can also be applied in multinomial regression

for multi-class problems; we explore this in Section A.1.

Usually, to avoid overfitting, instead of solving ERM directly, we will add a regularization term, say λ‖ω‖, at the end

of (17) with some positive constant λ. However, it is noted that, after a multiplicative transformation, straightforwardly

adding a regularization term in (18) may not help. If the inverse of transformed data X̃−1 is close to being singular where

the largest singular value of X̃−1 is huge, then it is hard to control the normal regularization term when handling the

optimization over the transformed sample domain. Therefore, a better way is to mimic Principal Component Analysis

(PCA) to improve the small singular values of A. But different from PCA, we do not remove the small singular values

which results in dimensionality reduction; instead, we increase the small ones to a certain threshold. The following

method in Algorithm 4 is called Singular Value Improvement (SVI).

Algorithm 4 Singular Value Improvement (SVI)

Input: Matrix A ∈ R
l×l′ ; Threshold parameter υ > 0.

1: Apply SVD on A = UΣV , where Σ is the singular value diagonal matrix;

2: Change all diagonal elements in Σ smaller than υ to υ and obtain S̄.

3: Construct Ā = UΣ̄V .

Output: Matrix Ā ∈ R
l×l′ .

The parameter υ behaves like the regularization coefficient: a larger υ implies weaker singularity. Moreover, it is

noted that U · V , a product of two unitary matrices is still unitary. Thus, SVI with parameter υ introduces at most a

perturbation per row whose l2 norm is upper bounded by υ. A similar utility analysis can be derived.

5.3 Deep Learning with Perfect Secrecy

In general, a neural network can be described as a function of multi-layer GLM:

NW (x) = σ(..., σ(σ(x ·W1) ·W2), ...,WL) (19)

where σ is the selected activation function, say ReLu or Sigmoid functions, and W = (W1,W2, ...,WL), W1 ∈
R
d×d1 ,W2 ∈ R

d1×d2 , ...,WL ∈ R
dL−1×dL , denotes the weights across L hidden layers, respectively. 19 Mathemat-

ically, training (optimizing) a neural net can be described as follows. Let W ∗ denote the optimal weights for the

following ERM over a set of samples S = {(x1, y1), (x2, y2), ..., (xn, yn)}:

W ∗ = argmin
W

LS(W ) = argmin
W

1

n

n
∑

i=1

l(NW (xi), yi) (20)

19 For the case where each layer is defined as σ(x ·W + b) with an additional addition term b, one may replace x̂ = (x, 1) in (19),

which does not lose generality.
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for some loss function l(·, ·). For simplicity, we assume d = n and the feature set X ∈ R
n×d of original training data is

invertible. With a similar reasoning, we can instead feed Id, the d×d identity matrix, to train an L-layer fully-connected

neural net to obtain the weights WI = (W1,W2, ...,WL). Consider a new neural net, where the weight of the first

layer is changed to WX = (X−1W1,W2, ...,WL). Note that the loss of NWI
w.r.t. Id is equal to that of NWX

w.r.t.

X in (20). Also, it is clear that the training to obtain WI does not require any knowledge of X , so perfect secrecy is

preserved.

Though there is a bijective relationship between the WI and WX , we have to remark that in deep learning with

non-convex activation functions, the number of local minima increases exponentially as the number of neurons and

dimensionality increases [AHW+96]. This brings significant efficiency concerns that whether after transformation,

training through classic optimization tools such as (Stochastic) Gradient Descent ((S)GD) can find good models.

6 Related Works

Random projections: One-Time Random projections have been used to achieve perfect secrecy in particular com-

pressive sensing applications [BBM15], and in a more generic setting it is shown how to upper bound the information

leakage about the energy of a signal and predict the precision with which the energy can be estimated. Random

unitary transformations are known to preserve pairwise sample distance and have been used for privacy-preserving

face recognition applications (e.g., [MNSK18], [NTK16]), where the security analysis is limited to analyzing specific

attacks.

Data Mixing and Privacy: A popular data augmentation method mixup was proposed in [ZCDLP18] and has been

widely studied both empirically [BCG+19, TCB+19, VLB+19, PXZ19], and theoretically [ZDK+20]. Mixup achieves

significant success in semi-supervised learning [BCG+19] and has been shown to strengthen the robustness even under

adversarial attacks [PXZ19]. We are not the first to consider introducing mixup for privacy preservation. Huang et

al. proposed a private training protocol, Instahide in [HSLA20], and Liu et al. proposed a private inference protocol,

Datamix in [LWG+20]. Instahide performs sample-specific sign-flipping unlike the uniform transformation over each

sample in the Dauntless framework. Straightforward applications of mixup may encounter two major vulnerabilities from

adversarial inference. Recall the description of mixup in Section 2.2. First, the trivial one-hot label encoding exposes

both the random weights used for mixing. Second, though data can be randomly mixed, the underlying permutation

cannot provide rigorous privacy guarantees. 20 Carlini et al. [CDG+20] approximates the sample correspondence in

Instahide with a similarity graph, and follow-up works [CSZ20, HST+20], which are based on the phase retrieval

model, present several attacks on Instahide.

Transfer Learning and Data Transformation: Generally speaking, transfer learning studies how the experience

or knowledge gained in solving one model could be reused for other tasks. Transfer learning has been well studied

recently [PY09, TS10, ZQD+20]. Especially in deep learning, it is common to use a pre-trained network for a large and

challenging classification task as a basis, over which the new model is further trained. The framework of perfect secrecy

training shown in Section 5 can also be presented in a transfer learning view: for privacy preservation, we map private

data to some public data and then incorporate the transformation and the corresponding model of the public data. In

Section 5, we only studied a linear transformation and set the transformed data to be constant (identity). We leave more

comprehensive investigation on the transformation, which may be more suitable to transfer learning, to future work.

7 Experimental Results

We ran four main experiments: transformation of perfect secrecy, random neural net transformation and fully-connected

network training, the match between transformation and training algorithm, and the hardness of recovery of private

images. Details can be found in Appendix A. Briefly, the experiments validate the theoretical results presented.

8 Conclusion

Exploiting the fundamental statistical nature of machine learning, we have proposed a unified private learning and

inference framework that implements a training procedure on a transformed sample domain to produce a usable model.

20 A hypothesis in [HSLA20] is that the computational hardness of mixup can be reduced to the subset sum problem.
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We propose a new information theoretic security metric, namely PAC inference resistance. Different from the classic

view where security/privacy loss is measured by the additional information provided by ciphertext, PAC security further

takes the prior knowledge into account providing a more comprehensive characterization.

Our preliminary experiments in the Dauntless framework show promise in producing usable models from trans-

formed datasets, in a computationally-efficient manner. The proposed framework sheds light on a possibly unified

analysis on data privacy, model security, data feature extraction and training from an information processing perspec-

tive. Advances in machine learning with more efficient feature extraction and training algorithms may enhance data

protection, by allowing more flexible designs of sample transformation that match the training. Conversely, studies on

sample transformation and security in an information processing view may help advance the understanding of machine

learning mechanisms.
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A Experimental Results

This section consists of four main experiments, where we set out to further study the following problems: transforma-

tion of perfect secrecy, random neural net transformation and fully-connected network training, the match between

transformation and training algorithm, and the hardness of recovery of private images. The Adult dataset from UCI,

and two standard image-datasets, MNIST and CIFAR-10 are the data sources for the following empirical results.

A.1 Perfect Secrecy

Experiments in this section were run in Matlab R2020a.

Ridge Regression on Adult: In Section 5, we theoretically study how to achieve perfect secrecy for the generalized

linear model. We take the Adult dataset as the first example. The Adult consensus data contains 14 attributes including

education level, age, gender and occupation. The task here is to develop a predictor that predicts whether an individual’s

annual income is above $50K.

To obtain perfect secrecy, we consider transforming the original data to some independent values. To specify

the operations, the input feature set X ∈ R
n×14 is first transformed to a square matrix XW , with a random matrix

W ∈ R
14×n. For regularization, we apply SVI on the SVD form of XW = UΣV by X̃ = U(Σ + υ · In)V . Then,

we define the transformation on the feature domain x ∈ X as T (x) = x ·W · X̃−1, and fix the transformed training

dataset as a constant In. We take 4,000 samples, 2,000 from each class, as the test data. When the training number

n = 20, 000 and n = 30, 000, the Non-Private (non-private) ridge regressions achieve 63.3% and 66.5% accuracy,

respectively. As a comparison, when we select υ = 1, the perfect-secrecy ridge regressions achieve 63.2% and 66.2%
accuracy, respectively.

Multi-classification on MNIST: As mentioned before, a neural network is a special generalized linear model, and

we further consider multi-class classification with perfect secrecy. We take the MNIST dataset, the images of 10

handwritten digits, as an example. We consider the following neural network architecture, which is formed by three

fully-connected layers of 300, 200 and 100 neurons, respectively, which are connected by Relu activation functions,

and a softmax classification layer at the end. Instead of using the full MNIST data, we conduct and compare several

subclassification tasks, where the number of classes c varies from 2 to 10. Correspondingly, for given c, we take 2000

samples of each digit from 1 to c as the training dataset. Similarly, we transform MNIST data via the above-mentioned

semilinear transformation with SVI of υ = 1. Under the same training setup, we compare the training over original data

and transformed data in Table 1.

Table 1: Handwriting Digit Classification of MNIST with Perfect Secrecy via Fully-connected Network

Methods/Accuracy 2-Classify 4-Classify 6-Classify 8-Classify 10-Classify

Non-Private Training 99.4% 98.2% 97.9% 97.2% 97.0%

Perfect Secrecy Training 98.3% 94.8% 90.1% 85.6% 82.2%

The experiments suggest that as the data and the classification task become more complicated (the number of classes

gets larger), the trained network is more prone to be over-fitted. As shown in Table 1, the accuracy (generalization) of

perfect secrecy training drops more sharply compared to the baseline. Recall the analysis in Section 5.3, an arbitrary

neural network on an invertible linearly-transformed dataset is bijective to a same size neural net, which shares the same

training error on the original data. In other words, the described perfect-secrecy training can be viewed as randomly

finding a network of satisfied training error. As tasks get more complicated, those nets which generalize well are sparser

amongst all nets of small training error. We believe the above data-independent training can provide an interesting

perspective to study generalization in neural networks [JGH18, LL18], and may be of independent interest.
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A.2 Data Mix and Random Transformation

We present experiments on the effects of data processing proposed in Algorithm 2 on training.

MNIST: These experiments were conducted using an implementation of Algorithm 2 in Matlab R2020a. The results

use an Intel Core i7 CPU @3.1GHz, with 16GB of memory. We use the entire 60,000 training samples of MNIST. As

for the random transformation, we use a one-layer neural network, where the number of neurons equals the dimension

of samples. Therefore, after applying the data mixing over the original samples set Rn×d, we generate m mixed samples

in a form R
m×d. Through the transformation, the size of transformed data does not change, which is still Rm×d. In

developing the PAC based privacy proof in Section 3, we proposed two approaches to generate the weight matrix

W ∈ R
d×d for sample transformation:

– Approach 1: W is the inverse of a matrix, whose each entry i.i.d. follows a uniform distribution U [−β, β].
– Approach 2: W is a uniform matrix, whose each entry i.i.d. follows a uniform distribution U [−β, β].

Approach 1 and 2 correspond to the weight generations described in Corollary 1 and Theorem 3, respectively. In the

following, we select β = 50 in both approaches. In Table 2, we include the details of the training time (measured as

SGD iterations with a batch size of 128) and classification accuracy achieved. Here, we select the network to be trained

as a 5-layer structure with 4 fully-connected layers of 256, 128, 64, 32 neurons, respectively, and a regression layer

at the end. We run 20 trials of each case listed in Table 2, where averages and standard deviations (in parentheses)

are provided. The cost of each iteration is 0.022 seconds and 0.023 seconds, for the no-mix non-private and the mix

(non-private and private) training, respectively. The difference is because of the slightly different empirical loss functions

produced by original and mixed samples, respectively. From Table 2, it is clear that the weight matrix generated by

Table 2: Handwriting Digit Classification of MNIST with Fully-connected Neural Network

Methods Weight Generation # Samples Iterations (103) Accuracy(%)

Non-Private Training n.a. 60,000 5.8 (±0.9) 98.5 (±0.07)
2-Mix Non-Private Training n.a. 120,000 9.2 (±1.1) 98.3 (±0.08)
2-Mix Non-Private Training n.a. 180,000 15.1 (±0.3) 98.6 (±0.08)
2-Mix Transformed Training Approach 1 120,000 47.8 (±13.7) 96.9 (±0.7)
2-Mix Transformed Training Approach 1 180,000 76.2 (±29.7) 97.2 (±1.8)
4-Mix Transformed Training Approach 1 120,000 48.3 (±7.8) 95.4 (±2.0)
4-Mix Transformed Training Approach 1 180,000 68.9 (±18.4) 95.7 (±2.4)
2-Mix Transformed Training Approach 2 120,000 15.6 (±1.7) 98.3 (±0.07)
2-Mix Transformed Training Approach 2 180,000 19.7 (±2.0) 98.4 (±0.10)
4-Mix Transformed Training Approach 2 120,000 17.9 (±1.5) 97.8 (±0.13)
4-Mix Transformed Training Approach 2 180,000 19.3 (±2.2) 98.0 (±0.08)

Approach 2 produces more stable and efficient learning over transformed data. One key factor which influences both

the training time and performance of transformed data is the distribution of singular values of the weight matrix used

in the transformation network. Intuitively, a weight matrix in which the largest and smallest singular values differ by

a lot will make the transformed data more fuzzy. In Approach 1, with certain probability, a uniform matrix can be

quite close to singular and the largest singular value of the matrix inverse is much larger than that of the matrix itself.

The probability with which this occurs becomes higher when the dimensionality increases resulting in more unstable

learning performance. However, a straightforward tradeoff between the utility and privacy is rejecting outlier random

matrices generated prior to data transformation and exposure, and the consequent security loss can be modelled by an

additional failure probability.21

CIFAR-10: Table 3 provides results on CIFAR-10 using the same network we specified above with an implementation

of Algorithm 2 in PyTorch 1.7.1. The results use an Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz, with 32GB of

21 It is worthwhile mentioning that Approach 1 and Approach 2 shown in Corollary 1 and Theorem 3 produce different and

incomparable PAC security guarantees, where the objectives of concern are data privacy and transformation security, respectively.
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memory, and a GeForce GTX 1060 GPU with 6GB of memory. Each run was 30 epochs with a batch size of 128,

and the cost of each iteration is 0.003897 seconds and 0.004033 seconds, for the no-mix non-private and the mix

(non-private and private) training, respectively, on the GPU. Client-side time for mixing and transformation generation

and implementation on the CPU was less than 250 seconds for 400,000 mixed samples.

Given our use of a relatively simple fully connected network, the Non-Private training accuracy and the Mix

Non-Private training accuracy are around 50%. Accuracy numbers are averaged across 3 trials. Mix Transformed data

training accuracy is close to the Non-Private mix training for both approaches. We used the outlier rejection approach

mentioned above for Approach 1. We reject the random matrices generated if the ratio between the largest and the

smallest singular values is ≥ 1.15× 104.

Table 3: Object Detection of CIFAR-10 with Fully-connected Neural Network

Methods Weight Generation # Samples Iterations (103) Accuracy (%)

Non-Private Training n.a. 50,000 14.0 55.59

2-Mix Non-Private Training n.a. 100,000 23.4 50.35

2-Mix Non-Private Training n.a. 200,000 46.8 51.97

2-Mix Non-Private Training n.a. 300,000 70.3 53.12

2-Mix Non-Private Training n.a. 400,000 93.7 53.67

2-Mix Transformed Training Approach 1 100,000 23.4 40.30

2-Mix Transformed Training Approach 1 200,000 46.8 46.49

2-Mix Transformed Training Approach 1 300,000 70.3 48.98

2-Mix Transformed Training Approach 1 400,000 93.7 48.67

2-Mix Transformed Training Approach 2 100,000 23.4 49.58

2-Mix Transformed Training Approach 2 200,000 46.8 52.64

2-Mix Transformed Training Approach 2 300,000 70.3 52.96

2-Mix Transformed Training Approach 2 400,000 93.7 53.41

A.3 Matching the Transformation to the Training Algorithm

As the first key challenge described in Section 1.1, a proper transformation is such that the transformed data matches the

subsequent training algorithm. From our observation, a random fully-connected data transformation network matches

well with a fully-connected or transformer neural network. The Convolutional Neural Network (CNN) provides an

interesting example here. It is well-known that by applying AlexNet [KSH17] or Residual neural network (Resnet)

[HZRS16], one can achieve 90+% detection accuracy on CIFAR-10. Training with a fully connected network is

significantly less accurate (cf. Table 3).22 However, if we let the image data (reshaped into a vector form) pass through a

random fully-connected layer transform as before, and then conduct training with a CNN, it is no better than training

original CIFAR-10 images with a fully-connected network.

In images, neighboring pixels are potentially more correlated compared to faraway ones, and thus the feature

maps generated by the convolutional kernel are more efficient in extracting important information. One can therefore

hypothesize that an image transformed by a fully-connected layer will lose locality, since each coordinate in the

transformed image is an aggregation of all pixels from the original image. This can be viewed as a feature map where

the kernel size equals that of the image itself. Therefore, the first convolutional layer is not a neighborhood operation on

such transformed samples. Thus, for such transformed data, it may be just as or more efficient to use a fully-connected

network rather than a CNN. To match a CNN, a more-friendly transformation could be a random convolutional layer. In

our preliminary experiments with random convolutional layer transforms, the accuracy gap compared to non-private

CNN training over CIFAR-10 images is within a few percents. However, our privacy proof cannot directly be generalized

to the random convolution case, and therefore we leave a comprehensive study to future work.

22 From a training perspective, when we feed images to a fully-connected network directly, the number of parameters to be optimized

is large, since image dimension is usually large, thereby making training difficult.
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A.4 Transformed Data Recovery

We conducted experiments to measure the hardness of inverting transformed data. Depending on specific prior

knowledge, attacks may also vary. In the following experiments, we aim to model an attack where an adversary only has

full knowledge on the public data and correspondence. The results provide some intuition on the relationship between

transformation, data mixing and privacy.

To relax restrictions on the adversary, we assume that the adversary knows all the underlying correspondences and

the random weight for those public samples used in the mixing and transformation. This is also the assumption made in

Corollary 1 and Theorem 3. To give an example, suppose samples from two subsets Ŝp ∈ Sp and Ŝa ∈ Sa within private

Sp and public Sa sample sets, respectively, are mixed in a form
∑

si∈Ŝp
λisi +

∑

sj∈Ŝa
λjsj . The adversary will know

the corresponding T (
∑

si∈Ŝp
λisi+

∑

sj∈Ŝa
λjsj) and public sample(s) Ŝa and λj involved. We assume the adversary

takes those “noisy” samples with
∑

sj∈Ŝa
λjsj as the label and the observation T (

∑

si∈Ŝp
λisi +

∑

sj∈Ŝa
λjsj) as the

feature, and trains a network to mimic the inversion of transformation T .

Details of experiments are below; we summarize the main observations here:

– Recovery is possible in MNIST if enough mix samples (and their correspondences) are provided. Recovery is more

difficult given fewer samples. There is a budget associated with the number of samples that can be exposed to

inhibit recovery, and we provided a theoretical basis for this budget.

– Recovery is more difficult for more complex datasets such as CIFAR-10 in comparison with simpler datasets

like MNIST. Our theory explains this; compared to CIFAR-10, MNIST is much sparser and under our setup it

corresponds to a smaller entropy of the private data.

– Entropy of private data produces a big security amplification: under the same setup, where there is no data mixing,

and we assume the adversary knows the correspondence between each transformed sample and the public sample

used to produce the transformed sample, data recovery is much easier (a smaller sample complexity required),

becoming a simple chosen plaintext attack.

We first consider the following example, where in the MNIST dataset with 60,000 training samples, all the samples

of digits from 1 to 5 are private while the rest 6 to 0 are all public. In this case, Sp corresponds to all samples of digits

1-5 and Sa corresponds to the rest. As mentioned in Section A.4, we assume the adversary takes those “noisy” samples

with
∑

sj∈Ŝa
λjsj as the label and the observation T (

∑

si∈Ŝp
λisi+

∑

sj∈Ŝa
λjsj) as the feature, and trains a network

to mimic the inversion of transformation T . Unless otherwise stated, we used Approach 1 (cf. Section A.2) to generate

the transformed data.

In our first experiment, we consider the scenario where 180,000 mixed samples are randomly generated as described

above, where we randomly select 10 private mixed images with their corresponding transformed ones and the recovery

is shown in Fig. 2. In Fig. 2, the first row corresponds to the private part of selected images, the second row corresponds

to the transformed images, and the recovered images are shown in the third row. In the following experiments, since the

transformed images all look like random noise, we will omit them. Clearly, as we restrict the adversary to the samples

of only digits {6, 7, 8, 9, 0}, the learning with noisy data produces a predictor which applies the knowledge from those

5 classes in the public samples to approximate the unknown private data, and the recovery essentially fails. However,

in practice, it is more likely that the private and public sets share samples from a same class. It is more interesting to

assume that the adversary has much more prior knowledge on samples in each class.

In the second example, we change the assumption of private and public sets of MNIST in that we assume the

samples of each class are evenly divided into two parts, which are included in public and private sets, respectively.

In other words, the adversary knows 50% samples in each class. We still assume the correspondence and mixing

weights for public samples are known by the adversary. Fig. 3 shows the recovery of 10 private pictures randomly

picked. Clearly, the recovery is much more successful, where about 70% of private pictures are well-approximated. In

expectation, the “noise” is almost in the same scale in the first and the second examples, as one half of MNIST pictures

are unknown. However, MNIST handwriting pictures are relatively simple, where the data matrix is sparse. Provided

180,000 observations, an adversary with prior knowledge on one half of samples in each class can successfully invert

the transformation T .

We now consider weakening the prior knowledge the adversary has. In Fig. 4, under the same setup, we assume only

25% of samples in each class are known by the adversary. This impedes recovery significantly. Similarly, on another
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dimension, we can also decrease the number of mixed samples generated. In Figs. 5 - 6, we still assume 50% samples

are public but only 60,000 2-mixed samples are generated, over which the training achieves 94.9% accuracy. Under the

same setup, the private pictures recovered are shown in Fig. 5. Furthermore, if we do 4-mix where the mixed images

become more fuzzy, the recovery becomes more difficult. Under the same setup, training over 60,000 4-mix samples

achieves 93.7% accuracy, where the recovered pictures are shown in Fig. 6.

Importantly, more complicated pictures have a potential for larger entropy. If the data to be mixed and transformed

is CIFAR-10 pictures, even with prior knowledge on one half of 50,000 CIFAR-10 training samples and 200,000 mixed

samples produced, the inversion becomes much harder, as shown in Fig. 7.

Fig. 2: Recovery of Transformed MNIST Pictures with Prior Knowledge on All Samples of Digits 6-0 and 180,000

Mixed Samples

Fig. 3: Recovery of 2-Mix Transformed MNIST Pictures with Prior Knowledge on 50% of Full Dataset and 180,000

Mixed Samples

B A Transformation Construction with Ambiguity Set Comprising the Column Space

From a view of linear space, each column of X ·A is a linear combination of the columns of X . In other words, X ·A
is within the linear space spanned by the columns of X . Therefore, if we restrict the transformation to be linear, in an

additional information measurement, the least privacy loss is to only expose the column space of X . In the following,

we construct a linear transformation framework such that its ambiguity set equals the column space of its input.
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Fig. 4: Recovery of 2-Mix Transformed MNIST Pictures with Prior Knowledge on 25% of Full Dataset and 180,000

Mixed Samples

Fig. 5: Recovery of 2-Mix Transformed MNIST with Prior Knowledge on 50% of Full Dataset and 60,000 Mixed

Samples

Fig. 6: Recovery of 4-Mix Transformed MNIST Pictures with Prior Knowledge on 50% of Full Dataset and 60,000

Mixed Samples

Fig. 7: Recovery of 2-Mix Transformed CIFAR-10 Pictures with Prior Knowledge on 50% of Full Dataset and 200,000

Mixed Samples
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For simplicity, we assume X is of full rank. We divide our analysis into two cases: if n ≤ d, then there always

exists a matrix X−1
R such that X ·X−1

R = [In,0(d−n)×n]. Such a transform is of perfect secrecy w.r.t. all full rank

matrices where n ≤ d. Second, if n > d, clearly we cannot find such an X−1
R but similarly, we aim to find some unique

feature only determined by the column space of X . Since there are infinite d-dimensional subspaces in R
n, resorting to

a look-up table becomes impossible. To efficiently encode and construct a mapping, which is uniquely determined by a

d-dimensional subspace, we provide the following scheme shown in Algorithm 5.

Algorithm 5 Perfect Column Space Ambiguity Transformation

1. Apply Gram–Schmidt Orthonormalization on the columns of X = [x1, x2, ..., xd] with normalization to X̃ = [x̃1, x̃2, ..., x̃d].
2. Randomly generate a unitary matrix U ∈ R

d.

3. Output X̂ = X̃ · U .

4. Determine the transform matrix A = (XT ·X)−1 ·X · X̂ .

To justify that Algorithm 5 preserves perfect ambiguity w.r.t. all matrices enjoying the same column space as X , we

need the following lemma:

Lemma 5. For any two sets of normalized orthogonal bases X1 = [x11, x
1
2, ..., x

1
d] and X2 = [x21, x

2
2, ..., x

2
d] of a

d-dimensional linear space, there exists a unitary matrix U ∈ R
d such that X1 = X2 · U .

Proof. Since X1 and X2 are two normalized orthogonal bases of one linear space, let x1i =
∑d
j=1 cijx

2
j , where in a

matrix form, it is X1 = X2 · C. Since ‖x1i ‖ = 1, we have
∑n
j,l=1 cijcil(x

2
j )
T · x2l =

∑n
j=1 c

2
ij = 1, i.e., each column

of C is normalized. Furthermore, since (x1j )
T · x1l = 0, which implies

∑d
i=1 cijcil = 0, i.e., the inner product of any

two columns equals 0, which are orthogonal. Thus, C is an unitary matrix.

With the above lemma, following the orthonormalization and normalization across the columns of X , we find a

set of normalized orthogonal bases of the column-spanned space. Through a random unitary matrix, any normalized

orthogonal basis has identical probability to be the output. Therefore, it is indistinguishable for all elements in the same

column space.

C Multiplicative Differential Privacy for Diagonal Matrix

In this section, we set out to study whether analogous to the additive DP mechanism, through selections of the

multiplicative operator from a more heavy-tailed distribution, we can derive arbitrarily strong DP guarantees (arbitrarily

small distinguishability advantage). Though in general, without further assumptions the answer is negative but in a

special case if the input matrix is diagonal, we have the following observations.

We start with one-dimensional reals. For two real numbers r1 and r2, how close could the distributions of x1α and

x2α be for some random α generated from certain distribution Q? Without loss of generality, we assume both r1 and r2
are positive. Then, we have for any z ∈ R

Pr(r1α = z)

Pr(r2α = z)
=
r2
r1

· P(z/r1)

P(z/r2)
. (21)

To make the above ratio as close as possible to 1, we consider the following distribution:

P(z) =











τ

1 + τ
, 0 ≤ z ≤ 1

τ

1 + τ
z−(1+τ), z > 1

(22)

for some τ > 0. Then, we have the following lemma.
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Lemma 6. For random α distributed as (22), and arbitrary z,

P(r1α = z) ≤ max{r1/r2, r2/r1}τ P(r2α = z) + τ/(1 + τ). (23)

The proof of Lemma 6 is simply substituting the density function (22) to express the ratio. Here, τ/(1 + τ)
corresponds to the probability that Pr(z ∈ [0, 1)). As τ → 0, the two resultant output distributions move towards being

identical. The above observation has a straightforward generalization to multidimensional space for positive diagonal

matrices. Consider X1 = DIAG[x11, x12, ..., x1n] and X2 = DIAG[x21, x22, ..., x2n], where DIAG[∗] denotes a diagonal

matrix with diagonal elements ∗. If we select W (1) = DIAG[α1, α2, ..., αn], where αi i.i.d. as in (22), we have the

following lemma.

Lemma 7. For random diagonal matrix W (1) with i.i.d. diagonal elements distributed as (22), and two positive

diagonal matrices X1 and X2, for arbitrary z,

P(X1 ·W (1) = z) ≤ max{det(X1)/det(X2), det(X2)/det(X1)}τ P(X2 ·W (1) = z) + nτ/(1 + τ). (24)

Lemma 7 is a composition of Lemma 6 with the union bound. The above results on diagonal matrices render the

random transformation construction of Algorithm 6.

Algorithm 6 Singular Value Obfuscation

Input: Matrix X ∈ R
n×n.

1. Apply SVD on X = UΣV , where Σ is the singular value diagonal matrix;

2. Transformation by X ′ = X · V T ·W where W ∈ R
n×n is a diagonal matrix of which the diagonal elements are i.i.d. as (22).

Output: Matrix X ′ ∈ R
n×n.

The output of Algorithm 6 can be rewritten as X ′ = UΣW . As a corollary of Lemma 7, for any two input matrices

X1 and X2 which share the same left-singular vectors (same U in their SVD), then as τ → 0, Algorithm 6 produces an

ambiguity set which includes matrices with the same left-singular vectors U.

D Proof of Lemma 1

Proof. To avoid a tedious discussion on the support domain of the distribution of X ·A, we provide a proof as follows.

Since each column of A is independent, we consider the first column of A such that X ·A(:, 1) = o for some o. Then,

we have an identity that X ·U ·U−1 ·A(:, 1) = o for some unitary matrix U . On the other hand, the distribution density

of a zero-mean Gaussian vector A(:, 1) is proportional to exp(−∑d
i=1A(i, 1)

2) = exp(−‖A(:, 1)‖2). It is noted that

U−1 is still unitary, where ‖U−1 ·A(:, 1)‖ = ‖A(:, 1)‖ is preserved. Thus, for X ′ = X · U , the distribution of X ·A
and X ·A′ is identical.

E Proof of Theorem 4

Proof. We first rewrite Ỹ =M · Y as the following identity,

Ỹ =M · V · V −1 · Y. (25)

Here, V is an arbitrary invertible matrix. It is noted that the label bases Y is randomly generated by i.i.d. normal

distribution, of which the density function should be proportional to exp(
∑c
i=1

∑c
j=1 Y (i, j)2), where Y (i, j) denotes

the entry of Y at the crossing of the i-th row and j-th column. Since a unitary matrix will preserve the l2-norm of the

vector mapped, U · Y and Y enjoy the same probability density. On the other hand, if two mixing matrices M and M ′

have the relationship as M ′ =M · V for some unitary matrix V , then substitute M ′ =M · V and Y ′ = V −1 · Y into

(25), and the two pairs (M,Y ) and (M ′, Y ′) produce the same Ỹ with the same likelihood.
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F Proof of Lemma 2

Proof. Suppose there exist two elementsW−1
1 andW−1

2 within the (2ǫ, 2δ) packing set both satisfying (13): Pr(‖(s̄W )W−1
1 −

s̄‖ < ǫ) ≥ 1 − δ and Pr(‖(s̄W )W−1
2 − s̄‖ < ǫ) ≥ 1 − δ. On the other hand, ‖(s̄W )W−1

1 − (s̄W )W−1
2 ‖ ≤

‖(s̄W )W−1
1 − s̄‖+ ‖(s̄W )W−1

2 − s̄‖. Therefore, we have

Pr(‖(s̄W )W−1
1 − s̄‖ < ǫ ∧ ‖(s̄W )W−1

2 − s̄‖ < ǫ) ≤ Pr(‖(s̄W )W−1
1 − (s̄W )W−1

2 ‖ < 2ǫ).

On one hand, with a union bound,

Pr
(

‖(s̄W )W−1
1 − s̄‖ < ǫ ∧ ‖(s̄W )W−1

2 − s̄‖ < ǫ
)

≥ Pr(‖(s̄W )W−1
1 − s̄‖ < ǫ) + Pr(‖(s̄W )W−1

2 − s̄‖ < ǫ)− 1 ≥ 1− 2δ.
(26)

On the other hand, with Definition 6,

Pr(‖(s̄W )W−1
1 − (s̄W )W−1

2 ‖ < 2ǫ) < 1− 2δ,

which is a contradiction.

G Proof of Theorem 1

Proof. As mentioned before, I(W−1, σ−1;Adv) ≥ I(W−1;Adv|σ−1), where conditional on σ−1, Adv is equivalent

to satisfying

Pr
s̄∼sa+sp,W

(‖Adv(s̄W )− s̄‖ < ǫ) ≥ 1− δ.

Thus, we first construct a packing set over the support set of W−1, i.e., [−β, β]d×d. In the following, we use ‖V ‖ to

define the norm of a matrix V as the largest eigenvalue of V .

Lemma 8. For a β-uniform matrix V , with probability at least (1− 2d · exp(− c2

2d2β2 )), ‖V ‖ < c.

Proof. It is well-known that a uniform distributed variable is sub-Gaussian. To be specific, if x ∼ U [−β, β], then

Ex[e
λx] ≤ eλ

2β2/2. Therefore, consider a d-dimensional uniform vector v whose entries are i.i.d. selected from [−β, β],
and any d-dimensional unit vector u such that ‖u‖ = 1. Applying the Hoeffding bound on sub-Gaussian variables, we

have

Pr(|〈v, u〉| ≥ t) ≤ 2exp(− t2

2β2
).

Setting t = c√
d

, with a union bound on the above, we have, if V is selected to be a d× d β-uniform matrix,

Pr(‖uV ‖ < c) ≥ 1− 2d · exp(− c2

2dβ2
).

Therefore, with probability at least (1− 2d · exp(− c2

2dβ2 )), ‖V ‖ < c.

With Lemma 8, a corollary is that, with probability at least (1 − 2d · exp(− c2

2d2β2 )), the smallest eigenvalue of

V −1 should be at least 1/c. Let W = V −1. Now we can move to lower bound ‖W (W−1
1 −W−1

2 )‖. In the next

step, we consider the anti-concentration of a Gaussian distribution. Assuming two vectors u1, u2 ∈ R
d, such that

‖u1 − u2‖ ≥ ∆, then with probability at least (1− 2d · exp(− c2

2dβ2 )), ‖W (u1 − u2)
T ‖ ≥ ∆/c. For any t > 0 and a

Gaussian variable x distributed as N(0, τ), Pr(|x| > t) = 2(1− Φ(t/
√
τ)), where Φ(t) is the cumulative distribution

function of the normal distribution N(0, 1), i.e., 1√
2π

∫ t

−∞ e−t
2/2dt. Therefore, by setting τ = τa + τb, for a Gaussian

vector s̄ ∈ R
d of which each entry is i.i.d. selected from N(0, τ), and any t > 0, we have

Pr(|〈s̄,W (u1 − u2)
T 〉| ≥ t) ≥ 2(1− Φ(tc/

√
τ∆))(1− 2d · exp(− c2

2dβ2
). (27)
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After the above preparation, we can now show how to construct a packing set w.r.t. W−1. One candidate is simply a

partition on the interval [−β, β]. We naturally divide [−β, β] into 2β/∆ intervals of equal length ∆. For simplicity,

we assume β/∆ is an integer. Then, we select one half of them in a form: {[−β + 2i · ∆,−β + (2i + 1) · ∆], i =
0, 1, ..., β/∆− 1}. It is noted that arbitrary different elements from different sets are of distance at least ∆. Now, we

generalize such a partition to each entry of W−1 within the range [−β, β]d×d. The concatenated partition is in a form

{[−β + 2i · ∆,−β + (2i + 1) · ∆], i = 0, 1, ..., β/∆ − 1}d×d, which in total produces (β/∆)d
2

many subclasses.

For arbitrary W−1
1 and W−1

2 from two different subclasses, we know that the l2 norm of at least one column of

(W−1
1 −W−1

2 ) is at least ∆. Thus, we finally have that for any W−1
1 and W−1

2 from two different subclasses described

above, with probability at least δ = 2(1 − Φ(t
√
c/
√
τ∆))(1 − 2d · exp(− c2

2dβ2 ), ‖s̄W (W−1
1 −W−1

2 )‖ ≥ t. Hence,

if we select one element from each subclass, they naturally produce a (t, δ) packing set w.r.t. W−1 provided the

transformed data s̄W .

A simple but useful fact which will be used later is, such a packing set construction can also lead to a straightforward

covering of the support set [−β, β]d×d. In other words, we divide the full space [−β, β]d×d into a union of packing sets

in a form

({[−β+2i·∆,−β+(2i+1)·∆], i = 0, 1, ..., β/∆−1}, {[−β+(2i+1)·∆,−β+(2i+2)·∆], i = 0, 1, ..., β/∆−1})d×d.

The following analysis will connect the mutual information and its partition form.

Consider

I(x, y) =
∑

x∈B,y∈Y
p(x, y) log

p(x, y)

p(x)p(y)
,

where there exist two disjoint Borel sets B1 and B2 as a partition of B = B1 ∪ B2. We have the following identity,

∑

x∈B1,y∈Y
p(x, y) log

p(x, y)

p(x)p(y)
=− Pr(x ∈ B1)

∑

x∈B1,y∈Y

p(x, y)

Pr(x ∈ B1)
log

p(x)p(y)

p(x, y)
. (28)

On the other hand, it is noted that when we restrict x into B1, the conditional mutual information I(x; y|x ∈ B1) equals

∑

x∈B1,y∈Y
p(x, y|x ∈ B1) log

p(x, y|x ∈ B1)

p(x|x ∈ B1)p(y)
=

∑

x∈B1,y∈Y

p(x, y)

Pr(x ∈ B1)
log

p(x, y) Pr(x ∈ B1)

p(x) Pr(x ∈ B1)p(y)
, (29)

which is equivalent to the right hand side of (28) multiplying a factor 1/Pr(x ∈ B1). Through the above discussion, we

can focus on the conditional mutual information on each packing set designed.

It is well known that under Shannon entropy, Fano’s inequality can produce an upper bound on H(T−1|Adv).
However, Fano’s inequality cannot directly apply to the continuous case. To overcome this, we propose a generalization

under proper assumptions.

Lemma 9 (A Generalization of Fano’s Inequality). Let χ be uniformly distributed over a domain (possibly con-

tinuous) X where there exists a partition X = X1 ∪ X2 ∪ ... ∪ XN . {Xi, i = 1, 2, ..., N} are disjoint and further

Pr(χ ∈ Xi) = 1
N . Then, for any estimator χ̂ which satisfies a Markov Chain χ→ y → χ̂ if there exists a sequence of

discretizations D1, D2, ... of X such that limi→∞Di = X , then

I(χ; χ̂) ≥ (logN)(1− Pe)− 1,

where Pe denotes the probability that χ and χ̂ do not belong to the same set Xi.

Proof. Let E be an indicator that E = 1 if both χ̂ and χ belong to the same set Xi; otherwise E = 0. Consider

a discretization where each partition set Xi contains C elements and χ is uniformly distributed over those discrete

elements. Since I(χ; χ̂) = H(χ)−H(χ|χ̂) = log(NC)−H(χ|χ̂), in the following, we focus on H(χ|χ̂). Applying

the Chain rule,

H(E,χ|χ̂) = H(χ|χ̂) +H(E|χ, χ̂) = H(E|χ̂) +H(χ|E, χ̂). (30)
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It is noted that E is deterministic given χ and χ̂, and thus H(E|χ, χ̂) = 0. On the other hand, H(E|χ̂) ≤ H(E) ≤ 1
and

H(χ|E, χ̂) = Pr(E = 0)H(χ|χ̂, E = 0) + Pr(E = 1)H(χ|χ̂, E = 1) ≤ (1− Pe) logC + Pe logNC.

Thus, combining all, we know

H(χ)−H(χ|χ̂) ≥ log(NC)− 1− logC − Pe log(NC/C) = (1− Pe) logN − 1. (31)

Now, we will apply Lemma 9 by replacing χ, χ̂ and N by W−1, Adv and the number of packing sets in (31).

Please note that Adv may not necessarily simply be an estimation of W−1, i.e., we do not restrict Adv within the

domain of [−β, β]d×d. But virtually, for any Adv operator, there exists at most one (ǫ, δ)-statistically close W−1

in a (2ǫ, 2δ) packing set. Let Pe = 0, and thus we obtain a lower bound on the conditional mutual information

I(W−1;Adv|σ−1,W−1 ∈ C2ǫ,2δ), where C2ǫ,2δ denotes one (2ǫ, 2δ) packing set constructed above. As assumed,

W−1 is uniformly distributed either across the full support set [−β, β]d×d, and thus also uniformly across one packing

set. Recall the connection between mutual information and the equivalent form of the sum of conditional mutual

information developed in (28) and (29), we know such a bound is also an lower bound for I(W−1;Adv|σ−1). The

theorem follows.

H Proof of Theorem 2

Proof. To derive an upper bound, it is noted that I(W−1, σ−1; sa, T (sa + sp)) = H(sa, T (sa + sp))−H(sa, T (sa +
sp)|W−1, σ−1). Clearly,H(sa, T (sa+sp)) ≤ H(sa)+H(T (sa+sp)). On the other hand,H(sa, T (sa+sp)|W−1, σ−1) =
H(T (sa + sp)|W−1, σ−1) + H(sa|T (sa + sp),W

−1, σ−1). As assumed, the public data sa is a Gaussian vector,

where each entry i.i.d. follows N(0, τa). Thus, H(sa) = d
2 (1 + log(2πτa)). As for H(sa|T (sa + sp),W

−1, σ−1),
note that, once T (sa + sp) and (W−1, σ−1) are given, they also determine sa + sp uniquely. For simplicity, we use

T−1 to denote the (W−1, σ−1) in the following. Therefore, we have

H(sa|T (sa + sp), T
−1) =

∫

s′∈Rd,t′∈[−β,β]d2
p(T (sa + sp) = s′, T−1 = t′)H(sa|T (sa + sp) = s′, T−1 = t′)

=

∫

s∈Rd

p(sa + sp = s)H(sa|sa + sp = s) = H(sa|sa + sp).

(32)

Substituting the distribution of sa and sp into the above equation, we have

H(sa|sa + sp) = −
∫

sa

∫

sa+sp

p(sa, sa + sp) log(p(sa|sa + sp))dsa dsp

= −d
∫

x

∫

y

φτa(x)φτp(y − x) log
φτa(x)φτp(y − x)

φτa+τp(y)
dx dy

= −d
∫

x

∫

y

φτa(x)φτp(y − x)
(

log φτa(x)φτp(y − x)− log φτa+τp(y)
)

dx dy.

(33)

Here, φτ denotes the density function of the Gaussian distribution N(0, τ), i.e., φτ (x) =
1√
2πτ

e−x
2/2τ . We separately

calculate the two quantities in (33).

As a straightforward corollary of the differential entropy of a Gaussian, since
∫

y
φτb(y − x)dy = 1 for fixed x, we

have

−
∫

x

∫

y

φτa(x)φτp(y − x) log φτa(x)φτp(y − x)dx dy =
1

2
(1 + log 2πτp) +

1

2
(1 + log 2πτa). (34)

For the very last part, −
∫

x

∫

y
φτa(x)φτp(y − x) log φτa+τp(y), which is equivalent to

−
∫

y

(

∫

x

φτa(x)φτp(y − x)dx) · log φτa+τp(y)dy =
1

2
(1 + log 2π(τa + τp)). (35)
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Therefore, the sum of (34) and (35) produces a closed form for H(sa|T (sa + sp), T
−1). Since H(sa) = d

2 (1 +

log 2π(τa)), we have H(sa) −H(sa|T (sa + sp), T
−1) = d

2 (log(
τa+τp
τp

)), which approaches 0 as τp → ∞. Finally,

for H(T (sa + sp))−H(T (sa + sp))|T−1) = I(T ;T (sa + sp)), since T (sa + sp) is restricted to a finite discrete set

K, it is upper bounded by log(|K|). Combining both, the theorem follows.

I Proof of Theorem 3

Proof. With a similar reasoning as the proofs to Theorem 1 and Theorem 2, the following content includes two parts,

where the first derives a lower bound I(W ;Adv), while the second derives an upper bound of I(W ; sa, T (s̄)).
We follow the same idea in Appendix G to construct a packing set of W . The range of each entry [−β, β] is divided

into 2β/∆ intervals of equal length ∆. For simplicity, we assume β/∆ is an integer. Under such partition, we consider

two matrices W1 and W2 from different partition sets where they differ in at least one entry with distance at least ∆.

For s̄ ∈ N(0, τ · Id) and any w ∈ R
d×1, with ‖w‖ ≥ ∆, we have the inner product 〈s̄, w〉 ∼ N(0, τ‖w‖). Thus,

Pr(|〈s̄, w〉| ≥ t) = 2(1− Φ(t/(
√
τ‖w‖))) and therefore Pr(|〈s̄, w〉| ≥ 2ǫ) ≥ 2(1− Φ(2ǫ/(

√
τ∆))).

Hence, by only selecting non-adjacent partition subsets, ({S2i+1, i = 0, 1, ..., β∆ − 1}, {S2i, i = 1, 2, ..., β∆})d×d′
produces a covering of the support domain of W while on the other hand, if we select one element from each subclass,

they will form a packing set. Following Lemma 9, we have

I(W ;Adv) ≥ d′d log(β/∆)− 1.

In the following, we focus on upper bounding I(W ; sa, T (s̄)), where we have

I(W ; sa, T (s̄)) = H(sa, T (s̄))−H(sa, T (s̄)|W )

≤ H(sa) +H(T (s̄))−H(sa|W )−H(T (s̄)|sa,W ).
(36)

Here, it is noted that the selection of sa is independent of that of W , and thus, H(sa|W ) = H(sa). On the other hand,

provided W and sa, T (s̄) = T (sa + sp) also uniquely determines spW . Therefore, (36) can be further rewritten as

I(W ; sa, T (s̄)) ≤ H(T (s̄))−H(spW |W ). (37)

Indeed, T (s̄), which is equivalent to s̄W , can be viewed as a multivariate Gaussian and H(s̄W ) can be upper

bounded by the sum of the entropy of each individual coordinate. Thus,

H(s̄W ) ≤ d′H(s̃),

where s̃ is a Gaussian in a form N(0, τ‖w‖2), where w ∼ U [−β, β]1×d. On the other hand, to handle H(spW |W ), for

any given W , H(spW ) = 1
2 log

(

(2πe)d
′

det(τΣ)
)

, where Σ =WTW . Thus,

H(spW |W ) = EΣ=WTW
1

2
log

(

(2πe)d
′

det(τΣ)
)

.

In particular, when d = d′ and W is of probability one to be an invertible matrix, then we have the following:

I(T ;T (sa + sp), sa)

= I(T ;T (sa + sp), sa|sa, sp) + I(T ;T (sa + sp), sa; sa, sp)

= I(T ;T (sa + sp), sa|sa, sp) + I(T ; sa, sp)− I(T ; sa, sp|T (sa + sp), sa)

= I(T ;T (sa + sp), sa|sa, sp)− I(T ; sa, sp|T (sa + sp), sa)

= H(T (sa + sp), sa|sa, sp)−H(T (sa + sp)|T, sa, sp)− I(T ; sa, sp|T (sa + sp), sa)

= H(T (sa + sp), sa|sa, sp)−H(sa, sp|T (sa + sp), sa) +H(sa, sp|T, T (sa + sp), sa)

= H(T (sa + sp), sa)−H(sa, sp).

(38)

Combining both the lower bound of numerator and the upper bound of the denominator, we have the claim.
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J Proof of Theorem 5

Proof. Since the selection of each row of W is independent, the high-level structure of the proof is that we first describe

such distribution difference in one coordinate of the output and then we compose those differences to derive the final

result. It is noted that after SVI, the gap matrix becomes X̂1 − X̂2 = X1 −X2 + (X̂1 −X1)− (X̂2 −X2), where the

last two quantities need careful control. Now, consider the following identity

X̂2X̂
T
2 − X̂1X̂

T
1 = E(X1 + E)T +X1E

T . (39)

zT [(X̂1X̂
T
1 )

−1 − (X̂2X̂
T
2 )

−1]z = zT [(X̂1X̂
T
1 )

−1(X̂2X̂
T
2 )(X̂2X̂

T
2 )

−1 − (X̂2X̂
T
2 )

−1]z

= zT [(X̂1X̂
T
1 )

−1(X̂1X̂
T
1 + E(X1 + E)T +X1E

T )(X̂2X̂
T
2 )

−1 − (X̂2X̂
T
2 )

−1]z

= zT [(X̂1X̂
T
1 )

−1(E(X1 + E)T +X1E
T )(X̂2X̂

T
2 )

−1]z.
(40)

Without loss of generality, replacing z by X1α in (40), we have

αT [(X̂1)
−1(E(X1 + E)T +X1E

T )(X̂2X̂
T
2 )

−1]X1α

=
[

αT (X̂1)
−1E

]

·
[

XT
2 (X̂2X̂

T
2 )

−1X1α
]

+
[

αT (X̂1)
−1X1

]

·
[

ET (X̂2X̂
T
2 )

−1X1α
]

=
[

αT (X̂1)
−1E

]

·
[

XT
2 (X̂

−1
2 )T X̂−1

2 (X2 − E)α
]

+
[

αT (X̂1)
−1X1

]

·
[

ET (X−1
2 )T (X̂2)

−1(X2 − E)α
]

.

(41)

Take a closer look at several key components in (41). The first is X̂−1
2 X2. Assume X2 = UΣV and thus X̂2 =

U(Σ + υ · I)V . This provides X̂−1
2 X2 = V T (Σ + υ · I)−1ΣV , where each diagonal element of (Σ + υ · I)−1Σ is

less than 1 since υ > 0. This observation produces a useful corollary that for any vector z, ‖X̂−1
2 X2 · z‖ < ‖z‖. The

other useful conclusion we will use is, for arbitrary matrix X , the Frobenius norm is always no less than the l2 norm.

Now, if we rewrite E in the following form that E = ei · vTi , where ei is the ith natural basis, vi is the ith row of E and

i is the index of the sample in which the two adjacent datasets X1 and X2 differ. Then, we can further write (41) as

[

αT (X̂1)
−1ei

]

·
[

vTi ·XT
2 (X̂

−1
2 )T X̂−1

2 (X2 − E)α
]

+
[

αT (X̂1)
−1X1vi

]

·
[

eTi (X
−1
2 )T (X̂2)

−1(X2 − E)α
]

. (42)

Before proceeding, we first prove the following lemma.

Lemma 10. Assuming α ∈ R
n which is randomly selected from the (n− 1)-dimensional sphere centered at 0 with

radius r, i.e., ‖α‖ = r, then α is a Sub-Gaussian random variable and

Pr(|vT ·α| ≤ r‖v‖
√

−2 log(δ/4)
√

n+ 2
√

n log(δ/2)
) < 1− δ.

Proof. Equivalently, we can rewrite α = t · g/‖g‖, where g ∼ N(0, In), since a normalized Gaussian vector is

uniformly distributed in the unit (n − 1)-sphere Sn−1. First, for ‖g‖2, which follows a χ-distribution, applying the

Bernstein inequality, we have the following concentration bound,

Pr(‖g‖2 ≤ n− 2
√
nc) ≤ e−c.

On the other hand, vTg ∼ N(0, ‖v‖), and thus

Pr(|vTg| > ‖v‖
√

−2 log(δ′/2)) < δ′.

Putting the above two bounds together, we have

Pr(r · |vTg|/‖g‖ ≤ r‖v‖
√

−2 log(δ′/2)
√

n− 2
√
nc

) > 1− δ′ − e−c.

Let c = − log(δ/2) and δ′ = δ/2, we have the argument claimed.
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Back to (42), we have the following observation. First, ‖X̂−1
1 ei‖ ≤ 1

υ since the least singular value of X̂1 is at least

υ. Second, ‖vTi ·XT
2 (X̂

−1
2 )T ‖ ≤ ‖vTi ‖.

Applying Lemma 10 on each component of (42), we have that

Pr
(

|zT [(X̂1X̂
T
1 )

−1 − (X̂2X̂
T
2 )

−1]z| ≤ 2(1 +
‖vi‖
υ

)
−r2‖vi‖2 log(δ/32)
υ(n+ 2

√

n log(δ/16))

)

> 1− δ. (43)

Now, we can turn to bound the ratio,

P (X̂−1z)

P (X̂−1
2 z)

=
eψ(‖X̂

−1

1
z‖2)

eψ(‖X̂
−1

2
z‖2)

≤ eL|‖X̂
−1

1
z‖2−‖X̂−1

2
z‖2| = eL|z

T [(X̂1X̂
T
1
)−1−(X̂2X̂

T
2
)−1]z|. (44)

As for the ratio
det(X̂1)

det(X̂2)
, we follow the idea in [BBDS12], which is based on the Linskii Lemma [Bha07]:

Lemma 11 ([Bha07]). Given two matrices X and X ′ ∈ R
n×n, whose singular values are λ1 ≥ λ2 ≥ ...λn and

λ′1 ≥ λ′2 ≥ ...λ′n, respectively, let E = X ′ −X . Then, for every k ∈ [1 : n] and any 1 ≤ i1 < i2 < ... < ik ≤ n,

k
∑

j=1

λij ≤
k

∑

j=1

λij +

k
∑

j=1

sv(E)j ,

where sv(E)[1:n] are the singular values of E in an non-increasing order.

From the above lemma, in our case, E is of rank 1, which has only one non-zero singular value upper bounded by

B. Thus, if we can further guarantee the least singular values of both X and X ′ are at least υ, then

det(X)

det(X ′)
=

n
∏

i=1

λi
λ′i

≤
∏

i,λi>λ′

i

λi
λ′i

=
∏

i,λi>λ′

i

(1 +
λi − λ′i
λ′i

) ≤ e
∑

i,λi>λ′
i

λi−λ′
i

λ′
i ≤ e

B

υ . (45)

(43), (44) and (45) together produce the (ǫ0, δ0 + δr) DP leakage for one dimension of the output, where

ǫ0 =
B
υ
+ 4L(1 +

B
υ
)

−r2Blog(δ0/32)
υ(n+ 2

√

n log(δ0/16))
.

Applying the well-known DP composition [DRV10], a d′-fold of (ǫ0, δ0 + δr)-DP mechanism will produce
(

d′ǫ0(eǫ0 −
1) + ǫ0

√

2d′ log(1/δ̃), d′(δ0 + δr) + δ̃
)

, and the claim follows.

36


