
Publications of the Astronomical Society of Australia (PASA), Vol. 31, e035, 40 pages (2014).
C© Astronomical Society of Australia 2014; published by Cambridge University Press.
doi:10.1017/pasa.2014.31

Dawes Review 4: Spiral Structures in Disc Galaxies

Clare Dobbs1,3 and Junichi Baba2

1School of Physics and Astronomy, University of Exeter, Stocker Road, Exeter, EX4 4QL, UK
2Earth-Life Science Institute, Tokyo Institute of Technology 2-12-1-I2-44 Ookayama, Meguro, Tokyo 152–8551, Japan
3Email: dobbs@astro.ex.ac.uk

(Received September 17, 2013; Accepted July 16, 2014)

Abstract

The majority of astrophysics involves the study of spiral galaxies, and stars and planets within them, but how spiral

arms in galaxies form and evolve is still a fundamental problem. Major progress in this field was made primarily in the

1960s, and early 1970s, but since then there has been no comprehensive update on the state of the field. In this review,

we discuss the progress in theory, and in particular numerical calculations, which unlike in the 1960s and 1970s, are now

commonplace, as well as recent observational developments. We set out the current status for different scenarios for spiral

arm formation, the nature of the spiral arms they induce, and the consequences for gas dynamics and star formation in

different types of spiral galaxies. We argue that, with the possible exception of barred galaxies, spiral arms are transient,

recurrent and initiated by swing amplified instabilities in the disc. We suppose that unbarred m = 2 spiral patterns are

induced by tidal interactions, and slowly wind up over time. However the mechanism for generating spiral structure does

not appear to have significant consequences for star formation in galaxies.
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The Dawes Reviews are substantial reviews of topical areas

in astronomy, published by authors of international stand-

ing at the invitation of the PASA Editorial Board. The re-

views recognise William Dawes (1762–1836), second lieu-

tenant in the Royal Marines and the astronomer on the First

Fleet. Dawes was not only an accomplished astronomer, but

spoke five languages, had a keen interest in botany, min-

eralogy, engineering, cartography and music, compiled the

first Aboriginal-English dictionary, and was an outspoken

opponent of slavery.

1 INTRODUCTION

Spirals galaxies represent some of the most beautiful, and

fascinating objects in the Universe. According to the Galaxy

Zoo project, spiral galaxies make up about two thirds of all

massive galaxies, whilst around one third are ellipticals, and

a few per cent merging galaxies (Lintott et al. 2011; Willett

et al. 2013). Star formation overwhelmingly occurs in spiral

galaxies, and in particular is associated with spiral arms. Thus

understanding the nature of spiral arms is essential both for

understanding star formation, and galaxy evolution.

Spiral galaxies are generally classified into different types

according to the presence of a bar (S and SB for unbarred

and barred galaxies, and sometimes SAB for weakly barred

galaxies) and the degree of winding (or pitch angle) of the

spiral arms (Hubble 1926b; Reynolds 1927; de Vaucouleurs

1959). The latter is scaled from Sa-Sd or SBa to SBd with the

‘d’ classification representing the most open arms, and the

‘a’ classification the most tightly wound. The sequence also

represents a decrease in the size and luminosity of the bulge

from Sa (or SBa) galaxies to Sd (or SBd), and an increase in

gas content from Sa to Sd galaxies.

A second classification scheme was proposed by

Elmegreen & Elmegreen (1982) and Elmegreen & Elmegreen

(1987) to classify spiral galaxies into 12 types according to

the number and length of spiral arms. Thus galaxies with

many fragmented short arms are different types to those with

two long arms. Galaxies could also be denoted as having two

inner arms, and multiple outer arms. A simpler, but similar

division of spiral galaxies (see e.g. Elmegreen 1990) is into 3

types: flocculent spiral galaxies (with many short arms, such

as NGC2841), multi-armed spirals (e.g. M33) and grand de-

sign galaxies (with two main spiral arms, e.g. M51). All of

these types may or may not exhibit bars. Around 60 %, of

galaxies exhibit some grand design structure, either in the in-

ner or entire part of the disc (Elmegreen & Elmegreen 1982;

Grosbøl, Patsis, & Pompei 2004).

The Hubble classifications are usually associated with the

long-term evolution of galaxies, whereas the classification by
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Elmegreen is instead associated with their current properties

and environment. Historically, Sa galaxies, and ellipticals

were termed early type galaxies, whilst Sc and Sd galaxies

were termed late type galaxies, though this is opposite to

the evolutionary sequence which has since been established.

Instead trends in star formation rate, bulge-to-disc ratio, and

age of disc stars now indicate an evolutionary sequence from

Sc to Sa types (Sandage 1986; Kennicutt 1998). Sa type

galaxies are thought to have already used up much of their

gas and exhibit lower star formation rates compared to Sc

and Sd types, although mergers and galaxy interactions will

also influence the properties of the galaxies (e.g. Elmegreen

1990. We also note correlations with Hubble type are only

a general trend – Kennicutt (1981) indicates that the pitch

angle correlates only in an average sense with galaxy type,

and there is quite substantial spread.

The flocculent, or grand design nature of spiral galaxies,

is directly linked to the mechanism which generates the spi-

ral arms. There are three main mechanisms hypothesised to

produce spiral arms, (i) (quasi-stationary) density wave the-

ory, (ii) local instabilities, perturbations, or noise which are

swing amplified into spiral arms, and (iii) tidal interactions.

Bars may also play a role in inducing spiral arms. Note that

these mechanisms are not necessarily mutually exclusive,

for example a tidal interaction could theoretically induce a

wave which obeys density wave theory. Typically though, lo-

cal instabilities are associated with flocculent or multi-armed

galaxies, whereas grand design galaxies are presumed to have

undergone a tidal interaction, have a bar driving arms, and/or

obey steady state density wave theory. In addition to the

various classifications of spiral galaxies, and spiral arm for-

mation mechanisms, there are also three kinematic types of

spiral arm (i) material arms, which obey the kinematics of the

disc, (ii) kinematic spiral arms, which rotate slower than the

angular velocity of the disc, and (iii) stationary spiral arms,

which rotate rigidly and do not wind up. In the following

sections we discuss these (and a few other) supposed mecha-

nisms, and which type of spiral arms, and spiral galaxies are

produced.

There are also several simple properties of spiral arms that

we can observe that can give insight on the nature of spiral

arms (we go into much more depth on observational tests

for spiral arms in Section 4), (i) the number of spiral arms,

(ii) the pitch angle, (iii) amplitude, (iv) arm shape and (v)

lifetime. How many spiral arms a galaxy exhibits is one of

the most fundamental questions regarding the theory of spi-

ral arms. In the absence of a bar, or perturber, this will most

simply depend on the relative disc and halo masses, and their

dimensions. A galaxy will only form spiral arms at all if

the disc is sufficiently gravitationally dominated. To a rough

approximation (the susceptibility of the disc to asymmetric

perturbations) this is governed by the Toomre parameter Q

for stars and/or gas (see Section 2.1.1). If the disc is unsta-

ble, an estimate of the expected number of spiral arms can be

made by considering the stability of different wavenumbers

in the appropriate dispersion relation (i.e. the value of k, the

wavenumber, such that e−iω(k)t grows fastest). Alternatively,

and more appropriately for perturbations growing from lo-

cal instabilities or noise, the number of arms can be esti-

mated by swing amplification theory, as described in Section

2.2.1, where again the number of spiral arms corresponds to

the value which produces the greatest amplification. Tidally

interacting galaxies naturally produce two-armed spiral

galaxies.

Other observable properties of spiral arms were investi-

gated by Kennicutt 1981, and many other works since (e.g.

Considere & Athanassoula 1988; Block et al. 1994; Puer-

ari & Dottori 1992; Seigar & James 1998; Ma 2002; Seigar

et al. 2006; Elmegreen et al. 2011; Kendall, Kennicutt, &

Clarke 2011). Although the pitch angle is historically used

to classify galaxies according to the Hubble sequence, the

differences in spiral arm shape, i.e. the pitch angle of the

spiral arms appears to be most dependent on the maximum

rotation velocity, and thus the local shear in the disc, rather

than the global mass distribution (Kennicutt 1981; Kennicutt

& Hodge 1982; Garcia Gomez & Athanassoula 1993; Seigar

& James 1998; Seigar et al. 2006). For example Figures 8 and

10 of Kennicutt (1981) show that the pitch angle correlates

much better with the maximum rotational velocity than the

properties of the bulge. However there is still considerable

scatter (see Figure 7 of Kennicutt 1981) in the correlation

with rotation velocity that there is scope for tidal interac-

tions, or density wave theory to introduce some spread (see

also Grand, Kawata, & Cropper 2013). There is also no cor-

relation with pitch angle and arm class, i.e. the Elmegreen

classification scheme of whether the galaxy is flocculent or

grand design (Puerari & Dottori 1992). Kennicutt (1981)

also examined the shapes of spiral arms, finding that they did

not fit exactly into the category of either density wave the-

ory (logarithmic) or tidally induced (hyperbolic spirals). The

lifetimes of spiral arms are obviously much more difficult

to test observationally (see Sellwood 2011). Here we have

relied more on computer simulations, and theory to predict

the lifetimes of spiral arms for different scenarios. Generally

though, arms in flocculent galaxies are expected to be fairly

short lived (few 100 Myrs) and arms in grand design spirals

somewhat longer lived (∼1 Gyr).

Although so far we have discussed spiral galaxies as either

flocculent or grand design, observations in the 1990s showed

that galaxies could exhibit characteristics of both floccu-

lent and grand design structure, typically with grand design

arms seen in the infrared (old stars) and a more flocculent

structure seen in the optical (gas and young stars) (Block &

Wainscoat 1991; Thornley 1996; Thornley & Mundy 1997).

Some galaxies also appear to exhibit a 3 armed structure in

the optical and 2 armed in the IR (Block et al. 1994). The ex-

istence of such galaxies poses a further challenge for theories

of spiral structure.

The main previous review on spiral structure is Toomre

(1977), though there have also been a couple of shorter re-

views by Sellwood in recent years (Sellwood 2010b, 2011).

A historical review of spiral arm theory in the 1960s and
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Figure 1. A sketch of M51 by Lord Rosse (Rosse 1850).

70s is also given by Pasha (2004a 2004b). A review specific

to the Milky Way is currently being written by Benjamin

(Benjamin 2014, in preparation). In this review, we aim to

bring together the different aspects of studies of spiral struc-

ture including simulations and observational tests, as well as

the theory. The outline of this review is as follows. In Section

1.1, we discuss the historical context of spiral galaxies, and

the origin of different theories for spiral structure. In Section

2 we go into much more detail on the possible mechanisms

for generating spiral structure, including density wave theory,

swing amplification, bars, tidal interactions, stochastic star

formation and dark matter halos. We also include discussion

of computer simulations to test these theories. In Section 3

we examine the gas response to spiral arms, including again

density wave theory, local instabilities and tidal perturba-

tions. In Section 4 we discuss possible observational tests to

distinguish between the various scenarios of spiral structure.

Finally in Section 5, we present our conclusions.

1.1 Historical overview

For a comprehensive review of the history of spiral structure,

we recommend Pasha (2004a 2004b), who gives a very de-

tailed, and personal description of the developments in spiral

structure, particularly in the 1960s. Here we given a brief

overview up to about the time of the Toomre (1977) review,

although much of the background theory is also considered

in much more detail in Section 2.

Spiral galaxies have been observed for over 150 years, al-

though until the 1920s, they were classed as ‘spiral nebulae’,

and assumed to lie within our own Galaxy. The spiral struc-

ture of M51 was identified by Lord Rosse in 1850 (Rosse

1850) as the first spiral nebulae (Figure 1). Rosse also iden-

tified point sources within these nebulae, hence establishing

that they were not simply clouds of gas. The Curtis-Shapley

‘Great Debate’ then later ensued about whether these nebu-

lae were extragalactic. This matter was clarified by Hubble,

who confirmed that the spiral nebulae were indeed external

to the Milky Way, and thus spiral galaxies, by determining

the distance first to M33, and then M31, using Cepheid vari-

ables (Hubble 1926a, 1929). The distances to M31 and M33

demonstrated that these objects were far too distant to lie

within the Milky Way.

Following the establishment of the nature of spiral neb-

ulae, astronomers considered the nature of the spiral arms

themselves. The first main proponent of this work was Lind-

blad, who first considered spiral arms in terms of Maclau-

rin ellipsoids (flattened spheroids rotating in an equilibrium

state) (Lindblad 1927), following previous work by Jeans and

Poincare. He considered an instability occurring at the edge

of an ellipsoid, which induces high eccentricity in the orbits

at the outer edges, pertaining to circular orbits nearer the

centre. Lindblad (1935) later derived a condition for grav-

itational instability, and thereby spiral arms, in a series of

rotating spheroids. Lindblad wrote that spiral arms are anal-

ogous to a harmonic wave in an unstable Maclaurin spheroid

(Lindblad 1927, 1940). He considered spiral arms in terms

of individual stellar orbits (and indeed, Kalnajs 1973 later

showed that a spiral perturbation can be represented by a

series of unaligned elliptical orbits) rather than a collective

process. The idea of spiral arms as a wave was not actively

considered until the 1960s.

The 1960s in fact saw the next major development in spiral

arm theory, when indeed spiral arms started to be considered

as collective processes governed by the gravity of the galac-

tic disc. The pioneering work of Toomre (1964) and Lin &

Shu (1964) (following also the stability analysis of Safronov

1960 for discs) studied gravitational instabilities in the con-

text of an infinitesimally thin, rotating, stellar disc. Both

papers started with the linearised equations of motion, and

Poisson’s equation for a stellar disc, and established solutions

which have the Fourier decomposition (Shu 1992; Binney &

Tremaine 2008):

ψ(R, φ, t) = Re[A(R)ei(ωt−mφ)], (1)

where �p = ω/m and �p is the angular velocity of the pertur-

bation, or pattern speed. Equation 1 assumes that the complex

function A(R), which determines the amplitude and radial

phase of the perturbations, varies slowly with R (the tight

winding approximation, see Section 2.1.1). Thus these solu-

tions represent waves with crests at periodic displacements.

In addition to the form of the wave, these results also es-

tablished the dispersion relations for fluid and stellar discs

(with Lin & Shu 1966, and Kalnajs 1965), and the stability

criteria for discs subject to axisymmetric perturbations (see

Section 2). At this point however, there is complete flexibility

regarding the value of m (the number of arms), the superposi-

tion of waves of different m, what range of R or φ the solution

covers, the sign of �p, and thus whether the arms are leading

or trailing, or the length of time the perturbation exists.

Lin & Shu (1964) proposed that in fact there is a preference

for lower values of m, and that such waves are relatively

stable with time. Lin & Shu (1964, 1966) also proposed a

global solution for the disc, rather than the local perturbations

assumed by Toomre (1964). Such global stable waves would
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be standing waves in the disc, and hence they were called

‘quasi-stationary’, a term first introduced by Lindblad (1963).

The motivation for supposing the stability of these waves, in

particular for m = 2 was largely observational. Most galaxies

were observed to be spirals at that time (Hubble 1943), so

either the spiral arms are long lived, or they are continually

replenished. Furthermore, fixed spiral arms would remove the

so called ‘winding problem’. In addition, disproportionately

many galaxies have 2 spiral arms, so a tendency for systems

to exhibit m = 2 would explain this predominance.

Goldreich & Lynden-Bell (1965a), consider the action of

gravitational instabilities, first in a uniformly rotating gas

disc, then under differential rotation (Goldreich & Lynden-

Bell 1965b). They supposed that spiral arms are a super-

position of many unstable wavelengths in the gas. In their

picture, it is the instabilities in the gas which form gaseous

spiral arms, which in turn form stars and lead to stellar spiral

arms. This is somewhat different from the picture of a stellar

dominated disc, where instabilities are thought to arise in the

stars, leading to a gravitational potential well for the gas to

fall into, shock and form molecular clouds (see Section 3.7).

Unlike the simpler analysis of discs subject to axisymmetric

perturbations (see Section 2), these studies investigate asym-

metric perturbations in a shearing disc. Goldreich & Lynden-

Bell (1965b), and Julian & Toomre (1966), demonstrated the

significance of a differentially rotating disc. Gravity is en-

hanced as a region undergoes shear. Hence it is easier for

perturbations to grow via the disc self gravity. This effect

was later coined swing amplification, discussed further in

Sections 2.1.3 and 2.2.

Meanwhile there were some important observational de-

velopments following the theoretical work of Lindblad. One

was the finding that spiral arms tended to be trailing in char-

acter (Hubble 1943). A second was that, rather than uniform

rotation, galaxies were indeed observed to rotate differen-

tially (e.g. Burbidge & Burbidge 1964; Rubin & Ford 1970).

In the late 60s, and 70s, authors started to consider the

response of gas to the stellar disc. Assuming a static spiral

potential of the form proposed by Lin & Shu (1964), the so-

lution for the gas response can be obtained (Fujimoto 1968;

Roberts 1969). In particular the gas is found to undergo a

shock caused by the stellar spiral spiral arms. The detec-

tion of dark dust lanes alongside spiral arms (Sandage 1961;

Lynds 1970) gave strong observational evidence that the gas

undergoes a spiral shock, the dense shock being seen as dark

clouds in the dust lanes that go on to form stars (Roberts

1969). In fact it is now evident that regardless of how spi-

ral arms are generated, spiral structure is only very weak in

the old stars, whereas the spiral structure we see by eye is

dominated by the gas and young stars (e.g. Elmegreen et al.

2011).

At the same time however, results were starting to query

whether steady spiral modes could be sustained in galaxies.

Lynden-Bell & Ostriker (1967) showed, in the ‘anti-spiral

theorem’ that stable spiral modes do not exist in a steady

state, although it is possible to obtain a solution with asym-

metric spirals, i.e. one trailing and oneToomre (1969) also

showed that the waves will not remain in a fixed position

within the disc, rather the pattern will propagate inwards to

outwards with the group velocity on a timescale of a few

galactic rotations – suggesting that density waves need to

be constantly replenished. Consequently, a mechanism to

maintain density waves was required. Mark (1974, 1976)

suggested that it could be possible to maintain spiral density

waves by means of reflection between two radii of the disc

– setting up a standing wave. Toomre (1969) instead pro-

posed tidally interacting galaxies were the primary means of

generating m = 2 spiral structure.

Since the 1970s, the debate about stationary versus tran-

sient spirals has continued. In addition to theoretical ar-

guments, numerical simulations have become much more

widespread to test theories of spiral structure. Observations

are also starting to provide some information on the dynamics

of spiral galaxies.

2 GENERATION OF SPIRAL STRUCTURE

In this section we describe the different mechanisms for

generating spiral structure, namely quasi-stationary density

wave theory (Section 2.1), recurrent transient spiral instabil-

ities (Section 2.2), bars (Section 2.3), tidal interactions (Sec-

tion 2.4), stochastic star formation (Section 2.5), and exotic

mechanisms such as perturbations from dark matter halos

(Section 2.6).

2.1 Quasi-stationary density wave theory

In this section we present the theory that global spiral arms are

slowly evolving patterns that rotate with fixed pattern speeds

in the disc, quasi-stationary density wave theory. Much of

this material is theoretical, as we discuss in Section 2.1.5,

this theory has not yet been demonstrated in the context of

numerical simulations.

Inspired by the idea of kinematic density waves suggested

by Lindblad (1960, 1963), Lin & Shu (1964) proposed a self-

consistent density wave theory. Unlike Lindblad’s approach

(Toomre 1977; Pasha 2004a, 2004b, for reviews), Lin & Shu

treated the galactic disc as a ‘continuum’ consisting of either

stars or gas, and derived the dispersion relation of the density

waves for a rotating disc. Qualitatively, they assumed that

the spiral arms are not material in nature, but instead made

up of areas of greater density, with the stars and gas moving

through the spiral arms. The difference in the dynamics is

often compared to cars moving along a traffic jam. Material

arms are analogous to a queue of cars moving at a speed v0

identical to all other vehicles on the road. For density waves,

instead suppose a queue of cars moving at v1 < v0, whereas

other cars on the road will slow down to v1 as they enter the

queue and speed up as they leave.

After the derivation of the dispersion relation for a fluid

disc by Lin & Shu (1964), the dispersion relation for a

stellar disc was derived by Lin & Shu (1966) and Kalnajs
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(1965). The dispersion relations for fluid and stellar discs are

called the Lin-Shu dispersion relation and Lin-Shu-Kalnajs

dispersion relation, respectively. We first outline the phys-

ical meaning of the dispersion relations based on the lin-

ear tight-winding density wave theory of fluid and stellar

discs (Section 2.1.1). Then, we explain the global mode

theory of galactic discs (Section 2.1.4). The behaviour of

gas in quasi-stationary density waves will be described in

Section 3.5.

2.1.1 Dispersion relations of tight-winding density

waves

Lin and Shu derived dispersion relations of fluid and stellar

discs under the following approximations and assumptions:

1. Linear perturbations: They linearized the equation of

continuity, the equations of motion (Euler equation),

the equation of state, and Poisson equation, and then

studied the behaviour of the linear perturbations. In

this case, it is assumed that the unperturbed disc is

axisymmetric and has no radial motions.

2. Tight-winding approximation (short wavelength or

WKB1 approximation): Deriving the dispersion rela-

tion for a general spiral wave is extremely complicated

because of the long-range force nature of gravity (see

Section 2.1.4). They assumed the spiral arm has a small

pitch angle in order that distant density perturbations

can be neglected. In other words, the response of the

matter to the gravity perturbations becomes local. In

this approximation, the dispersion relation of density

waves can be written down in terms of local quantities.

If we write the radial dependence of any perturbation

quantity (Equation 1) in terms of an amplitude and

phase as

A(R) = �(R)ei f (R), (2)

the tight-winding approximation corresponds to the as-

sumption that the phase f (R) varies rapidly in compar-

ison with amplitude �(R), i.e.,
∣

∣

∣

∣

df

dR

∣

∣

∣

∣

≫
∣

∣

∣

∣

1

�

d�

dR

∣

∣

∣

∣

. (3)

3. Quasi-stationary spiral structure hypothesis (QSSS hy-

pothesis): They hypothesized that ‘global’ spiral arms

hardly change their shape during many galaxy rota-

tional periods (‘quasi-stationarity’) based on empirical

grounds (Lin & Shu 1964; Bertin & Lin 1996; Bertin

2000). This is equivalent to assuming that the rota-

tion of global spiral arms is rigid-body rotation with

a specific angular velocity and pitch angle. This fixed

angular speed is called the pattern speed. In the inner

parts of galaxies, stars and gas rotate faster than the

pattern speed, and overtake the spiral arm. In the outer

1 Named after the Wentzel-Kramers-Brillouin approximation of quantum
mechanics.

parts of galaxies, stars and gas rotate slower than the

pattern speed, and the spiral arms overtake the stars and

gas.

Taking into account these approximations and assump-

tions, the Lin-Shu theory is often called a linear tight-

winding, or quasi-stationary density-wave theory.

Since the stars occupy most of the mass of the galactic disc,

the dispersion relation of the density wave of a stellar disc

is important in understanding the spiral arms. However, the

dispersion relation for a fluid disc is simpler, so we introduce

this first, before discussing the dispersion relation for a stellar

disc. We refer the reader to Binney & Tremaine (2008) and

Shu (1992) for the mathematical details on derivation of

dispersion relations, as well as Bertin & Lin (1996) and

Bertin (2000) for further discussion on the concept of quasi-

stationary density wave theory.

The dispersion relation for linear tight-winding perturba-

tions in the razor-thin fluid disc (Lin-Shu dispersion relation;

LS dispersion relation) is given by

(ω − m�)2 = c2
s
k2 + κ2 − 2πG	0|k|, (4)

(Lin & Shu 1964). Here �, 	0, cs and κ are the angu-

lar frequency, surface density, sound speed and epicyclic

frequency

κ =
√

R
∂�2

∂R
+ 4�2 (5)

of the fluid disc, respectively. These quantities depend on the

galacto-centric radius R and define the axisymmetric basis

state. ω, k, and m are the angular frequency, radial wave-

number, and the number of spiral arms, respectively. The

radial wave-number k is related to the phase of the radial

dependence of the perturbations f (R) (Equation 2) via

k(R) ≡
df (R)

dR
. (6)

We define k > 0 for a trailing spiral arm and k < 0 for a

leading spiral arm. Note that the so-called pattern speed �p

is defined as ω/m.

In the inertial frame, ω on the left hand side of Equation

(4) is the angular frequency of the density wave. In the

rotating frame at some radius R in the disc, (ω − m�)

is the angular frequency of the density wave experienced

by a star at R. A perturbation to the disc will be of the

form exp[−i(ω − m�)t]. Positive (ω − m�)2 means that

the perturbations to the disc will be stable. However negative

(ω − m�)2 means that the perturbations will be of the form

exp[±|ω − m�|t] and there is a perturbation whose ampli-

tude grows exponentially, thus the disc is unstable. Therefore,

the right-hand side of equation (4) indicates the stability of

the density waves. Here, we can introduce a dimensionless

parameter

Q ≡
κc

s

πG	0

, (7)
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Figure 2. Dispersion relations for tight-winding density waves in a fluid disc (left) and stellar disc (right). Waves of a

wavenumber smaller than that at the minimum frequency (|k| ≪ kcrit) are called long waves, while those with |k| ≫ kcrit are

called short waves. The critical wavenumber kcrit is defined as κ2/(2πG	0).

known as the Toomre Q parameter, such that if Q > 1, (ω −
m�)2 > 0 for all radial wave-numbers k, while if Q < 1,

(ω − m�)2 becomes negative for a range of radial wave-

numbers. Therefore Q gives us a criterion whether the disc is

unstable or not to tight-winding perturbations2. We can also

define a critical unstable wavelength λcrit = 2π/kcrit, where

(ω − m�)2 = 0 for a cold fluid disc (i.e., cs = 0). In this case,

all perturbations with wavenumber |k| < kcrit or wavelength

λ > λcrit are unstable, where kcrit = κ2/(2πG	0) or λcrit =
4π2G	0/κ

2. Note kcrit = kmin/2, where kmin is defined such

that (ω(kmin) − m�)2 = 0 for a neutrally stable fluid disc

(Q = 1).

Figure 2 a shows the Lin-Shu dispersion relations for dif-

ferent Q values. Figure 2 a shows that high Q values (stability)

occur for density waves with large wavelengths and angular

frequencies. The physical meaning of each term of the right-

hand side of equation (4) is as follows. The first term, c2
s k2,

expresses the effect of pressure, which being positive sta-

bilizes the fluid against perturbations. This is the same as

the dispersion relation of sound waves. The second term,

κ2 represents rotation, which again stabilizes the disc. The

third term, which incorporates the self gravity of the disc,

promotes the growth of instabilities. When the effect of self-

gravity exceeds the limit where (ω − m�)2 is non-negative,

a real root does not exist and it is impossible for a stable

density wave to exist. Thus, the LS dispersion relation shows

that the (gaseous) spiral density wave can be considered to

be a sort of acoustic wave taking into account the effects of

rotation and self-gravity.

2 A physical interpretation of Q arises from comparing the timescale for
gravitational collapse ∼ (λ/G	0)1/2 to those for shear, ∼ 1/κ and pressure
(∼ λ/c

s
). Requiring that a region size λ collapse on a timescale shorter

than the time for shear or pressure to react leads also to Q as for Equation 7,
but without the numerical denominator (Pringle & King 2007).

Consider now a stellar disc. The dispersion relation for

linear tight-winding perturbations a in razor-thin stellar disc

with a modified Schwarzschild distribution (Lin-Shu-Kalnajs

dispersion relation; LSK dispersion relation) is given by

(ω − m�)2 = κ2 − 2πG	0|k|F
(

ω − m�

κ
,
σ 2

Rk2

κ2

)

(8)

F (s, χ ) ≡
2

χ
(1 − s2)e−χ

∞
∑

n=1

In(χ )

1 − s2/n2
, (9)

(Lin & Shu 1966; Kalnajs 1965). Here, σR is the radial veloc-

ity dispersion of the stellar disc, and In is a modified Bessel

function. Figure 2 b shows the LSK dispersion relations for

different Q values defined by

Q ≡
κσ

R

3.36G	0

. (10)

The behaviour of the dispersion relation is similar to the

LS relation for smaller radial wave-number (larger wave-

length), but in the the larger radial wave-number (shorter

wavelength) regime, the behaviour of the two is decidedly

different. For the short-wave regime, the LSK dispersion rela-

tion approaches (ω − m�)2/κ2 = 1 asymptotically, but the

LS dispersion relation extends to (ω − m�)2/κ2 > 1. This

difference originates in the essential difference between the

pressure for a fluid disc, and the velocity dispersion for a

stellar disc: In the case of fluid discs, pressure will become

large at small wavelengths. In contrast, since the stellar disc

is collisionless, there is no such repelling force. Instead the

frequencies of perturbations cannot become larger than the

epicyclic frequency κ .

2.1.2 Propagation of tight-winding density waves

Although we have discussed waves as being quasi-stationary

in the previous section, in reality if a wave is induced in
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the disc, it will propagate radially with some group velocity,

rather than being stationary. In this and the next sections, we

will discuss the group velocity and describe the further de-

velopments in density wave theory (the setting up of suitable

boundary conditions) which allow the possibility, at least

theoretically, of setting up a standing wave. The propagation

of the tight-winding density waves is reviewed throughly in

Grosbøl (1994) and Binney & Tremaine (2008).

The original density wave theory (Lin & Shu 1964) is

based on the QSSS hypothesis which assumes that the am-

plitude and shape of the spiral arm are independent of time.

However, since the angular frequency ω depends on radial

wave-number k via the LS or LSK dispersion relations (eqs.

4 and 8), the energy and angular momentum of the density

waves propagate radially as wave packets (Toomre 1969).

This propagation velocity is the group velocity, given by

vg = ∂ω(k, R)/∂k. If we consider propagation of density

waves in a fluid disc, following the LS dispersion relation

(Equation 4), the group velocity of a wave packet is

v
g

=
∂ω(k, R)

∂k
= ±

|k|c2
s
− πG	0

ω − m�
, (11)

where positive and negative signs indicate trailing (k > 0)

and leading (k < 0) spiral waves, respectively.

The sign of the numerator of this equation is negative for

short waves and positive for long waves, and the sign of the

denominator is negative and positive for R < RCR and R >

RCR, respectively. Thus, short trailing and long leading spiral

waves will propagate away from the coronation (CR) radius,

while the short leading and long trailing spiral waves will

approach the CR radius (propagation directions are indicated

by arrows in Figure 3). Note that if the disc has a large Q,

a forbidden region emerges in the vicinity of the CR, where

due to the pressure or random motions the density waves

diminish.

The behavior is essentially same for stellar density waves

except for regions around the inner and outer Lindblad reso-

nances (ILR and OLR). The difference around the ILR/OLR

originates in the difference in dynamical behavior between

stars and fluid (Section 2.1.1). The propagation digram for

stellar density waves following the LSK dispersion rela-

tion (Equation 8) is shown in Figure 3. Long stellar den-

sity waves (|k/kcrit| ≪ 1) are reflected at the Lindblad res-

onances (Goldreich & Tremaine 1978, 1979) while short

waves (|k/kcrit| ≫ 1) are absorbed there due to Landau damp-

ing (Lynden-Bell & Kalnajs 1972). Thus, both long and short

stellar density waves cannot pass through the Lindblad res-

onances. Therefore, the permitted region for stellar density

waves is restricted between the ILR and OLR radii (with the

exception again of the forbidden region). However, this does

not necessarily imply that stationary density waves will exist

here.

If we apply the group velocity formula to the solar neigh-

borhood, vg ∼ 12 km s−1 the stellar density wave takes

∼ 400 Myr to propagate 5 kpc radially. This timescale is

comparable to the rotation period of the Galaxy. Therefore,

Figure 3. Propagation diagram for tight-winding stellar density waves fol-

lowing the LSK dispersion relation (Equation 8). The disc is assumed to

have a flat rotation curve and constant Toomre’s Q = 1.2. The horizontal

dashed lines are the OLR radius (upper), CR radius (middle), and ILR radius

(lower), respectively. The arrows indicate the directions of group velocities.

Long waves (|k/kcrit| ≪ 1) are reflected at the Lindblad resonances, while

short waves (|k/kcrit| ≫ 1) are absorbed there due to Landau damping.

the stellar density waves will have a short lifetime of order

< 1 Gyr (Toomre 1969).

This problem can be solved if the density waves are re-

flected in the central region before reaching the ILR, and am-

plified by some mechanism. An absorption of the short stel-

lar density waves at the ILR can be avoided if the Toomre’s

Q parameter increases significantly (forming a so-called Q-

barrier) refracting the density wave outside the ILR. Short

trailing stellar density waves can be excited near the CR

from long trailing stellar density waves by ‘the wave am-

plification by stimulated emission of radiation’ (WASER) in

lighter discs (Mark 1974, 1976), or from short leading density

waves by the swing amplification mechanism in heavier discs

(Goldreich & Lynden-Bell 1965b; Julian & Toomre 1966;

Goldreich & Tremaine 1978; Toomre 1981). With these as-

sumptions, ‘standing-wave’ patterns 3 can exist between a

reflecting radius in the inner part of the galaxy and CR ra-

dius, where the waves can be amplified (Bertin et al. 1989a,

1989b). The spiral density waves should be located between,

but not reaching the ILR and OLR.

2.1.3 Swing amplification

The quasi-stationarity of spiral arms requires wave amplifi-

cation mechanisms such as WASER (Mark 1974, 1976) or

swing amplification (Goldreich & Lynden-Bell 1965b; Ju-

lian & Toomre 1966; Goldreich & Tremaine 1978; Toomre

1981). In the WASER (swing amplification) mechanism, a

trailing (leading) wave is turned into a trailing wave when

3 Here ‘standing’ means that the density waves do not propagate radially but
do propagate azimuthally with a pattern speed.
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crossing CR and is greatly amplified in the process. It is noted

that there is no conflict between the swing amplification and

WASER (Lin & Thurstans 1984; Bertin, Lin, & Lowe 1984;

Bertin et al.1989b). The reason they have been considered

differently is largely historical, reflecting opposing views at

the time. However, if discs have non-negligible self-gravity

at CR, the swing amplification mechanism can greatly dom-

inate amplification by the WASER mechanism. On the other

hand, in a system where the disc mass is only a small fraction

that supports the rotation curve, the WASER mechanism can

underline the growth of the most important spiral mode, as

long as Q ≃ 1 at CR (Shu 1992; Bertin & Lin 1996; Bertin

2000).

We focus on the swing amplification mechanism as a wave

amplification mechanism for sustaining quasi-stationary den-

sity waves between the ILR and OLR. The so-called swing

amplification works when short leading waves are reflected

to short trailing waves at the CR radius, or when a density

enhancement formed by self-gravity is stretched out by dif-

ferential rotation. The dynamical response takes the form of

wavelets in the surrounding medium, each amplified by its

own self-gravity through the swinging of leading features

into trailing ones due to shear.

The swing amplification operates through a combination of

three ingredients: the shearing flow, epicyclic motions, and

the disc self-gravity. Toomre (1981) interpreted the swing

amplification mechanism in terms of the wave-particle in-

teraction between spiral arms and stars. Since the direction

of epicyclic motion of a star is the same as the direction

which the spiral arm is sheared by differential rotation, sta-

bilisation by rotation is reduced, and the perturbation can

grow via the usual Jeans instability (Goldreich & Lynden-

Bell 1965b; Julian & Toomre 1966; Goldreich & Tremaine

1978). The timescale of epicyclic motion (κ−1) is compara-

ble to the timescale of involvement with the spiral arm (A−1

where A is Oort’s constant), and unless Q ≫ 1, the structure

can grow in a short time comparable to κ−1. The resulting

spiral structure from this process is generally expected to

be chaotic (Sellwood 2011) rather than lead to a symmetric

spiral pattern.

Consider a local region of a galactic disc away from the

galaxy center. Since the galactic rotation is parallel to this

local region (curvature can be ignored), we set an x and y-axis

aligned with the radial and rotational directions of the galaxy

respectively. In this case, the equations of motion of the stars

are given by

ẍ − 2�0ẏ − 4�0A0x = f⊥ sin γ , (12)

ÿ + 2�0ẋ = f⊥ cos γ , (13)

(using the Hill approximation). Here, x = R − R0, y =
R0(φ − �0t), and �0 and A0 ≡ − 1

2
R0(d�/dR)0 are the an-

gular velocity and Oort’s constant at R0, respectively. f⊥
indicates the gravitational force perpendicular to the spiral

arm. γ is an angle between the spiral arm and radial direction

of the galaxy: γ = 90◦, γ < 0, and γ > 0 correspond to a

ring, leading, and trailing structures, respectively.

Defining the normal displacement of the star perpendicular

to the spiral arm,

ξ = x sin γ + y cos γ , (14)

as a new variable, the equations of motion reduce to an

equation

ξ̈ + S(γ )ξ = 0, (15)

where the squared spring rate is given by

S(γ ) = κ2 − 8�0A0 cos2 γ + 12A2
0 cos4 γ − 2πG	0kF (16)

=
(

1 −
2Ŵ

2 − Ŵ
cos2 γ +

3

2

Ŵ2

2 − Ŵ
cos4 γ −

F

X
sec γ

)

κ2,

(17)

and

Ŵ = −
d ln �

d ln R
, (18)

X =
kcritR

m
=

κ2R

2πG	0m
. (19)

Figure 4 shows dependence of the spring rate on galaxy

parameters of (Ŵ, Q, X ). In the case of Ŵ = 0 (i.e, the galaxy

has rigid-body rotation), the spring rate is always positive.

Thus, the stars cannot be trapped by the spiral arm, and then

the spiral arm does not amplify. In other words, the swing

amplification cannot work without differential rotation.

By the transformation of variables to γ , instead of time t,

Equation 17 becomes

d2ξ

d tan γ 2
+

2(2 − Ŵ)

Ŵ2

S(γ )

κ2
ξ = 0. (20)

Numerical integration of this differential equation gives the

dependence of the swing amplification factor on the galaxy

parameters (Ŵ, Q, X ) shown in Figure 5. The effect of self-

gravity and the winding of the spiral arm work in synergy, so

that a star comes to stay at the spiral arm for a long time, and

spiral arms are amplified temporarily. Note that the above ar-

gument is based on the linear analysis by Toomre (1981) and

Athanassoula (1984). Fuchs (2001) solved linearised colli-

sionless Boltzmann and Poisson equations self-consistently

and showed that the result is essentially the same. Further,

non-linear effects are studied in N-body simulations of local

regions of stellar discs (Toomre 1990; Toomre & Kalnajs

1991; Fuchs, Dettbarn, & Tsuchiya 2005), as well as N-

body simulations of global stellar discs (Sellwood & Carl-

berg 1984; Carlberg & Freedman 1985; Bottema 2003; Fujii

et al. 2011; Baba, Saitoh, & Wada 2013; D’Onghia, Vogels-

berger, & Hernquist 2013). D’Onghia et al. (2013) carefully

demonstrated the growth of spiral arm features by swing-

amplification and found a nonlinear evolution that is not

fully consistent with the classic swing-amplification picture

of Julian & Toomre (1966) and lasted longer than predicted

by swing amplification (Toomre & Kalnajs 1991) (see also

Section 2.1.5).
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Figure 4. Squared spring rate S(γ ) as a function of the angle γ between

the spiral arm and radial direction of the galaxy for Ŵ = 0.0 (rigid rotation)

and Ŵ = 1.0 (flat rotation). Different lines indicate Q = 1.0 (black), 1.2

(red), and 1.5 (green), respectively. Spring rates are calculated based on

the equations of motion in Toomre (1981) and Athanassoula (1984). The

squared spring rate is always positive in the case of Ŵ = 0.0, but it can be

negative in the case of Ŵ = 1.0. Thus, the normal displacement of the stars

around the spiral arm ξ can grow exponentially as the spiral arm is sheared

by differential rotation.

In order for the swing amplification mechanism to work

continuously (Toomre & Kalnajs 1991), we need to under-

stand how leading waves are generated. One possibility is the

case where there is no ILR. A trailing wave does not suffer

from Landau damping at the ILR, instead the wave turns into

a leading wave as it crosses the galaxy center. This is the

so-called feedback loop proposed by Toomre (1981).

2.1.4 Global mode theory

Although linear density wave theory was successful in

demonstrating the existence of a tight-winding spiral wave,

the tight-winding density wave theory has room for improve-

ment. Firstly, since they utilized the WKB approximation,

this theory cannot be applied to very long waves (or open

spiral arms) strictly. Secondly, the presence of neutral spiral

density waves itself is theoretically questionable. It is criti-

cally problematic that a density wave propagates through a

galactic disc radially in a few galactic rotations, and eventu-

ally disappears by absorption at the inner/outer Lindblad res-

onances (ILR/OLR). Thus, the ‘quasi-stationarity’ hypothe-

sis is not ensured (Toomre 1969, Section 2.1.2). Finally, the

tight-winding theory cannot predict the number of spiral arms

m and sign of the wave-number k (i.e., trailing or leading).

In other words, the theory cannot explain why actual spiral

galaxies prefer to have trailing two-armed spirals (k > 0 and

m = 2) and what determines the angular frequency of the

spiral density wave. In response to these criticisms, the tight-

winding density wave theory developed into a global mode

theory (e.g., Lau, Lin, & Mark 1976; Bertin et al. 1977; Aoki,

Noguchi, & Iye 1979; Iye 1978; Bertin 1983; Bertin et al.

1984, 1989a, b; Bertin & Lin 1996).

A key nontrivial step at the basis of the derivation of the

dispersion relation is the reduction of the long-range grav-

ity law to a WKB dispersion relation between the perturbed

potential and the perturbed density. Numerical integration

of the basic perturbed equations is required. Since the first

global mode analysis was applied to rotating fluid discs by

Hunter (1965), there have been many studies, mainly in the

Figure 5. The maximum amplification factor is shown as a function of the X , Ŵ and Q parameters. The amplification factor is

calculated based on the equations of motion given in Toomre (1981) and Athanassoula (1984).
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Figure 6. Axisymmetric perturbations (a) and bar-like perturbations (b) on an axisymmetric disc. The disc rotates anti-clock wise. Directions of the

perturbations are indicated by small arrows.

1970s-80s (e.g. Bardeen 1975; Aoki et al. 1979; Iye 1978;

Takahara 1978), as well as extending the analysis to rotating

stellar discs (Kalnajs 1972). In order to analyse the eigen-

value problem of a stellar system, it is necessary to solve the

density perturbations and the responsive orbital perturbations

in satisfying the linearized collisionless Boltzmann equation

and the Poisson equation, self-consistently. Although Kalnajs

(1972) solved the eigenvalue problem of the Maclaurin disc

using the so-called ‘matrix method’, numerical integration

is required to solve the eigen-value problems of stellar discs

(e.g. Athanassoula & Sellwood 1986; Sellwood & Athanas-

soula 1986; Sellwood 1989; Earn & Sellwood 1995; Vauterin

& Dejonghe 1996; Pichon & Cannon 1997; Polyachenko

2004, 2005; Jalali & Hunter 2005). However, these studies

are somewhat limited due to the mathematical complexity.

Global mode analysis is based on a point of view that the

spiral arms are manifestations of the gravitationally ‘unsta-

ble’ global eigen-oscillations of disc galaxies 4. This eigen-

oscillation problem of the galactic disc resembles the prob-

lem of oscillating patterns of the skin when a drum is struck.

Similar to the way oscillation patterns are controlled by how

to stretch and how to strike the skin, oscillation of a galac-

tic disc is controlled by the density and velocity-dispersion

distributions of a galactic disc. However, there are two dif-

ferences between eigen-oscillation problems of the drum and

galactic disc. First, changes of the gravity from the oscillation

should be taken into account to solve the eigen-oscillation

problem of the galactic disc. This makes the problem very

complicated. In the case of a drum, there is only a traverse

wave, but for the oscillation of the galactic disc, there is

also a longitudinal wave as well as a transverse wave. The

transverse and longitudinal waves in the galactic disc are

equivalent to the bending (warp) of a galactic disc and spiral

arms, respectively.

Before explaining numerical results of the global mode

analysis, let us consider the stability of fluid and stellar

discs. Consider first the case of axisymmetric perturbations

(Toomre 1964; Goldreich & Lynden-Bell 1965a). Qualita-

4 Lynden-Bell & Ostriker (1967) have proved the so-call anti-spiral theo-
rem which argues that there is no neutral spiral mode unless there exists
degeneracy of modes or dissipation mechanism.

tively, we consider the case where an axisymmetric disc re-

ceives a perturbation illustrated by the small arrows shown

in Figure 6(a). The fluid and stars in the disc move radi-

ally, and try to make a ring structure, but the pressure (or

velocity dispersion), centrifugal, and Coriolis forces sup-

press growth of this ring perturbation. Left panel of Figure 7

shows the neutral stability curves for tight-winding spirals

((ω − m�)2 = 0) showing Q-values as a function of λ/λcrit.

As Q for the disc is lowered, the disc moves from the stable

to unstable regime. The wavelength which becomes unstable

first is pλcrit, where p = 0.5 in the case of a fluid disc and

p = 0.55 in a stellar disc.

In the case of spiral perturbations with a finite pitch an-

gle (i.e., open spiral perturbations), the effects of the grav-

itational perturbation parallel to the spiral arm, and shear

originating from differential rotation need to be taken into

account. Again, we consider the case where an axisymmet-

ric disc receives a perturbation given by the small arrows

shown in Figure 6(b). In contrast to the case of Figure 6(a),

the fluid and stars move in the azimuthal direction, and cen-

trifugal and Coriolis forces do not appear. Thus, growth is

not suppressed. The effect of the excessive centrifugal and

Coriolis forces stabilises the perturbation with a long wave-

length (Section 2.1.1 and Figure 2), it is expected that the

stabilization effect will become weak in a long wavelength

regime and that open spiral arms will become unstable.

This qualitative expectation is checked quantitatively be-

low. Lau & Bertin (1978) derived the asymptotic dispersion

relation of open spiral density waves in the fluid disc (Bertin-

Lau-Lin dispersion relation; BLL dispersion relation):

(ω − m�)2 = κ2 + k2c2
s

[

1 + J
2

(

kcrit

k

)2
]

− 2πG	0|k|
[

1 + J
2

(

kcrit

k

)2
]

, (21)

where k =
√

k2
R + k2

φ , kR, and kφ = m/R are the wave-

number, radial wave-number, and azimuthal wave-number,
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Figure 7. Left: Neutral stability curves for tigiht-winding spiral instabilities based on the LS dispersion relation

(red; Equation 4) and LSK dispersion relation (black; Equation 8). The region below the curve is stable against

tight-winding spiral instabilities. Right: Neutral stability curves for open spiral instabilities based on the BLL

dispersion relation (Equation 21) with J = 0, 0.4, 0.6, 1.0, and 1.414.

respectively 5. We define two quantities

J ≡ mǫ0

(

4�

κ

)
∣

∣

∣

∣

d ln �

d ln R

∣

∣

∣

∣

, (22)

ǫ0 ≡
πG	0

Rκ2
. (23)

where J indicates a stability parameter which depends on

the disc mass relative to the total mass and a shear rate of

the disc, and ǫ0 is a parameter which relates to the degree of

the self-gravity. In the LS dispersion relation, as described

in Section 2.1.1, the disc is stabilized by the rotational (κ2)

and pressure effects (k2c2
s ) against self-gravity (2πG	0k). In

addition to these effects, the BLL dispersion relation includes

within J the rate of shear, d ln �
d ln R

, as well as the self-gravity

term, ǫ0.

Based on the BLL dispersion relation, a neutral stability

curve for spiral instabilities is given by

Q2 ≥ 4

[

λ

λcrit

−
(λ/λcrit)

2

1 + J 2(λ/λcrit)
2

]

, (24)

where λ = 2π/k is a wavelength (right panel of Figure 7).

If we set J = 0, the neutral stability curve is equivalent to

ones for the LS dispersion relation. From this neutral stability

curve, a value of Q larger than unity is required for stability

against spiral disturbances with a larger value of J . This

means that open spiral arms are difficult to stabilise and will,

more often than not, result in growth.

5 Although the LS dispersion relation (Equation 4) is derived by the
tight-winding approximation, i.e., |Rk

R
| ≫ 1, the BLL dispersion relation

(Equation 21) is derived by an asymptotic analysis based on the following
ordering: ǫ2

0 ≪ 1 and (k/kcrit)
2 = O(1). Thus even very long waves with

|k
R
| ≪ 1 can be described by means of a WKB treatment of the gravita-

tional potential, provided the quantity m2 is taken to be formally large. See
Bertin (2000) for more details.

Figure 8 shows the numerically integrated density contours

of the global unstable modes with different J and Q values

(Bertin et al. 1989b). The pitch angle in the mode becomes

smaller as the value of J decreases (panels (a), (b), and (c),

respectively). For the case where J and Q are large (panel

(a)), the bar mode becomes unstable. In the case of large

J but small Q (panel (d)), only the spiral mode is unstable.

This behaviour is in agreement with that expected from the

BLL dispersion relation (right panel in Figure 8). The right

panel in Figure 8 shows curves of constant pitch angle α in

the (J , Q)-plane. The pitch angle here (for the more general

definition see Equation (27)) is given by

α = cot−1
k
φ

k
R

, (25)

where kR and kφ are the radial wave-number and azimuthal

wave-number, respectively. Thus, the unstable spiral mode

is determined by two parameters, J and Q, given by the

rotation curve of the galaxy disc. J controls the shape and

growth rate of the unstable mode. The spiral mode appears

for smaller J , and the bar mode for larger J (Lau & Bertin

1978).

The number of spiral arms and their pattern speed cannot

be determined in the framework of the tight-winding density-

wave theory of Lin-Shu-Kalnajs (Section 2.1.1). On the other

hand, for global mode theory, if the unstable mode with the

highest growth rate (trailing spiral modes) is assumed to be

the spiral arms actually observed, then the spiral arms can be

uniquely predicted from the equilibrium state of a galactic

disc. Therefore, it turns out that global unstable mode theory

is a self-contained theory.

However, there are some limitations in the global mode

theory. Firstly, it is assumed that the spiral mode rotates as a

rigid body, without changing its shape in the global unstable
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Figure 8. Left: Density contours of global unstable modes for a rotating fluid disc where (a) J = 0.604 and Q = 1.500, (b), J = 0.538

and Q = 1.096, (c), J = 0.492 and Q = 1.002, and (d) J = 0.858 and Q = 1.004. Right: Curves of constant pitch angle α = cot−1
k
φ

k
R

in

the (J , Q)-plane. These curves are derived from the BLL dispersion relation (Equation 21) for the neutral stability condition (Equation 24)

with Ŵ = 0 (flat rotation curve). From Bertin et al. (1989b).

mode analysis. Iye et al. (1983) studied the global unstable

modes of the fluid disc without the rigid-body rotation of the

spiral modes, and reported the appearance of a global leading

mode as well as global trailing modes, which is a different

result from the rigid-body case (Aoki et al. 1979). Recently,

N-body simulations also show that spiral arms wind up over

time by the shear of the galaxy disc (Wada, Baba, & Saitoh

2011; Baba et al. 2013; Grand et al. 2013, see Sections 2.2.1

and 4.2 for details). Secondly, because global spiral modes

grow up exponentially with time, the global mode theory

requires self-regulated mechanisms such as damping effects

in the stellar disc (e.g., Landau damping) and/or a gas com-

ponent (Lin & Bertin 1985; Bertin & Romeo 1988; Bertin

et al. 1989a, see also Section 3.1). Finally, it is unclear that

the global modes really accomplish a neutrally stable state.

The global mode theory hypotheses that the spiral arms are

global neutral stability modes, which are accomplished by

regulation mechanisms for the growth of density waves.

However, Lynden-Bell & Kalnajs (1972) showed that spi-

ral waves transport angular momentum by the gravitational

torque which changes the distributions of angular momentum

and mass (i.e., induces migration of stars and gas).

2.1.5 Simulations of long-lived spiral patterns

Various studies have tried to reproduce non-barred quasi-

stationary density waves using numerical simulations, but so

far, no convincing isolated, long-lived grand design spirals

have been produced. The m = 2 case is of particular inter-

est because low m modes are most likely to be stable (see

Section 4.5), hence simulations have tended to focus on try-

ing to model galaxies with a 2 armed spiral structure. As

discussed in the previous sections, attaining a stable m = 2

perturbation involves modelling a disc which is sufficiently

self gravitating to be unstable to the m = 2 mode, but sta-

ble to bar formation, and whereby density waves are able

to be maintained by the presence of a Q barrier before the

ILR, where waves can be reflected back towards corotation

(Section 2.1.2). Two armed spirals associated with bars, or

interactions, are of course common outputs from simulations,

and we discuss these in Sections 2.3 and 2.4.

Early simulations of stellar discs all tended to form a

bar (or oval distortion), and develop a strong m = 2 spiral

mode (Miller, Prendergast, & Quirk 1970; Hohl 1971). The

formation of a bar was also predicted analytically in the

case of a uniformly rotating disc (Kalnajs 1972; Kalnajs &

Athanassoula-Georgala 1974). However with the adoption of

an extended, massive (comparable to or more massive than

the disc) dark matter halo, the bar mode was both predicted,

and found to be suppressed (Ostriker & Peebles 1973; Hohl

1976). Since then, simulations of isolated, non-barred galax-

ies have only produced multi-armed galaxies with transient

spiral arms, as we discuss in Section 2.2. These types of

galaxies can be produced readily with an N-body code. By

contrast, trying to model an m = 2 spiral requires a long list

of criteria to satisfy, and even then, m = 2 spirals still appear

to be transient, evolving to m = 3 spirals and back again.

Thomasson et al. (1990), and also Elmegreen & Thomas-

son (1993), performed calculations of a galaxy, where in

addition to the conditions above, they also enforced that the

stellar velocity had to be maintained at a low value, and in-

cluded a gas component. As will be mentioned in Section 3.2,

and stated in Section 2.1.4, gas is likely required to
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allow energy from the spiral waves to dissipate. The galaxy

tends to exhibit a pattern changing between 2 and 3 arms,

and consequently has an asymmetric, rather than symmetric

m = 2 pattern at many time frames. Without a Q barrier, the

spirals are shorter lived, whilst without cooling or gas, higher

m patterns become more prominent. Donner & Thomasson

(1994) found similar results with a more consistent star for-

mation scheme for the gas, and gas cooling and heating.

Zhang (1996) used the same setup as Donner & Thomas-

son (1994), and found similar spiral patterns, but without

including a gas component. As well as changing to a 3 armed

pattern, spirals which transition between an m ≥ 2 spiral and

a barred spiral are likewise feasible to simulate by including

gas accretion (Bournaud & Combes 2002). But as yet no

simulated galaxy retains a steady m = 2 spiral.

Sellwood (2011) tested some of the models claiming to find

m = 2 spirals. He performed N-body simulations designed to

test directly whether a galaxy model corresponding to panel

(c) of Figure 8 can in fact survive to support the slowly grow-

ing mode they predict should dominate. He argued that this

model evolves quickly due to multi-arm instabilities originat-

ing from swing-amplified noise (see Section 2.2.1) instead of

producing quasi-stationary, two-armed spiral modes. This re-

sult suggests that dynamical evolution associated with shear-

ing of spiral arms which is not considered in quasi-stationary

density wave theories is important for generating the spiral

arms in real galaxies. Sellwood (2011) also tested some of the

above models, which have proposed to exhibit long-lived spi-

rals (Donner & Thomasson 1994; Zhang 1996). He showed

that the bisymmetric spiral arm represented as a mode is not

a single long-lived pattern, but the superpositions of three or

more waves that each grow and decay.

Whilst simulations have been unsuccessful in reproducing

a stationary spiral pattern, m = 2 or otherwise, recent work

by D’Onghia et al. (2013) and Sellwood & Carlberg (2014)

do report the existence of longer-lived ‘modes’, which sur-

vive multiple rotations, and thus more resemble density wave

theory. However these authors still state that their results are

inconsistent with the idea that spirals are quasi-stationary

density waves because the arms in their simulations still

fluctuate in time. By contrast in global mode theory we

would expect the arm shape to be unchanging for a num-

ber of rotations. For these long-lived spiral arms, the disc

is required to be fairly gravitational dominated (Sellwood &

Carlberg 2014 adopt Q = 1) or include some perturbation(s)

(D’Onghia et al. 2013, see also Salo & Laurikainen 2000b,

Section 2.4.1).

2.2 Dynamic spirals

In this section we consider spiral arms which are transient,

recurrent in nature. As we discussed in 2.2.1, the means of

generating such arms is similar to that supposed in quasi-

stationary density wave theory. However transient recurrent

(or ‘dynamic’) spiral arms are much easier to form. For ex-

ample dynamic arms occur readily in numerical simulations,

where we can in relate predictions from swing amplification

theory to the properties of the spiral arms generated, and in

turn observations (see Section 4). Moreover stationary arms

are in essence a small subset of arms resulting from gravi-

tational instabilities requiring very specialised conditions in

the disc to maintain the arms, whereas dynamic spiral arms

can be generated with essentially any disc configuration that

is not strongly bar unstable.

Pioneering N-body simulations of the stellar discs by Sell-

wood & Carlberg (1984) have shown that spiral arms are tran-

sient and recurrent structures (Carlberg & Freedman 1985;

Bottema 2003; Sellwood 2010b, 2011; Fujii et al. 2011;

Grand, Kawata, & Cropper 2012a, 2012b; Baba et al. 2013;

D’Onghia et al. 2013; Roca-Fàbrega et al. 2013). Sellwood

& Carlberg (1984) argued that the spiral arms in N-body sim-

ulations generally fade out over time because the spiral arms

heat the disc kinematically and cause the Q to rise. Thus,

the disc becomes stable against non-axisymmetric structure

(Section 2.1.1). They suggested that continuous addition of a

kinematically cold population of stars is necessary to main-

tain the spiral arms. This suggests that the gas can effectively

cool the system and thus play an important role (Section

3.1). Recently, Fujii et al. (2011) performed high resolution

three-dimensional N-body simulations of pure stellar discs,

and suggested that the rapid disappearance of the spiral arms

may result from a low number of particles in previous sim-

ulations. Instead, they revealed a self-regulating mechanism

that maintains multi-arm spiral features for at least 10 Gyr in

a pure stellar disc (Figure 11).

Spiral arms in these N-body simulations are transient and

recurrently reform. This is also the case for an N-body disc

with a central bar (Baba et al. 2009; Grand et al. 2012b).

The dominant spiral modes are time-dependent, reflecting a

highly nonlinear evolution of spiral density enhancements,

and radial changes (bottom panels in Figure 11). The arms

are found to undergo a cycle – breaking up into smaller

segments with typical sizes of a few kpc, then reconnecting by

differential rotation to reform large scale patterns (Fujii et al.

2011; Wada et al. 2011). D’Onghia et al. (2013) presented

a similar argument that the evolution of the spiral arm is

characterized by a balance between shear and self-gravity of

the galactic disc: the shear tends to stretch and then break

the spiral arms locally, whereas in regions where the self-

gravity dominates, the spiral arm is over-dense and generates

the segments making up the spiral arms. Baba et al. (2013)

pointed out that radial migration of stars around spiral arms

are essential for damping of spiral arms, because excessive

Coriolis forces originating from the growth of a spiral arm

result in radial migration of the stars involved during the

spiral arm evolution (their Figure 8).

In summary, these recent simulations of isolated disc

galaxies conclude that the global spiral arms can appear to

be long-lived visually, but they are assemblies of segments

which break and then later reconnect with other segments

of spiral arms. In this sense, the spiral arms are in ‘dy-

namic equilibrium’ between shear (or Coriolis force) and
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self-gravity rather than neutral stable waves assumed in the

quasi-stationary density wave theory (Lin & Shu 1964; Bertin

& Lin 1996).

2.2.1 Swing amplified spirals

We introduced swing amplification in Section 2.1.3 as a

means of sustaining quasi-stationary density waves between

the ILR and OLR. Here we describe the generation of dy-

namic spirals by swing amplification, but unlike the quasi-

stationary density waves described in Section 2.1, there is no

need for the waves to be reflected and maintained.

Full N-body simulations of stellar discs can test the predic-

tions from swing amplification theory (Sellwood & Carlberg

1984; Carlberg & Freedman 1985; Bottema 2003; Fujii et al.

2011; D’Onghia et al. 2013; Baba et al. 2013). We can esti-

mate the dominating number of spiral arms, m, as

m =
κ2R

2πG	0X
≈

κ2R

4πG	0

, (26)

where X ≈ 2 (Equation 19) is assumed, and find this is

roughly consistent with the results of N-body simulations.

As described above, spiral arms typically develop most ef-

fectively when 1 < X < 2, so taking X ≈ 2 is appropriate

(Figure 5). More generally, for a galaxy with a flat rotation

curve (Ŵ = 0.5) and a total mass within the disc of Mtot

(mainly dark matter and stars), since κ2 = 2�2 ∼ GMtot/R2,

we also obtain the number of spiral arms as m ∼ 	tot/	0 =
1/ fdisc. Carlberg & Freedman (1985) performed N-body sim-

ulations of galactic discs with various disc mass fractions and

found that the number of spiral arms is strongly correlated

with the disc mass fraction fdisc. A similar result is also ob-

tained by N-body simulations with much higher resolution

(Bottema 2003; Fujii et al. 2011; D’Onghia et al. 2013).

Also since κ =
√

2� ∝ 1/R for the galaxy with a flat rota-

tion curve, m ∝ 1/(R	0) and the number of spiral arms tends

to increase with radius in outer regions of exponential-discs.

This agrees qualitatively with observations. As a specific ex-

ample, we show the radial distributions of the number of

spiral arms obtained by N-body simulations (Bottema 2003)

and observations of NGC1288 (Fuchs & Möllenhoff 1999)

in Figure 9.

The pitch angle of the spiral arm is in reasonable agreement

with the predictions of swing amplification theory. Figure 10

shows the evolution of a stellar spiral arm along the pitch-

angle - density-contrast (α − δ̄) plane. Due to differential

rotation, one arm becomes more tightly wound as time goes

by, and eventually disappears. In the meantime, new spiral

arms with larger pitch angles start to grow. As the pitch an-

gle of the spiral arm decreases from α ≈ 40◦ (Trot = 12.0)

to α ≈ 32◦ (Trot = 12.20), the density contrast increases to a

maximum, and the density contrast subsequently decreases

with a decrease in the pitch angle. Thus, the spiral arm has

a maximum amplitude when α ∼ 32◦. This value is consis-

tent with the expectation from swing amplification theory

(hatched region in Figure 10). This behavior is similar to that

reported in Sellwood & Carlberg (1984). We compare the

Figure 9. (top) Radial distribution of the number of spiral arms obtained

by N-body simulations (Bottema 2003). (middle) Same as the top panel, but

for observations of NGC 1288 (Fuchs & Möllenhoff 1999). (bottom) I-band

face-on view of NGC 1288 (Fuchs & Möllenhoff 1999).

pitch angles of spiral arms produced by swing amplification

theory with observations in Section 4.2.

In addition to the non-stationarity of stellar spiral arms,

recent N-body simulations have shown that the pattern speed

of the spiral arms decreases with radius in a similar manner

to the angular rotation velocity of the disc (See also Section

4.1; Wada et al. 2011; Grand et al. 2012b, a; Baba et al. 2013;

Roca-Fàbrega et al. 2013). Thus, the spiral arms are consid-

ered to be rotating with the rest of the disc at every radius,

and are material arms. In the above models, the evolution of

the spiral arms is governed by the winding of the arms, which

leads to breaks and bifurcations of the spiral arms. Sellwood

& Lin (1989) and Sellwood & Kahn (1991) instead argued

that the dynamics originate from multiple wave modes of
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Figure 10. Evolution of spiral arm on α − δ̄ plane for T
rot

= 12.0 − 12.5.

The hatched region corresponds to the predicted maximum pitch angle

around the analysed region (Q ≈ 1.4 and Ŵ ≈ 0.8) due to swing amplifica-

tion (refer to Equation (98) in Fuchs (2001)). From Baba et al. (2013).

different pattern speeds constructively and destructively in-

terfering with one another (Sellwood 2011; Quillen et al.

2011; Roškar et al. 2012; Sellwood 2012).

Finally, Sellwood & Carlberg (1984) also investigated the

amplitudes of swing amplified spiral arms. They found that

the growth of perturbations is in reasonable quantitative

agreement with the prediction of swing amplification the-

ory, although the growth factor was slightly larger than a

naive expectation from the level of particle shot noise (i.e.,

swing-amplified noise). This discrepancy between numerical

simulations and theoretical expectations is also seen in local

stellar discs (Toomre & Kalnajs 1991). It may relate to non-

linear effects of swing-amplified spiral instabilities. Toomre

& Kalnajs (1991) attributed the discrepancy to additional cor-

relations between the particles that developed over a long pe-

riod, i.e., the polarized disc response to random density fluc-

tuations. By contrast, Sellwood (1989) showed that the ampli-

tudes of spiral arms in global simulations of stellar discs seem

to be independent of the particle number, rather than declin-

ing as N−1/2 as would be predicted from the swing-amplified

noise (Toomre & Kalnajs 1991). It should be noted that star

clusters and GMCs in real galaxies can seed much larger fluc-

tuations than shot noise from equal-mass particles (D’Onghia

et al. 2013). Sellwood (2011) also argued that spiral arms

originating from swing-amplified shot noise are too low

compared to observed spiral amplitudes. Instead, Sellwood

(2000) suggested that spiral arms are vigorous large-scale

Figure 11. Evolution of spiral arms with N = 30M. Top panels show the surface density, middle panels show the surface

density normalized at each radius, and bottom panels show the Fourier amplitudes. From Fujii et al. (2011).
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modes originating from groove mode instabilities (Sellwood

& Lin 1989; Sellwood & Kahn 1991) (see Section 2.2.3).

2.2.2 Corotation scattering and radial migration of stars

Since the dynamic spiral arms do not have a single pattern

speed but roughly follow the galactic rotation, or multi-wave

patterns with different pattern speeds exist, these arms scat-

ter stars everywhere in the disc via the corotation resonance

(Sellwood & Binney 2002; Grand et al. 2012b; Roškar et al.

2012; Baba et al. 2013; Grand, Kawata, & Cropper 2014).

Figure 12 shows the evolution of stars along the φ − R plane

and the azimuth angle (φ)-the angular momentum (Lz) plane.

The stars evolve in this plot due to changes in their angular

momenta. When the stars are captured by the density en-

hancement (Trot ≃ 11.8 − 12.0), they radially migrate along

the spiral arms. The stars approaching from behind the spiral

arm (i.e., inner radius) tend to attain increased angular mo-

menta via acceleration along the spiral arm, whereby they

move to the disc’s outer radius. In contrast, the stars ap-

proaching ahead of the spiral arm (i.e., outer radius) tend to

lose their angular momenta via deceleration along the spi-

ral arm, and they move to the disc’s inner radius. Along the

φ − Lz plane, the stars oscillate both horizontally as well as

vertically. Moreover, the guiding centers of the oscillations

do not remain constant at the same value of Lz. This is es-

sentially different from the epicycle motion in which Lz is

conserved.

The panels in the right column of Figure 12 show the so-

called Lindblad diagram, where the angular momentum Lz

of each star is plotted against its total energy E. The stars

oscillate along the curve of circular motion by undergoing

change in terms of both angular momentum and energy (Sell-

wood & Binney 2002; Grand et al. 2012a; Roškar et al. 2012;

Baba et al. 2013). This is because stars around the corotation

point change their angular momenta without increasing their

random energy (Lynden-Bell & Kalnajs 1972).

Grand et al. (2012a) also noticed the slight heating of

negative migrators and the slight cooling for positive migra-

tors (their Figure 12). Roškar et al. (2012), Minchev et al.

(2012), and Baba et al. (2013) also reported a similar effect

of the radial migration of stars around the spiral arms upon

disc heating. Thus a non-negligible fraction of the particles

that migrate outward have their orbits cooled by the spiral

arm. This ‘dynamical cooling’ can be important for recurrent

spiral instabilities.

2.2.3 Recurrent mechanisms for dynamic stellar spiral

arms

The mechanism by which spiral arms recur is unclear. Sell-

wood & Kahn (1991), and Sellwood & Lin (1989) proposed

a feedback cycle whereby narrow features in the angular

momentum density of stars drive large-scale dynamic spiral

arms. The arms in turn lead to resonant scattering of stars,

which serves as a seed for the next spiral arm formation.

This large-scale spiral instability, which originates from the

deficiency of stars over a narrow range of angular momenta

(also corresponding to a change in the surface density for

stars on a circular orbit), is called the ‘groove’ instability.

This feedback cycle was observed in N-body simulations of

a low-mass disc with a near Keplerian rotation curve (Sell-

wood & Lin 1989). The phase space density is depopulated

near the OLR of one wave, inducing a new large-scale spiral

instability with a CR near the OLR of the first wave. Sell-

wood (2000) also reported that the distribution of the solar

neighborhood stars on in angular momentum phase space

has similar fine structures (Sellwood 1994, 2010a), suggest-

ing that this recurrent mechanism cycle may occur in real

spiral galaxies. Scattering of stars by spiral arms at the ILR,

in such a way to form a new spiral arm, is also observed in

more massive discs with near flat rotation curves (Sellwood

2012). However, Sellwood (2012) concluded that some other

mechanism may be required for recurrent spiral instabili-

ties, because he was not able to find evidence to support the

groove-type cycle such as observed in less massive discs with

a near Keplerian rotation (Sellwood & Lin 1989).

Baba et al. (2013) showed that oscillating stars succes-

sively undergo aggregation and disaggregation in energy-Lz

space, thereby leading to the formation of structures referred

to as ‘swarms of stars’ along the φ − Lz and R − φ planes

(the right column of Figure 12). The non-steady nature of the

spiral arms originates in the dynamical interaction between

these swarming stars with a nonlinear epicycle motion, and

the high-density regions, i.e., the spiral arms moving with

galactic rotation. This is entirely different from what is ex-

pected in stationary density waves, where these changes are

limited to the CR and Lindblad resonances (Lynden-Bell &

Kalnajs 1972). Thus, the gravitational interaction between

the stars in the spiral arm and the spiral density enhancement

changes the angular momentum and random energy of the

stars, and this process in turn changes the structure of the

spirals. During this process, the random energy of individual

stars in the system does not increase monotonically. In other

words, local interactions between the non-steady arms and

stars increase or decrease the total energy of individual stars

locally; however, the energy remains around its value for cir-

cular motion with the occurrence of a small dispersion. This

is because the interaction causes the migration of the guiding

centers of the stars without increasing their eccentricity or

random energy. This ‘dynamical cooling’ mechanism (Grand

et al. 2012a; Roškar et al. 2012; Minchev et al. 2012; Baba

et al. 2013) is essential to preventing heating of the stellar disc

and erasure of the spiral arms, and the mechanism produces

‘swarms’ of stars moving between non-steady spirals. The

non-linear epicycle motion of the stars and their non-linear

coupling with the density perturbation is the fundamental

physics of the recurrently formed, non-steady spiral arms in

a stellar disc.

2.3 Bar driven spirals

In many barred grand design spirals, the spiral arms start at

the two ends of the bar. Two-armed spirals around strong
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Figure 12. Orbital evolution of stars in the spiral arm. The stars associate around the spiral arm within a distance of ±0.5 kpc at Trot = 4.0.

Left columns: orbits on φ − R plane. Middle columns: orbits on φ − L
z

plane. Right columns: orbits on E − L
z

plane. The colours denote

the angular momentum at the time instants when the stars are associated with the spiral arm. From Baba et al. (2013).
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Figure 13. Stellar closed orbits (left) and gaseous closed orbits (right) in a weak barred potential. The radii of the inner ILR, outer ILR, CR, and OLR

are at 0.8, 2.4, 4.6, and 6.0, respectively. The gaseous closed orbits are calculated based on the damped orbit model by Wada (1994) who added the

damping term (emulating the collisional nature gas) to equations of stellar orbits in a weak bar from Section 3.3 of Binney & Tremaine (2008). Note that

Wada (1994) only showed a solution for radial direction. See the appendix of Sakamoto et al. (1999) for a full set of the solutions. A similar introduction

of a damping term was also made by Sanders & Huntley (1976) and Lindblad & Lindblad (1994). The stellar response to forcing by a steady bar cannot

form spiral arms. In contrast, the phase delay of epicycle motion in terms of the bar perturbation naturally takes place as does in a damped oscillator

affected by a periodic external force. This phase delay determines direction of spirals (i.e. trailing or leading) around the Lindblad resonance (Wada

1994).

bars are rather common, representing ≈ 70% of typical field

spirals, unlike unbarred field spirals where only ≈ 30% are

two-armed (Elmegreen & Elmegreen 1982). Although this

correlation suggests that the bar and spiral pattern have the

same pattern speed and thus are related, the direct connection

between bars and spirals is still unclear. There are three com-

mon interpretations (Mo, van den Bosch, & White 2010): (1)

the bar and spiral arms have a common pattern speed, (2)

the bar and spiral arms have different pattern speeds and are

independent patterns from each other, and (3) the bar and

spiral arms have different pattern speeds but are coupled via

some non-linear interactions.

2.3.1 Spirals corotating with bars

The first interpretation, which the bar and spiral arms have

a common pattern speed, is intuitive from observations that

most spiral arms connect to the ends of the bar. Sanders &

Huntley (1976) studied the response of gas to a steady bar

perturbation using hydrodynamical simulations. They found

that the gas eventually settled into a steady state with a promi-

nent trailing spiral structure. Gaseous spiral arms driven by

a bar have since been seen in many further simulations

(e.g. Schwarz 1981; Combes & Gerin 1985; Athanassoula

1992; Wada 1994; Englmaier & Gerhard 1999; Bissantz, En-

glmaier, & Gerhard 2003; Rodriguez-Fernandez & Combes

2008). The gas arms are a direct response of the bar forcing.

Figure 13 show the stellar closed orbits (left) and gaseous

closed orbits (right) in a weak bar potential. Stellar orbits

are always parallel or perpendicular to the bar, whilst the gas

orbits change their orientation with radius, due to the effects

of dissipation. The elliptical gaseous orbits are inclined to the

bar potential in a trailing sense outside corotation. Thus, dis-

sipation associated with the gas viscosity plays a critical role

in driving gaseous spirals. Note that simulations in which a

gas disc embedded in a ‘steady’ bar potential is replaced by

a collisionless disc of test star particles also gives rise to a

prominent trailing spiral structure but the stars never settle

into a steady spiral structure. But stellar spiral arms can be

excited by a ‘growing’ bar (Hohl 1971).

Manifold theory or manifold flux-tube theory is proposed

as a way of determining the orbits of stars in spiral arms

driven by a bar (Romero-Gómez et al. 2006, 2007; Athanas-

soula, Romero-Gómez, & Masdemont 2009b; Athanassoula

et al. 2009a, 2010; Athanassoula 2012; Voglis, Stavropoulos,

& Kalapotharakos 2006a; Voglis, Tsoutsis, & Efthymiopou-

los 2006b; Tsoutsis, Efthymiopoulos, & Voglis 1980;

Tsoutsis et al. 2009). According to this theory, the backbone

of barred spirals are bunches of untapped stars (so-called Lya-

punov orbits) escaped from the unstable Lagrangian points6,

which are located on the direction of the bar major axis,

6 The direction in which the (chaotic) orbit can escape from the unstable
Lagrangian points is not all direction but is set by the invariant manifolds.
Manifolds can be thought of as tubes that guide the motion of particles
whose energy is equal to theirs (Romero-Gómez et al. 2006; Athanassoula,
Romero-Gómez, & Masdemont 2009b).
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Figure 14. B-band images of NGC 3953 (left), NGC 3124 (middle) and NGC 3450 (right). From The de Vaucouleurs Atlas of Galaxies (Buta et al.

2007).

outside the bar but near its ends. This means that, contrary

to the quasi-stationary density waves, the stars do not cross

the barred spiral arms but they move along them or they

are spatially well confined by the manifolds7 (Figures 1

and 4 of Athanassoula 2012). Athanassoula et al. (2010)

and Athanassoula (2012) compared the properties of spiral

arms predicted by manifold theory with N-body simulations.

They found good agreement between the manifold theory

and the simulations (see Figure 12 of Athanassoula et al.

2010), and in the simulations stars moved along the spiral

arms as predicted (see Figure 4 of Athanassoula 2012). The

manifold theory predicts that the relative strength of the non-

axisymmetric forcing in the region around and beyond CR

influences the winding of spiral arms, in the sense that in

strongly barred galaxies the spirals will be more open than

in less strongly barred ones (Athanassoula et al. 2010). This

trend was corroborated in observed barred spiral galaxies

(Martı́nez-Garcı́a 2012).

One observational indication of the bar-driven spiral sce-

nario is that grand-design spirals are more frequent in barred

galaxies than in unbarred galaxies (Elmegreen & Elmegreen

1982). However there are still many multi-armed (e.g. NGC

1232, NGC 3344, NGC 3953, NGC 6946, IC 342, Figure 14),

and flocculent (e.g. NGC 1313, NGC 5068) spirals that ex-

hibit bars8. Early type barred galaxies tend to have stronger

bars and grand-design or multiple spiral arms, while late type

barred galaxies have weaker bars and flocculent spiral arms

(Figure 13 of Elmegreen et al. 2011). Several studies have

examined correlations between bar strengths and spiral arm

strengths, with some finding clear evidence of bar driven spi-

rals (Block et al. 2004; Salo et al. 2010), and others finding

little or no evidence (Seigar & James 1998; Durbala et al.

2009; Kendall et al. 2011). Thus observations suggest that

the bar-driven spiral scenario is not necessarily valid for all

barred spiral galaxies.

7 Although, there is another view of the manifold theory: the locus of all
points with initial conditions at the unstable manifolds that reach a local
apocentric (Voglis et al. 2006a, 2006b; Tsoutsis et al. 2008, 2009) or
pericentric (Harsoula, Kalapotharakos, & Contopoulos 2011) passage, but
the details are beyond the scope of this review.

8 though the latter seem more difficult to find.

2.3.2 Decoupling between spirals and bars

The second possibility is that bars and spiral arms can be

independent patterns. In this case, spirals in barred galaxies

are associated with a spiral density wave, but probably with

a pattern speed different from that of the bar (Sellwood &

Sparke 1988; Rautiainen & Salo 1999). Indeed, Sellwood &

Sparke (1988) have demonstrated N-body simulations of a

stellar disc, and shown that multiple pattern speeds are quite

common in disc galaxies, with the spiral structure typically

having a much lower pattern speed than the bar. In other

words, bars and spiral arms can be independent features.

This implies a more or less random distribution of the phase

difference between the bar and the start of the spiral arms,

which seems to be in conflict with observations. However, as

pointed out by Sellwood & Sparke (1988), contour plots of

the non-axisymmetric density in their simulations show that

the spiral arms appear to the eye to be joined to the ends of

the bar for most of the beat frequency. This suggests that the

observed correlation between bars and spirals might simply

be an illusion.

2.3.3 Non-linear coupling between spirals and bars

A third interpretation for the origin of spiral arms in barred

galaxies is a non-linear coupling between bars and spiral

density waves, where the bar and spiral arm have different

pattern speeds (Tagger et al. 1987; Sygnet et al. 1988; Mas-

set & Tagger 1997; Minchev et al. 2012). This mechanism

assumes some small overlap between the corotation (CR) of

the bar and the inner Lindblad resonance (ILR) of the spiral

density wave. Using the tight-winding and epicyclic approx-

imations for density waves, Tagger et al. (1987) and Sygnet

et al. (1988) showed that this overlap enables the transfer

of energy and angular momentum between the bar, spiral

density wave and beat (m = 0 and m = 4) waves. The bar

is stabilized at a finite amplitude by transferring energy and

angular momentum to the spiral density wave, and the non-

linear coupling drives beat waves. This theoretical argument

on the non-linear coupling was also studied by N-body simu-

lations of stellar discs (Masset & Tagger 1997; Rautiainen &

Salo 1999), where the predicted strong beat waves were ob-

served. This scenario is similarly supported by more recent
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N-body/SPH simulations of galactic discs (Minchev et al.

2012). Notably though, the derived beating waves exhibit

chaotic behaviour rather than a stationary spiral pattern.

Sometimes the spiral arms do not start from the ends of

the bar but exhibit a clear phase difference (e.g., NGC 1365).

Similarly, some observed barred galaxies, such as NGC 3124

(Buta, Corwin, & Odewahn 2007; Efremov 2011) and NGC

3450 (Buta et al. 2007), show the curved, leading ends of

the stellar bar (Figure 14). Similar morphology can be seen

in N-body simulations of barred galaxies due to the oscil-

lations between trailing and leading ends of the bar (e.g.

Fux 1997; Rautiainen & Salo 2000; Martinez-Valpuesta &

Gerhard 2011). Martinez-Valpuesta & Gerhard (2011) sug-

gested that the oscillations could be related to the oscillations

seen in the bar growth in N-body simulations (e.g. Dubinski,

Berentzen, & Shlosman 2009) through angular momentum

transfer to disc stars (e.g. Sellwood 1981) and to non-linear

coupling modes between the bar and spiral density wave as

mentioned above.

2.3.4 Non-stationary spiral arms in barred galaxies

Grand et al. (2012b) performed N-body/hydrodynamic simu-

lations of a Milky Way-sized barred galaxy and analysed the

spiral pattern speed. They found that the spiral arms are tran-

sient features and their pattern speeds decrease with radius in

a similar manner to the angular velocity, but the pattern speed

is slightly higher than the angular velocity of the disc. These

results suggest that spiral arms in barred galaxies could be

neither rigid-body rotating patterns predicted by the quasi-

stationary density wave theory nor independent features, but

transient features boosted by the bar. The non-stationarity

of spiral arms in barred galaxies is also reported by other

N-body/hydrodynamics simulations (Fux 1997; Baba et al.

2009). Baba et al. (2009) argued that non-stationary, wind-

ing spiral arms in a simulated barred spiral galaxy originate

via swing amplification (Section 2.1.3). In contrast, Roca-

Fàbrega et al. (2013) reported that simulated spiral arms in

strongly barred galaxies have a pattern speed almost constant

in radius. More interestingly, they reported that the spiral pat-

tern speed is close to disc rotation only when the bar is weak,

as obtained by Grand et al. (2012b), but becomes almost con-

stant when the bar has fully formed. These results suggest

that the relation between bars and spiral arms can change

during the evolutionary stages of bars, although there is no

observational evidence to support, or contradict this picture.

2.4 Tidal interactions

2.4.1 Historical overview

Tidal encounters are frequent across all astronomy, with

interacting galaxies providing some of the clearest exam-

ples. Early attempts to categorise interacting, and other more

unusual galaxies, showed many examples of galaxies with

tidal tails, bridges and clear spiral structure (Vorontsov-

Velyaminov 1959; Arp 1966) prompting the morphology of

galaxies to be associated with tidal effects (e.g. van den Bergh

1959; Lindblad 1960; Hodge & Merchant 1966; Toomre

1969). The idea that tidal interactions may be responsible for

spiral arms was in fact first demonstrated 20 years earlier, by

Holmberg (1941). In a now famous experiment, Holmberg

(1941) modelled the interaction of two galaxies by repre-

senting the galaxies by a series of lightbulbs. The lightbulbs

have initial velocities associated with them due to the initial

velocities of each galaxy assumed for the interaction, and

their rotation curves. A photocell is used to measure the to-

tal amount of light at any particular point in the galaxies.

Since light obeys a inverse square law the same as grav-

ity, the total light received by the photocell is equivalent to

the total gravitational force at that point in the galaxy. This

force, or rather acceleration, is then used to calculate how far

to move the given lightbulb. This step is then repeated for

all the lightbulbs used, and the whole process repeated for

many steps. The results of this experiment showed clearly

the development of tidal spiral arms.

From the 1960s, actual numerical calculations of interact-

ing galaxies were able to be performed (Pfleiderer & Sieden-

topf 1961; Pfleiderer 1963; Tashpulatov 1970; Toomre &

Toomre 1972; Eneev, Kozlov, & Sunyaev 1973), although

they were still limited to test particle simulations using a

restricted 3 body approach, which neglects stellar self grav-

ity. These simulations focused mainly on the origin of tails

and bridges in galaxies, rather than spiral arms themselves.

Nevertheless, Toomre & Toomre (1972) still represents one

of the most comprehensive studies of galaxy interactions,

spanning over all possible alignments of the two galaxies

in space, unequivocally showing that bridges and tails were

indeed the result of tidal interactions. These simulations also

reproduced a number of known systems remarkably well,

including M51 and the Mice.

2.4.2 Tidally induced arms: stationary, kinematic or

material arms?

Since the 1970s, full N body simulations, were able to model

interactions with much higher resolution, and demonstrate

that tidal interactions could account not only for tails and

bridges at large galactic radii, but also spiral arms penetrat-

ing to the centre of a galaxy (Hernquist 1990; Sundelius

et al. 1987; Donner & Thomasson 1994; Salo & Laurikainen

2000b; Dobbs et al. 2010) (see Figure 15, left panel). Whilst

these studies clearly demonstrate m = 2 spiral arms, a more

critical question is whether the spiral arms are representative

of the quasi-stationary spiral arm picture, are kinematic den-

sity waves, or material arms. For material arms there is no

difference between the spiral arms and the underlying differ-

ential rotation of the stellar disc – the pattern speed of the

arms is that of the disc, i.e. �p(R) = �(R). Whilst material

arms may describe the outer arms, or tidal tails of galaxies

(e.g. Toomre 1969; Meidt et al. 2013) they are not found to

characterise the arms over the main part of the stellar disc.

Sundelius et al. (1987) demonstrated using numerical simula-

tions that tidally induced spiral arms are density waves rather
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Figure 15. Simulation of M51 (left panel) showing the present day appearance of the galaxy, the orbit (dashed line) and the position of the

perturber (white dot). The pattern speeds of the two spiral arms are shown on the right hand panel, with error bars (dotted lines). The angular

velocity of the stars is also shown (red dashed line) and � ± κ/2 (blue dashed lines). From Dobbs et al. (2010).

than material arms, whilst observations have shown that the

velocity fields of interacting galaxies do not correspond to

material arms (e.g. Rots & Shane 1975).

Secondly the arms may be kinematic density waves. Kine-

matic density waves are not actually waves, in the sense that

they don’t propagate through the disc, and have zero group

velocity. But gas and stars do flow through the arms, although

unlike quasi-stationary density waves, the spiral pattern is not

fixed. For purely kinematic density waves, self gravity of the

stars can be ignored (kinematic density waves can be in-

duced even when Q = ∞), the stars behaving simply as test

particles. The influence of a perturber can be treated by the

impulse approximation, and induces elliptical stellar orbits.

Such orbits are not generally closed, but we can choose an

angular speed such that the orbit is closed. For an m = 2

perturbation, we can choose a rotating frame such that the

orbit is closed after half the epicylic frequency (or after each

time an arm is encountered) i.e.

�p(R) = �(R) −
1

2
κ(R), (27)

to a first order approximation (see Binney & Tremaine 2008).

If the orbits are aligned along the same major axis, then the

perturbation produces a bar. If however, the orbits are offset

as a function of radius, then they naturally produce a spiral

pattern (Kalnajs 1973). Increasing the offset makes the spirals

more tightly wound. In the case of a moving (prograde) per-

turber, the orbits are not aligned, and a trailing spiral pattern

develops with a pattern speed given by equation 24 (trailing

since Comment 39: �(R) − κ(R)/2 < �). The aphelia of

the ellipses corresponding to the densest parts (arms) in the

disc. Calculations of a perturber passing a galaxy in the non

self gravitating case by Oh et al. (2008) demonstrate that the

induced arms do indeed exhibit this pattern speed. Thus the

pattern speed decreases with radius, but less so than the ma-

terial arms case. The locations of the spiral arms can also be

determined analytically, by applying the impulse approxima-

tion to the stellar orbits, and computing the Jacobian matrix

from the derivatives the resultant orbit equations (Struck-

Marcell 1990; Donner, Engstrom, & Sundelius 1991; Gerber

& Lamb 1994; Appleton & Struck-Marcell 1996). The sur-

face density of the response to a tidal perturbation is then

	0 = 	0

R0

R
|J|−1 (28)

(Gerber & Lamb 1994) where R0 is the original (unperturbed)

radius of the (circular) orbit and J is the Jacobian. The points

where J = 0 are caustics, and correspond to the locations of

the induced arms.

Alternatively the spiral arms may be quasi-stationary den-

sity waves. In the self gravitating case, the effect of self

gravity is to make the spiral pattern more rigid, increasing

�p. Swing amplification may also act to enhance the density

of the arms still further. However it is not established whether

self gravity is sufficient to make the spiral pattern fully self

gravitating, and develop into a quasi-stationary density wave.

Both Oh et al. (2008), and Dobbs et al. (2010) find that al-

though the pattern speed is higher in their models than given

by Equation 27, and decreases less with radius, the arms are

not completely rigid and still wind up with time (see Fig-

ure 15, right panel). Sundelius et al. (1987) also find the

development of spiral density waves in the absence of swing

amplification, whilst Oh et al. (2008), and Dobbs et al. (2010)

find swing amplification only has a minor effect. Salo et al.

2000b also find that the pattern speed is radially decreasing

and again slightly higher than given by Equation 27, and

again generally suppose that swing amplification has only a

minor role in generating the arms. They do however find a

more constant pattern in the centre kpc or so of their simula-

tion of M51, and suppose that here Lin-Shu-Kalnajs (LSK)

waves operate, the lack of an ILR in their simulation meaning

waves can penetrate to the centre without being absorbed (in
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a number of their models, a bar forms in the centre, similar

to the actual M51).

Overall the nature of spiral arms in tidally interacting

galaxies likely represent the behaviour of the underlying disc.

Galaxies with dynamic spiral arms likely do not exhibit fixed

spiral patterns when tidally interacting as they are not gravi-

tationally dominated. Galaxies with more massive discs, and

likely bars, may well exhibit fixed patterns, at least in the

central gravitationally dominated regions.

2.4.3 Prograde and retrograde encounters, and the orbit

of the perturber

In addition to the nature of the spiral arms induced, we can

also consider how the orbit of the perturber affects the tidal

perturbation. The simulations of Toomre & Toomre (1972),

and later Howard et al. (1993) demonstrated that retrograde

encounters have a relatively small effect on a galactic disc,

whereas prograde encounters are very effective at produc-

ing spiral arms, naturally of a trailing nature. Other analysis

showed that tidal interactions could produce a leading spi-

ral pattern, with one predominant leading arm (Kalnajs 1971;

Athanassoula 1978; Thomasson et al. 1989). For the prograde

case, as discussed earlier with respect to kinematic density

waves, the angular speed of the perturber at closest approach

during its orbit will likely be nearest to the Inner Lindblad

resonance (�(R) − κ(R)/2), and hence particularly effective

at inducing an m = 2 perturbation. For the retrograde case,

the angular speed exhibits the opposite sign, has little corre-

spondence to any resonance (Toomre 1969), but will likely

be closest to an m = 1 perturbation (�p = �(R) − κ(R))

corresponding to one leading (generally κ(R) > �(R)) arm

(Byrd et al. 1989). Leading spiral arms are found to be rare

in simulations, requiring a strong perturbation, and a large

halo mass (Thomasson et al. 1989). The latter is important to

prevent swing amplification, which would convert any lead-

ing perturbation into a trailing one. Observationally, NGC

4622, a ring galaxy, is the only galaxy found to exhibit lead-

ing spiral arms (Buta, Crocker, & Byrd 1992; Buta, Byrd, &

Freeman 2003).

Various simulations have also investigated the impact on

the galaxy from perturbers of different masses (Byrd &

Howard 1992; Oh et al. 2008; Struck, Dobbs, & Hwang

2011). The simulations find that a perturber typically needs

to be at least 0.01 times of the mass of the main galaxy to

have an effect, ideally closer to 0.1 times the mass to pro-

duce a clear grand design pattern, although naturally there is

a degeneracy with the pericenter of the orbit (Oh et al. 2008).

Toomre & Toomre (1972) showed that a perturbing galaxy

has greatest impact when orbiting in the plane of the main

galaxy, but changing the angle of inclination of the perturbing

galaxy has little qualitative effect.

Another factor determining the dynamics of tidally in-

duced spirals is the number of orbits of the perturber, and

thus whether it is bound. For M51, the best matched or-

bit of M51 and NGC5195 currently involves two orbits of

the NGC 5195 around M51, after which the two galaxies

merge (Salo & Laurikainen 2000a; Theis & Spinneker 2003).

Consequently the dynamics are quite chaotic, whilst the or-

bit induces different sets of spiral arms resulting in notice-

able kinks along the spiral arms as observed today (Salo &

Laurikainen 2000b; Dobbs et al. 2010). The spiral arms con-

sequently show clear departures from logarithmic spirals.

Oh et al. (2008), and Struck et al. (2011) present simulations

where a perturber is on an unbound orbit, and passes the

galaxy only once. In this case, the dynamics are less chaotic,

and the arms smoother.

2.4.4 Longevity of tidally-induced spirals

If m = 2 spirals are difficult to produce except by tidal in-

teractions or bars, as we conclude from Section 2.1.5, their

lifetime is an important characteristic. Grand design m = 2

spirals are common, hence tidal interactions must induce rel-

atively long-lived spiral arms if they are the main source of

such galaxies.

Assuming their pattern speed is not fixed, tidal arms are

expected to have a pattern that winds up slower than local

transient arms discussed in the previous section, but to be

shorter lived than quasi-stationary spiral arms. For tidally

induced spiral arms, there are two main questions regarding

how long they last. The first is how much they wind up over

time, the second is how long the arms take to decay or damp.

To think about the first issue, we can consider the pitch angle

of the arms, defined as the angle between the tangent of the

spiral arm and a circle, i.e.

tan α =
1

R

dR

dφ
, (29)

where the derivation is evaluated along the spiral arm. If

we consider the change in φ at a later time as φ(R, t) =
φ0 + �p(R)t then the pitch angle can be written as:

cot α =
∣

∣

∣

∣

R t
d�p

dR

∣

∣

∣

∣

(30)

(Binney & Tremaine 2008). For material arms, �p = � and

for a flat rotation curve of vc = 200 km s−1, the pitch angle

will be ∼ 1◦ after about 1 Gyr. This is considerably lower than

observed pitch angles. For material arms, the pattern winds

up on a timescale of order t ∼ |dR/(Rd�)| = 1/|d�/d ln R|,
in the above example � 100 Myr.

For kinematic tidal arms, in the absence of self

gravity, �p(R) = �(R) − κ(R)/2 (Section 2.4.1), and so

|d�p/d ln R| ≪ |d�/d ln R|. Hence the spiral pattern is ex-

pected to last somewhat longer. In the presence of self gravity,

�p versus R can become even shallower. For example, if we

take Figure 15 (right panel), in 1 Gyr, the pattern winds up at

a rate ∼ 4 times slower than the above example for material

arms, and is expected to have a pitch angle of 5 or 6◦ after

1 Gyr. These values are, as would be predicted, at the lower

end of observed values (Seigar & James 1998; Seigar et al.

2006).

Simulations of tidally induced spiral arms confirm this

behaviour, with the pattern winding up and simultaneously
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decaying on a timescale of ∼ 1 Gyr (Oh et al. 2008; Struck

et al. 2011). Similar to the case of dynamic spiral arms (Sec-

tion 2.2), Struck et al. (2011) also found that the arms per-

sisted for longer with higher resolution simulations. Struck

et al. (2011) also supposed that galaxy encounters in groups

and clusters are likely frequent, and with spiral arms persist-

ing for ∼ 1 Gyr, tidally induced spiral galaxies common.

2.5 Stochastic star formation

The idea of the generation of spiral arms by stochastic self-

propagating star formation (SSPSF) was developed princi-

pally by Mueller & Arnett (1976), and Gerola & Seiden

(1978). Each generation of star formation is presumed to

trigger new star formation in neighbouring regions, by the

production of shocks from supernovae winds. Then, due to

differential rotation, the newly formed stars are sheared into

material spiral arms. Like the picture of Goldreich & Lynden-

Bell (1965a), the spiral arms are new stars, but in their case

the spiral arms were associated with gravitational instabili-

ties in the gas, rather than supernovae. This mechanism is not

supposed to account for grand design galaxies, but tends to

produce flocculent spiral arms (Gerola & Seiden 1978; Jung-

wiert & Palous 1994; Sleath & Alexander 1995). Spiral arms

are not long-lived in this model, rather they are continually

created and destroyed.

The conclusion of these studies is that SSPSF is a sec-

ondary effect, rather than a primary means of generating

spiral arms. In general, stellar discs in observed galaxies are

not smooth, spiral structure is seen in the old stellar popu-

lation, which is much amplified by the response of the gas.

In fact, Mueller & Arnett (1976) concluded that stochastic

star formation would not produce global spiral structure, but

rather in conjunction with other mechanisms, such as density

waves, would add an irregular structure to the galaxy. For ex-

ample supernovae and triggered star formation are likely to

help produce much wider spiral arms in tracers such as HI,

CO and Hα than expected from the gas response to a spiral

shock. In the absence of feedback, the width of spiral arms is

too narrow compared to observations (Douglas et al. 2010).

Local regions of likely SSPSF have been observed mostly

in the LMC (Westerlund & Mathewson 1966; Feitzinger et al.

1981; Dopita, Mathewson, & Ford 1985; Kamaya 1998). In

particular SSPSF seems most successful in irregular galax-

ies (Hunter & Gallagher 1985; McCray & Kafatos 1987;

Nomura & Kamaya 2001), which are not dominated by ro-

tation, or other mechanisms for producing spiral structure.

Direct triggering of molecular cloud formation by super-

novae has been suggested observationally, for higher latitude

regions in the Milky Way (Dawson et al. 2011), and in the

LMC (Dawson et al. 2013). However there is little evidence

that SSPSF is a global driver of spiral arms. After the 1980s

interest in SSPSF appears to have waned. It is now feasible

to perform hydrodynamical models of galaxies, including

stellar feedback. These seem to indicate that instabilities and

collisions dominate star formation in spiral galaxies, unless

the level of feedback is unrealistically high (Dobbs, Burkert,

& Pringle 2011).

2.6 Exotic mechanisms

An alternative means of generating spiral arms, aside form

gravitational instabilities in the stellar disc or tidal inter-

actions with visible perturbers, is from asymmetries in the

dark matter distribution. This may take the form of gravita-

tional instabilities induced by asymmetries in the dark matter

profiles of galaxies (Khoperskov et al. 2013), or tidal pertur-

bations from dark matter sub halos (Tutukov & Fedorova

2006; Dubinski et al. 2008; Kazantzidis et al. 2008; Chang &

Chakrabarti 2011). For the latter case, although the masses

of the sub halos are assumed to be small (∼ 106 M⊙), they

are extremely close to, if not passing through the galactic

disc during their orbits. Cosmological simulations predict

a multitude of sub halos, albeit with a greater frequency

than observed. The effect of dark matter sub halos is thus

at present entirely speculative. Simulations predict that the

impact of such halos should be detectable (Dubinski et al.

2008; Chang & Chakrabarti 2011), but whether such effects

are distinguishable from other perturbations (e.g. non-dark

matter perturbers, previous low mass mergers, bar instability,

gravitational instabilities) is an open question.

3 BEHAVIOUR OF GAS IN SPIRAL GALAXIES

So far we have only considered the response of the stars

in galactic discs, but the response of the gas is important

for considering spiral structure. The velocity dispersion in

the gas is less than that of the stars, so the gas response to

any perturbations in the stellar disc is highly amplified. Thus

even small overdensities in the stars can result in clear spiral

arms in the gas (for example see the IR maps in Elmegreen

(2011) compared to optical images). And furthermore as the

gas forms young stars, in the optical we are dominated by

the spiral pattern in the gas not the stars. Therefore processes

in the gas, and star formation, will have shaped the spiral

patterns that we observe.

3.1 Stability of a star and gas disc

As described in Section 2.1, gas or stars in a disc are expected

to undergo local axisymmetric gravitational instabilities ac-

cording to the criteria in Equations 7 and 10. For a disc of stars

and gas, local, transient instabilities in the stars are expected

to be coupled by a similar response in the gas. Similar to the

dispersion relations and stability criteria derived for gas and

stars separately, we can also derive similar expressions for a

disc of gas and stars. We note that, like in Section 2.1, the

derivations here assume the tight winding approximation.

Jog & Solomon (1984) first tackled the problem of a galac-

tic disc of stars and gas, by treating the disc as a two-fluid
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system. They derived the following dispersion relation

(ω2 − κ2 − k2c2
s
+ 2πGk	

s0)

×(ω2 − κ2 − k2c2
g
+ 2πGk	

g0)

− (2πGk	
s0)(2πGk	

g0) = 0 (31)

where cs and cg are the velocity dispersion of the stars and gas

respectively, and 	s0 and 	g0 are the surface densities of the

stars and gas respectively. Thus the stars and gas are treated as

co-existing fluids with different surface densities and velocity

dispersions. They also determined a local stability criterion.

Bertin & Romeo (1988) then determined a global stability

criteria for a two-fluid disc. They defined a marginal stability

curve given by

Q2
H

=
2λ

β
[(α + β) − λ(1 + β)

+
√

λ2(1 − β)2 − 2λ(1 − β)(α − β) + (α + β)2] (32)

where λ =
k

g

|k| , α = ρc/ρh and β = σ 2
c /σ 2

h , where ρ is den-

sity, σ is the radial dispersion, and subscripts c and h rep-

resent cold and hot components. Potentially, QH can exhibit

two peaks, one arising from instability in the gas (at smaller

wavelengths), and one from the stars (see Figure 3 of Bertin

& Romeo 1988). Stability globally at all wavelengths then

requires that Q2, where Q corresponds to the standard crite-

rion (Equation 7) for the hot component, is greater than the

maximum of Q2
H .

Rafikov (2001) derived the dispersion relation for a disc

with a fluid, and a collisionless component (see also Romeo

1992):

2πGk
	

g0

κ2 + k2c2
g
− ω2

+ 2πGk
	

s0F

κ2 − ω2
= 1 (33)

where F is defined as for Equation 9. Then, for the disc

to be stable (requiring ω2(k) > 0 for all k), he derived the

criterion

1

Q
sg

=
2

Q
s

1

q

[

1 − e−q2

I0(q
2))

]

+
2

Q
g

R
q

1 + q2R2
> 1 (34)

where

Q
s
=

κσ
s

πG	
s0

, Q
g
=

κc
g

πG	
g0

,

q = kσ
s
/κ, and R = cg/σs.

Note that Qg is not the same as shown earlier for Equation 7,

and this is again a criterion for local instabilities. Wang &

Silk (1994) also present a simplified approximate stability

criterion, (Q−1
s + Q−1

g )−1, with Qs and Qg defined as above.

These equations still do not represent a multiphase

medium, and are for a thin disc. Some authors have tried to

incorporate a more realistic ISM (Romeo, Burkert, & Agertz

2010; Romeo & Wiegert 2011; Romeo & Falstad 2013), but

we do not consider these further here. One of the main re-

sults arising from these criteria though is that small changes

in the gas can change the stability of the disc significantly,

compared to relatively large changes in the stellar component

(Jog & Solomon 1984; Rafikov 2001).

Following these derivations, Li, Mac Low, & Klessen

(2005) investigated the stability criterion of Rafikov (2001)

using numerical simulations of an isothermal disc. They

found gravitational collapse when Qsg < 1.6, and vigorous

star formation when Qsg < 1. With a multiphase medium,

gravitational collapse will always occur in a disc of stars and

gas with realistic surface densities. Many such simulations

have shown the development of dynamic spiral arms simulta-

neously in the gas and stars, and the formation of molecular

clouds and star formation within them (e.g. Robertson &

Kravtsov 2008; Hopkins, Quataert, & Murray 2011; Wada

et al. 2011).

3.2 Damping of spiral arms

Large-scale shocks (namely spiral shocks or galactic shocks)

are predicted in the gas as the result of spiral density waves

(see Section 3.5), or even generic turbulence in the spi-

ral arms, so they are naturally expected to lead to energy

dissipation.

By computing the energy change across the shock, and

momentum conservation, Kalnajs (1972) showed that the

rate of change of energy density of tightly winding quasi-

stationary spiral density waves is

Ė
w

=
�p

� − �p

Ė
s

(35)

(see also Binney & Tremaine 2008), where Ės is the en-

ergy dissipation in the shock and Ėw is the energy change

in the density wave. The energy dissipation, Ės is negative,

hence Ew increases when �p < � (i.e., R < RCR) and de-

creases when �p > � (i.e., R > RCR). By noting that Ew is

negative in the first case, and positive in the second case (Bin-

ney & Tremaine 2008), it is evident that the induced shock

always damps the density wave (Kalnajs 1972). The damp-

ing timescale, −Ew/Ėw, is estimated to be between ∼ 108 −
109 yrs depending on the calculation of the energy terms,

and the nature of the shock (Kalnajs 1972; Roberts & Shu

1972; Toomre 1977). Another basic consequence of damping

is that in the case of quasi-stationary spiral density waves, the

streamlines predicted to describe the gas trajectories (Roberts

1969, see Section 3.5) will not be closed (Kalnajs 1972).

Following this result, a model of self regulated spiral struc-

ture was put forward by Bertin & Romeo (1988), also follow-

ing discussion in Roberts & Shu (1972). Spiral perturbations

in the disc are predicted to grow with time (see Section

2.1.4). Hence Bertin & Romeo (1988) proposed that gas

damps the spiral perturbations, which are then regenerated

on timescales comparable to the damping timescale. They

point out that in the absence of gas, the stars would instead

continue to heat until the disc becomes stable to spiral per-

turbations (Lin & Bertin 1985).

For dynamic spirals, damping was also thought to be im-

portant. As mentioned in Section 2.2, early simulations (e.g.
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Sellwood & Carlberg 1984) found that stellar discs heated

up with time, as supposed in the previous paragraph, and

consequently the spiral arms disappear after several galac-

tic rotations. Furthermore, galaxies which have little gas did

not appear to have any spiral structure, suggesting that gas

damping is always a requisite for spiral structure (Binney &

Tremaine 2008). However, Fujii et al. (2011) and D’Onghia

et al. (2013) showed that spiral arms were able to survive

much longer (see Section 2.2). Fujii et al. (2011) demon-

strated that stellar heating was too high in previous lower

resolution calculations, partly due to two-body effects9. Thus

they showed that it was possible for galaxies to exhibit stellar

spiral arms in the absence of gas. Indeed such galaxies, with

spiral arms but no recent star formation or large gas reservoir,

are now observed (Masters et al. 2010).

3.3 Physical processes in the ISM

The gas in galaxies is subject to many processes other than

spiral shocks, including cloud-cloud collisions, hydrody-

namic instabilities (see also Section 3.5.2) and stellar feed-

back, as well as gas self gravity, thermodynamics and mag-

netic fields. Even in a purely smooth stellar disc, these pro-

cesses still lead to a considerable degree of substructure in

the gas, if not long spiral arms (e.g. Shetty & Ostriker 2006;

Tasker & Tan 2009; Dobbs et al. 2011). In the presence of

spiral arms, these processes will still clearly occur, often

preferentially in, or modified by the spiral arms.

The quasi-periodic spacing of gas structures along spiral

arms observed in some galaxies has long been supposed

associated with a gravitational origin of Giant Molecular

Clouds (GMCs) or Associations (GMAs) (Shu et al. 1972;

Woodward 1976; Elmegreen 1979; Cowie 1981; Elmegreen

& Elmegreen 1983b; Balbus & Cowie 1985; Kim, Ostriker, &

Stone 2002; Shetty & Ostriker 2006). The dispersion relation

for a gas disc, Equation 4 is often used to derive expressions

for the expected mass and spacing of GMCs along a spiral

arm. If we consider the gas which collapses on the shortest

timescale, this occurs when dω/dk = 0, at a wavenumber

k = πG	g0/c2
s . The corresponding wavelength is then

λmax =
2c2

s

G	
g0

. (36)

This is the predicted separation of the clouds. The mass of

the clouds is then

M = 	
g0

(

λmax

2

)2

=
c4

s

G2	
g0

. (37)

The spiral arms provide a denser environment, which can

make the gas susceptible to instabilities at wavelengths where

it would not be unstable in the absence of spiral arms. Also, as

	g0 increases, and cs likely decreases in the spiral arms, the

9 Note that Sellwood (2012) disagrees two body effects are important, rather
he supposes the main difference with higher resolution is that there is lower
amplitude noise, which results in weaker spiral arms and less heating.

properties of the GMCs change (though technically Equa-

tion 6, should be applied over large scales rather than lo-

calised to a spiral arm).

Whilst the dispersion relation adopts a number of caveats,

e.g. a thin disc, these masses and spacings have been shown

to approximately agree with simple numerical simulations

of a gravitationally unstable isothermal medium (Kim et al.

2002; Shetty & Ostriker 2006; Dobbs 2008). These calcula-

tions ignored the multiphase nature of the ISM (though see

Elmegreen 1989), which with the inclusion of thermal insta-

bility and turbulence, may lead the thermal term to actually

promote rather than prevent instability (Elmegreen 2011). In

a medium of clouds and diffuse gas, self gravity can also act

to increase cloud collisions (Kwan & Valdes 1987) which

would not necessarily lead to the same masses and separa-

tions as Equations 36 and 37. Finally these estimates of

the mass and separation generally require that the maximum

cloud mass is reached before feedback disrupts the cloud, or

the cloud moves out of the spiral arms (see also Elmegreen

1994, 1995).

Cloud collisions occur regardless of spiral arms due to the

random dispersion of the clouds, but are much more frequent

in the spiral arms. As will be discussed in Section 3.5.2,

dissipative collisions of either smaller molecular clouds or

cold HI can lead to the formation of more massive GMCs.

Structure is always present in the ISM, so gas entering the

spiral arms will exhibit some structure (though the gas need

not be molecular). Even for a homogenous warm medium,

rapid cooling in the spiral shock quickly leads to thermal in-

stabilities and the formation of structure (Dobbs et al. 2008;

Bonnell, Dobbs, & Smith 2013). Like gravitational insta-

bilities, cloud collisions in the spiral arm induce a spacing

between GMCs. In this case, the spacing predominantly de-

pends on the strength of the shock the gas encounters, which

in turn depends on the spiral forcing or amplitude and the

sound speed. The separation of GMCs is proportional to the

epicyclic radius, which represents the radii of the disc over

which material can be brought together to a single point,

or into a single cloud (Dobbs 2008). Stronger shocks pro-

duce more massive, widely spaced clouds. In this sense the

behaviour is opposite to gravitational instabilities.

Parker instabilities have also been proposed to form GMCs

in spiral arms (Mouschovias, Shu, & Woodward 1974;

Mouschovias, Kunz, & Christie 2009; Elmegreen 1982) and

shown to produce density enhancements of factors of sev-

eral, which may be sufficient to induce a phase change in the

ISM. Density enhancements solely due to Parker instabilities

are finite, and thus likely to be overwhelmed by gravitational

instabilities (Elmegreen 1982; Kim, Ryu, & Jones 2001; San-

tillán et al. 2000; Kim et al. 2002). However there is some

evidence of loops caused by Parker instabilities in the Galac-

tic Centre, where magnetic fields are strong (Fukui et al.

2006).

All these processes lead to considerable substructure in the

gas on size scales up to the most massive GMCs. Either frag-

mentation (via gravitational instabilities) or agglomeration of
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Figure 16. A section along the southern spiral arm of M51, from the Hubble Heritage image. Gas flow is predominantly

left to right in the figure. The spiral arm spans the figure, with 2 massive complexes along the dust lanes of the spiral

arms, containing HII regions, suggesting that star formation occurs very quickly once clouds form. Below the spiral

arm, are narrow lanes of gas and dust, also connected with HII regions. We term these features spurs in this paper. Some

spurs extend to the next spiral arm. Bridges, which would be more associated with a bifurcation in the arms, are not

particularly evident in M51. The figure is taken from Elmegreen (2007) and is originally form a Hubble Heritage image,

and is reproduced with permission from AAS C©.

clouds leads to a mass spectrum from masses of < 100 M⊙
up to giant molecular associations of 107−8 M⊙. In the case

that �p < � (i.e., R < RCR), complexes formed by all these

methods leave the arms and are sheared out into trailing spurs

(see next section) by differential rotation.

As well as processes which lead to the accumulation of

gas into clouds, stellar feedback also has a substantial effect

on the gas. Although spiral shocks may account for the very

narrow dust lanes in galaxies, the width of the shocked re-

gion, both from Shu et al. (1972) and simulations (e.g. Wada

& Koda 2004; Dobbs & Bonnell 2006; Shetty & Ostriker

2006) is very narrow compared to the width of CO arms

in nearby galaxies. Comparing with the Canadian Galac-

tic Plane Survey (CGPS)), Douglas et al. (2010) found that

HI velocity longitude maps from simulations without feed-

back produced too narrow spiral arms compared to the Milky

Way. Stellar feedback also produces bubbles and holes in the

ISM. Dobbs et al. (2011), and also Shetty & Ostriker (2008),

showed that with large amounts of feedback, it is possible

to largely erase the pattern of the original imposed stellar

spiral potential. Thus the substructure associated with that of

the stellar feedback becomes comparable to the imposed spi-

ral pattern (similar to the stochastic star formation scenario,

Section 2.5).

3.4 Substructure along spiral arms

Substructure reflects both giant molecular clouds, as well

as branches, spurs and feathers which extend at clear an-

gles away from the (typically) trailing side of the arm (see

Figure 16). Branches, spurs and feathers are observed in

many spiral galaxies, and occur in numerical simulations. As

we will see, the formation of these features is different for

the different spiral arm models.

There are no formal definitions of branches, spurs and

feathers. Spurs and feathers in particular have multiple mean-

ings in the literature. Branches generally describe long struc-

tures which may go from one arm to another, and/or where

one arm bifurcates into two. Consequently it may not be clear

in an observed galaxy whether a feature is actually a branch or

a spiral arm (including the Local Arm, Carraro 2013). Spurs

and feathers tend to be shorter features, and often describe

quasi-periodic rather than isolated features. In their observa-

tional study, La Vigne, Vogel, & Ostriker (2006) used feathers

to refer to dust lanes which extend between spiral arms, and

spurs to describe strings of star formation in the inter arm

regions. However these ‘feathers’ typically harbour the re-

gions of star formation or young stars, so theoretically there

is no clear need to distinguish between these two types of

feature. Chakrabarti, Laughlin, & Shu (2003) use an alterna-

tive notation, whereby spurs are leading features and feathers

trailing. Although they found both in numerical simulations,

it is not clear observationally whether such leading features

are seen in actual spiral galaxies. Finally Dobbs & Bonnell

(2006) referred to spurs as any relatively short (i.e. less than

one inter arm passage), narrow trailing features seen in the

gas, the definition we adopt here.

3.5 Quasi-stationary density waves

The response of gas to spiral arms has been considered most

in the context of quasi-stationary spiral density waves, where,

in the case of a simple sinusoidal stellar potential, an ana-

lytic solution for the response of the gas can be obtained.
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Figure 17. Illustration of a typical shock solution for the gas response to

a steady spiral density wave, from Roberts (1969). Gas flows from left to

right. The figure shows density (top), velocity perpendicular to the spiral

arms (second), velocity parallel to the spiral arms (third), and the potential

(last), versus the azimuthal angle around the galaxy. Figure reproduced with

permission from AAS C©.

Motivated by the suggestion that narrow dust features seen

in external galaxies might be due to shocks, Fujimoto (1968)

first examined the response of gas to a spiral potential. He

confirmed that the gas would indeed be likely to undergo

a shock. Roberts (1969) extended this analysis and, with a

small correction to the work of Fujimoto (1968), obtained

four equations which can be solved to obtain the veloci-

ties, spatial coordinates and density of a parcel of gas as it

moves round the disc (i.e. along a streamline). These equa-

tions demonstrate that the properties of the shock, and in-

deed whether there is a shock, depend on the amplitude of

the spiral potential (F), the sound speed and/or the turbulent

velocity of the gas, σg, the pitch angle and location in the

disc. For example, for warm gas and moderate forcing, a nar-

row shock is expected ahead of the minimum of the potential

(Figure 17). If the gas is cold however, a very narrow shock

is expected after the minimum of the potential. Magnetic

fields are not found to greatly affect the solution, the shock is

merely weaker in the magnetic case (Roberts & Yuan 1970).

Another interpretation of spiral shocks was put forward

by Kalnajs, and shown in Toomre (1977). Here the spiral

forcing is considered analogous to a series of pendulums. The

pendulums are assumed to oscillate like harmonic oscillators

and bunch up periodically at certain intervals. The bunching

up of the pendulums is analogous to parcels or clouds of

gas crowding together at the spiral arms. Toomre (1977)

supposed that gas clouds pile up at the locations of the spiral

arms, a little like a traffic jam. A simple calculation of test

particles in a spiral potential obeys this behaviour. In the

case of spiral density waves with gas pressure, Shu, Milione,

& Roberts (1973) found that for cs = 8 km s−1, the forcing

required to produce a shock is around a few %.

Shu et al. (1972) also investigated the dynamics of spiral

shocks in the context of cloud collisions. They assumed a

steady state solution and solved the jump conditions at the

shock, in order to study the resultant shock structure for a

two phase medium, consisting of cold clouds of a given fill-

ing fraction surrounded by warm intercloud medium. The

different phases exhibit different density enhancements (of

around 10 and 40), as expected, and they were able esti-

mate a width of the shocked region of 50 pc, essentially the

length scale after which the medium re-asserts an equilib-

rium state. Processes such as cloud collisions, and supposed

gravitational fragmentation, led the authors to suppose a dy-

namic, rather than quasi-stationary shock scenario. Further-

more clouds will have dispersions relative to each other, and

enter the spiral arms at different locations, and velocities.

Since the 1960s and 1970s, there have been many studies

that have underlined the complex response of gas to spi-

ral density waves, and departures from the Roberts (1969)

picture. The gas structure along the arms arises through (i)

resonances, (ii) instability of the spiral shock, and, (iii) addi-

tional physical processes such as self gravity, cloud collisions

etc. which were discussed in Section 3.3. Resonances are in-

trinsic to the underlying stellar potential, although they can

be enhanced by self gravity in the gas. Processes included in

(ii) and (iii) depend on the properties of the gas. But essen-

tially all induce the formation of secondary, or substructure

within the gaseous spiral arms.

3.5.1 Resonances

Resonances are one means to generate gaseous substructure

along spiral arms, specifically for the case of quasi-stationary

density waves. Resonances occur when the epicyclic fre-

quency, κ of the stellar orbits are some integer multiple of

the angular frequency in the rotating frame of the spiral po-

tential, or vice versa, thus

m(� − �p) = ±
κ

n
(38)

where �p is the pattern speed of the spiral, and m is the num-

ber of spiral arms in the stellar disc. In this case stars perform

n radial oscillations every encounter with the m-armed spiral

pattern. Determining the presence and location of resonances

in the disc implicitly assumes that the pattern speed, �p, does

not vary with radius or time. In the vicinity of resonances,

the behaviour of stellar and or gas orbits are abruptly altered

and become nonlinear (e.g. Contopoulos & Grosbol 1986,

1988). The primary resonances at the ILR and OLR (n = 1)

are, as discussed in Section 2.1.2, associated with the bound-

ary of where the spiral density waves exist. Thus we are

predominantly interested in resonances within these radii.

Shu et al. (1973) supposed that the gas would be expected

PASA, 31, e035 (2014)
doi:10.1017/pasa.2014.31

https://doi.org/10.1017/pasa.2014.31 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2014.31


28 Dobbs and Baba

to experience perturbations due to resonances, and showed

analytically that gas undergoes a secondary compression to

a spiral potential at the ultraharmonic resonance (n = 2) 10.

Woodward (1975) demonstrated the nonlinear response of

gas at the location of the ultraharmonic resonance with 1D

calculations, and there have since been many further 2D and

3D (Smoothed Particle Hydrodynamics (SPH) and grid code)

calculations (Bertin 1993; Patsis et al. 1994; Patsis, Grosbol,

& Hiotelis 1997; Chakrabarti et al. 2003). In particular Patsis

et al. (1994) showed the bifurcation of the spiral arms at the

4:1 resonance (as also predicted by Artymowicz & Lubow

1992), provided there is a spiral forcing of F � 5 %.

Chakrabarti et al. (2003) showed the development of more

varied features, including branches (bifurcations) and shorter

leading and trailing features (spurs / feathers), again occur-

ring primarily near the 4:1 resonance, with the morphology

of the feature dependent primarily on the level of forcing of

the spiral potential. Chakrabarti et al. (2003) suppose that

flocculence in spiral galaxies could be due largely to such

resonant features, an idea recently followed up by Lee & Shu

(2012), where they investigate the possibility that higher or-

der resonances lead to the formation of multiple spurs along

the arms. There is a notable difference between the work

of Lee & Shu (2012), and GMC formation by gravitational

instabilities in the gas or cloud-cloud collisions (which are

subsequently sheared into spurs). For the former, the location

of the spurs does not change over time, the GMCs always

forming and dispersing in the same place in the spiral arms

(seemingly less likely in a dynamic environment). For other

GMC formation mechanisms there is no expectation that

clouds form in the same place.

3.5.2 Stability and structure of the shock

Even in the non-magnetic, non self gravitating regime, sev-

eral authors have questioned the stability of spiral shocks.

From analytical work, Mishurov & Suchkov (1975) first pro-

posed that the flow through a spiral shock could be unstable.

In contrast Nelson & Matsuda (1977) solved the fluid equa-

tions numerically in 1D, and predicted that the flow should

be stable (see also Dwarkadas & Balbus 1996) although their

solutions indicate some asymmetric features. Wada & Koda

(2004) pointed out that the latter studies adopted a tightly

wound pattern, and a flat rotation curve. They performed

2D numerical simulations with different pitch angles and

rotation curves, and found the spiral arms to be Kelvin-

Helmholz unstable when a more open spiral pattern was

used. The instability is most readily seen as spurs along the

spiral arms. Kim & Ostriker (2006) found that in 3D numeri-

cal models, Kelvin-Helmholtz instabilities were suppressed,

although Kim, Kim, & Kim (2014) suggest an alternative

‘wiggle instability’ mechanism.

Dobbs & Bonnell (2006) (see also Dobbs 2008) supposed

a different mechanism for producing structure, and spurs in

10 For m = 2 spirals, the ultraharmonic resonance is called the 4 : 1
resonance.

particular, along the shock in the purely hydrodynamical,

non self-gravitating case. They supposed that any substruc-

ture in the gas gets amplified as it passes through a shock.

Thus, like the cloud collisions in the Toomre (1977) model,

clouds, or structure in the gas, get forced together by orbit

crowding in the spiral shock. A similar idea was shown in

Roberts & Stewart (1987). Although they do not perform

hydrodynamic calculations, clouds in their models undergo

dissipative collisions. Like Toomre (1977), clouds can be

forced together and move apart after the shock, but unlike

Toomre the presence of dissipation means some clouds are

effectively compressed together and retain structure after the

shock. Dobbs & Bonnell (2006) showed that this process

was only valid in the presence of cold gas, when the ISM

is subject to thermal instabilities (Dobbs et al. 2008) unless

there is very large spiral forcing. For a warm medium, the

spiral shock is relatively weaker and the pressure smoothes

out any structure in the gas. The same process could have

also plausibly operated (rather than Kelvin Helmholtz insta-

bilities) in the calculations by Wada & Koda (2004) and Kim

& Ostriker (2006).

In the presence of self gravity, Lubow, Cowie, & Balbus

(1986) showed using 2D calculations that the gas experi-

ences a reduced shock from the stellar potential. In an ex-

treme case, where all the gas is situated in self gravitating

clouds, the behaviour of the clouds would resemble the zero

pressure case, similar to billiard balls entering the potential.

Wada (2008) performed full 3D hydrodynamical simulations

with self gravity and a multi-phase medium, finding that the

intermittency of dense gas entering the spiral potential leads

to a non steady state, where the gas spiral arms are neither

continuous, nor exhibit a constant offset from the arms (see

Figure 18, and e.g. also Dobbs & Pringle 2013). Rather the

arms switch back and forth with time. Consequently Wada

(2008) does not call the response of the gas a shock in this

context. The behaviour of the gas is quite different from the

original Roberts (1969) picture largely because the gas is far

removed from a homogenous flow. Also, simulations with a

multiphase medium typically do not exhibit a shock or peak

in density before the spiral potential. Typically the gas density

peaks after, or coincident with the minimum of the potential,

because the cold gas (within a multi-phase medium) shocks

later.

Figures 16 and 18 illustrate a number of the points made

in Section 3.5, for a section of spiral arm in M51 and a nu-

merical simulation respectively. The various processes in the

ISM, including instabilities, turbulence and feedback lead to

a ‘shock’, or dust lanes that are very much more structured

and broad than the simple analytic case. Nevertheless the

response of the gas is still much sharper than the underlying

potential or old stellar population. With gravity and cooling,

trailing spurs are very easy to make from arm GMCs. As

discussed in the next section, we would expected these fea-

tures regardless of whether the arms are tidally induced and

slowly winding up or truly stationary, the only difference for

the dynamic arms being the absence of trailing spurs.
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Figure 18. The response of gas to an m = 2 fixed spiral potential is shown,

from Wada (2008). The minima of the spiral potential are indicated by

the white lines. The simulation include a multiphase medium, and stellar

feedback, so the response of the gas is highly complex. No clear continuous

shock is found, and the density peak of the gas does not have a continuous

offset from the minimum, although typically the density peak is after (on

the trailing side of) the potential minimum.

3.6 Tidally induced spiral arms

As discussed in section 2.4, the main difference for tidally

induced spirals compared to the QSSS case is likely to be

a radially dependent (Oh et al. 2008; Dobbs et al. 2010),

rather than constant pattern speed11. Consequently resonance

related substructure is not likely to feature in tidally induced

spirals.

At large radii, the spiral arms may well be material arms,

with little gas flow through the arms (Meidt et al. 2013).

However at most radii, as mentioned in section 2.4, the arms

are likely to be density waves, with a pattern speed lower

than that of the rotation speed (unlike the local, transient

arms). Similar to the quasi-stationary density wave picture,

the gas will flow through the arms and experience a spiral

shock. GMCs are expected to form in the arms by the means

described in Sections 3.3 and 3.5, being sheared out into

spurs as they leave the arms. The structure of galaxies such

as M51 largely reflects this behaviour.

The simulations of Salo & Laurikainen (2000b) and Dobbs

et al. (2010) did not achieve the resolution required to study

GMC formation, or spur formation, in their models of in-

teracting galaxies . The simulations do predict that unlike

the quasi-steady state spiral galaxy, the gas and stars are not

found to be offset from each other. In their model of M51,

Dobbs et al. (2010) also showed that the double, and relatively

close passage of the perturbing galaxy introduced somewhat

11 although there are some exceptions to this view, Salo & Laurikainen
(2000b) find a constant pattern speed in the centre of their models of
M51, whilst Meidt et al. (2008b) adopt a model of multiple patterns for
M51.

chaotic dynamics, inducing large radial inflow and outflow

motions (see also Shetty et al. 2007). The chaotic dynamics

also mean that the spiral arms may move with respect to the

gas on relatively short (∼ 10 Myr) timescales.

3.7 Gas flow in dynamic spiral arms

The main difference in the behaviour of gas in galaxies with

dynamic spiral arms, compared to quasi-stationary or tidally

induced arms, is again due to the pattern speed. Dynamic

stellar spiral arms do not exhibit significantly different ro-

tation from the rest of the galaxy. Rather the spiral arms

exhibit corotation everywhere (e.g., Baba et al. 2013, see

Section 2.2.2). Thus the gas, stars and spiral arms will have

the same angular velocities and there is no gas flow through

the arms. Similar to the case of tidally induced spiral arms,

the dynamics of the spiral arms means substructure due to

resonances cannot occur.

In dynamic arms, the gas is still subject to the gravitational

potential of the arms. As shown in Dobbs & Bonnell (2008)

and Wada et al. (2011), gas effectively falls in to the mini-

mum of the potential, from both sides of the spiral arm. In

massive gas rich discs, the spiral arms may themselves be a

manifestation of gravitational instabilities in the gas, so gas

infall is coincident with arm formation. For dynamic arms,

a systematic offset is not expected between the density peak

of the gas, and the stellar minimum (Dobbs & Bonnell 2008;

Wada et al. 2011). Because the gas does not flow through

the spiral arm, the gaseous arm remains until the stellar arm

disperses. Even then, since the velocity dispersion in the gas

will be less than that of the arms, it will still be likely that a

gaseous arm remains, even when the stellar arm has dispersed

(Dobbs & Bonnell 2008)

Gas can still clearly undergo shocks as it falls into the min-

imum of the potential, particularly if it has cooled. Shocks

in nearby spiral arms were associated with the dynamic spi-

ral arm picture, as well as the QSSS scenario in early ob-

servations (e.g. Quirk & Crutcher 1973). The presence of

quasi-regular spurs however seems less likely in galaxies

with dynamic spiral arms. As stated in Section 3.5.2, spurs

are usually the result of GMCs in spiral arms being sheared

out as they move into the inter arm regions. However if

the gas does not pass out of the spiral arms, this mecha-

nism is not feasible, and indeed spurs are not typically seen

in simulations (Dobbs & Bonnell 2008; Wada et al. 2011).

Larger features, such as branches, are possible though. As

mentioned above, when the stellar spiral arm dissolves, the

gaseous arm may remain intact for longer. The gaseous arm

thus represents a feature without a stellar counterpart, can

appear as a branch between spiral arms (Dobbs & Bonnell

2008).

Again, GMC formation will occur as described in Section

3.3. So far, there is no noticeable difference between the

properties of GMCs in simulations of galaxies with global

spiral spiral arm versus local transient arms (Hopkins et al.

2011; Dobbs et al. 2011), and likely not different to tidal arms.
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However there are differences in comparison to the clouds in

a completely smooth stellar disc, where there are no stellar

spiral arms, and processes such as cloud-cloud collisions are

more limited. In the case without spiral arms, the maximum

cloud mass is smaller (e.g. a few 105 M⊙ compared to a

few 106 M⊙), whilst clouds tend to preferentially exhibit

prograde rotation rather than randomly orientated rotation.

4 OBSERVATIONAL EVIDENCE FOR

DIFFERENT MECHANISMS OF GENERATING

SPIRAL STRUCTURE

Although not yet conclusive, there are a growing number

of observational tests for whether galaxies display quasi-

stationary density waves, tidally induced or bar driven spi-

rals, or instability induced dynamic spiral arms. Most of the

observational tests relate to the pattern speed of the spiral

arms, and whether the distribution of gas and stars match

the predictions for a fixed pattern speed or not. Only the

quasi-stationary density wave picture adopts a constant pat-

tern speed, whilst the other mechanisms induce arms with

radially decreasing pattern speeds.

4.1 Pattern speeds

The pattern speed is difficult to measure directly, but there

have been many attempts to estimate pattern speeds in galax-

ies. Most measurements have assumed that the pattern speed

is constant, thereby immediately adopting the assumption

that the spiral pattern is a quasi-stationary spiral density

wave. The simplest means of determining the pattern speed

is to estimate the location of corotation (e.g. assumed coin-

cident with the outer extent of the arms, or a dip in HI or CO

at a certain radius Shu, Stachnik, & Yost 1971; Rots 1975;

Elmegreen, Seiden, & Elmegreen 1989; Sempere et al. 1995).

Supposed locations for the ILR (e.g. assumed coincident with

the inner extent of the spiral arms, rings or inter arm features)

and/ or the OLR can be similarly used to estimate the pat-

tern speed (Lin & Shu 1967; Gordon 1978; Elmegreen et al.

1989). These methods suffer from uncertainties, both obser-

vationally and theoretically about where spiral arms begin

and end (see e.g. Contopoulos & Grosbol 1986; Elmegreen,

Wilcots, & Pisano 1998; Englmaier & Shlosman 2000), and

of course whether these really are resonance features.

Another indirect test of the pattern speed is the location of

the spiral shock, and star formation relative to the minimum

of the stellar potential. For a fixed spiral pattern, the spiral

shock will lie one side of the minimum of the stellar potential

within corotation, and the opposite side outside corotation.

The width of this offset can be used to determine the pattern

speed, if a constant sound speed is assumed. Gittins & Clarke

(2004) demonstrated this method using numerical simula-

tions, where they presumed the spiral shocks will correspond

to dust lanes. Likewise, assuming a timescale for star forma-

tion to occur, the molecular clouds (CO) and Hα will have a

predicted offset. Egusa, Sofue, & Nakanishi (2004) used this

prediction to derive a constant pattern speed for NGC 4254,

following which they are able to derive pattern speeds for

5 out of a sample of 13 galaxies (Egusa et al. 2009). Diffi-

culties in obtaining pattern speeds for many spirals, and the

large scatter with this method, likely arise because the spirals

are transient, and the offsets local and non-systematic. Tam-

burro et al. (2008) instead measured offsets between atomic

hydrogen and recent star formation (24 μm maps) to simulta-

neously fit �p and the star formation timescale for M51, the

latter found to be 1-4 Myr. Repeating their analysis however,

Foyle et al. (2011) found no evidence for a systematic offset,

and thus a constant pattern speed. One difference may be

that Foyle et al. (2011) try to fit a pattern speed over the en-

tire galaxy, whereas Tamburro et al. (2008) studied localised

regions. Such differences indicate the large uncertainties in

observationally determining the behaviour of spiral arms,

and that the assumption of a constant pattern speed may be

invalid.

As well as using morphological features of spiral galax-

ies to determine corotation, the kinematics can also be used,

either from the residual velocity fields or changes in the di-

rections of streaming motions (Canzian 1993; Sempere et al.

1995; Elmegreen et al. 1998). Canzian (1993) showed that the

spiral residual velocity field shows a single spiral feature in-

side corotation, and 3 spiral features outside corotation. Font

et al. (2011) also used the velocity field to determine the

location of resonances from the locations where the residual

velocities are zero, from high resolution Hα data. The kine-

matics of supernovae ejecta may also give information about

the underlying spiral arm pattern (Struck & Smith 2009,

Kretschmer et al. 2013).

So far all the methods described assume that the pattern

speed is constant. The (Tremaine & Weinberg 1984) method

uses the continuity equation for gas flow across the spiral

arms, which relative to the rest frame, and integrating over

each direction, gives an expression of the form

�p

∫

	xdx =
∫

	v
y
dx (39)

(Merrifield, Rand, & Meidt 2006). Here, 	, vy and x are

all observables (of the relevant tracer) which means �p can

be determined. For the continuity equation to be valid, this

method tends to use HI or CO to avoid problems with ex-

tinction, although a small fraction of the gas will be turned

into stars. The Tremaine-Weinberg method also assumes a

steady state, i.e. that the spiral arm is not changing over the

timescale that gas passes through the arm, and assumes a thin

disc, but is in principle not limited by the shape of the arm.

This technique has been used mainly for barred galaxies,

due mainly to the simpler geometry, but also for a num-

ber of spiral galaxies (Sempere et al. 1995; Zimmer, Rand,

& McGraw 2004; Rand & Wallin 2004). The method can

be extended to allow for a radial dependent pattern speed

(Westpfahl 1998; Merrifield et al. 2006). In this case, the pat-

tern speed can be determined by solving a matrix equation

over different positions within a small (e.g. 0.5 kpc width)

region along a spiral arm. The pattern speed is then computed
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Figure 19. The pitch angle is shown versus shear, from Grand et al. (2013).

The coloured points represent simulated values taken from Grand et al.

(2013), whilst the crosses are observed values, from Table 3 of Seigar et al.

(2006).

for other regions at different radii. Using this method, a num-

ber of studies have found radially decreasing pattern speeds

(Merrifield et al. 2006; Speights & Westpfahl 2011, 2012)

including for M81 (Westpfahl 1998). Meidt et al. (2008b);

Meidt, Rand, & Merrifield (2009) also found radial depen-

dent pattern speeds in M51, M101 and a number of other

galaxies, but attributed these to different patterns with dif-

ferent pattern speeds at different radii, rather than a continu-

ously decreasing pattern speed. Differences in pattern speed

are likely at the transition from a bar to spiral arms (e.g.

Meidt et al. 2008b, see also Section 2.3), but this would not

explain discrete changes in pattern speed at larger radii, or in

the absence of a bar.

To date, no examples of galaxies with a constant pattern

speed have been found with the radially varying Tremaine-

Weinberg method. Most galaxies show a slowly decreasing

pattern speed in the outer regions. The Tremaine-Weinberg

method appears sufficient to establish that patterns speeds

vary radially (i.e. the pattern speed varies much more than

the error bars), but not whether the pattern speed varies con-

tinuously or consists of multiple segments each rotating at a

constant pattern speed (Meidt et al. 2008a, 2008b).

4.2 Pitch angles

We can also consider whether the pitch angles of spiral arms

of observed galaxies match predictions from models and the-

ory. Grand et al. (2013) analysed the pitch angles of transient

stellar spiral arms in galaxy models with different shear rates

(Ŵ), and showed that the higher shear rates produce more

tightly wound spiral arms. It is also clear that the pitch angle

of the spiral arms decreases with time. Figure 19 shows the

pitch angles of simulated spiral arms plotted against the shear

rate of model galaxies. The observed correlation of real spiral

galaxies are also overlaid on this figure. This trend and scatter

are both consistent with the observations (Seigar et al. 2005,

2006). Though spiral arms wind up by differential rotation,

typical pitch angles depend on the shear rate of disc galaxies

suggesting that swing amplification is important for gener-

ating spiral arms because swing-amplified spiral arms reach

maximum amplitudes at a specific pitch angle depending on

the shear rate (Section 2.1.3 and Figure 10).

The quasi-stationary density wave theory may also satisfy

the pitch angle-shear rate correlation qualitatively (Lin &

Shu 1964; Roberts, Roberts, & Shu 1975), since Lin & Shu

(1964) demonstrated that the pitch angle of quasi-stationary

density waves is lower for higher central mass concentration,

i.e., a higher shear rate. Observations by Block et al. (1994)

support the scenario that spiral arm properties are intrinsic to

a galaxy dependent on galaxy morphology and gas content

(see also Section 4.5).

4.3 Stellar cluster ages

The ages of stellar clusters can also be used as a test of

the underlying dynamics in galaxies. This method was de-

scribed in Dobbs & Pringle (2010). The ages of clusters

should clearly increase with distance away from the spiral

arm (in the leading direction) for a constant pattern speed.

Likewise a similar pattern is expected for a bar. However

for the case of dynamic spiral arms due to local instabilities

there is no flow of material through the spiral arms. Hence

no age pattern is expected, rather stars of similar ages lie

along a spiral arm (see Figure 20). The numerical models

of Dobbs & Pringle (2010) were relatively simple, and did

not include for example stellar feedback. More complicated

models have since been performed by Wada et al. (2011) and

Grand et al. (2012b, 2012a). They confirmed the case that

for dynamic arms, there is no clear age pattern, testing multi-

armed galaxies both with and without bars. Dobbs, Pringle,

& Naylor (2014) extended this idea further by looking specif-

ically at stellar age spreads in GMCs, and suggest again that

different age distributions may reflect how the spiral arms

are generated.

Dobbs & Pringle (2010) also tested a model of M51, where

they found that although the spiral arms are kinematic den-

sity waves, and there is flow of material through them, the

dynamics of the interaction were rather chaotic and produced

a chaotic distribution of stellar ages. Observations of stellar

ages in M51 have since confirmed a similar picture (Foyle

et al. 2011; Kaleida & Scowen 2010; Chandar et al. 2011).

Studies of galaxies undergoing less violent interactions have

not been tested.

From the numerical models, the patterns for the dynamic

spirals appear most robust, because the peaks in the number

of stars corresponding to the arms are significantly higher

than the noise (e.g. a factor of ∼ 10). For the case of the sta-

tionary density wave, the pattern is potentially more confus-

ing, because the peaks in the number of young stars decrease

and broaden away from the arm, so they are less distinct. Fur-

thermore after a relatively short time (10s Myrs), the young

stars will catch up with the next spiral arm.

Several observational studies have examined whether age

patterns exist in a number of nearby galaxies (Sánchez-Gil
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Figure 20. The spatial distribution of clusters of different ages is shown for different galaxy models: fixed spiral potential

(top left), barred galaxy (top right), dynamic spiral arms (lower left) and a model of M51 (lower right). For the fixed potential

and bar. there is a transition of stellar ages moving away from the spiral arms / bar. For the flocculent galaxy, star clusters of

similar age tend to be located in a spiral arm, and the ages do not show clear transitions, rather they are more random. From

Dobbs & Pringle (2010).

et al. 2011; Foyle et al. 2011; Ferreras et al. 2012). With

the exception of one or two galaxies e.g. M74, the observa-

tions generally find little evidence of age patterns. As well

as stellar clusters, a number of studies have also used colour

gradients across the spiral arms as a measure of a transition

in stellar ages (Efremov & Ivanov 1982; Regan & Wilson

1993; Beckman & Cepa 1990; Gonzalez & Graham 1996;

Martı́nez-Garcı́a, González-Lópezlira, & Bruzual-A 2009).

However again, with the exception of one or two cases, there

is rarely a clear trend in the colour gradients.

4.4 Resonances and interference patterns

As well as looking at the pattern speeds, or age spreads, it is

also possible to look for specific features that result from the

quasi-stationary density wave picture. Patterns of star forma-

tion along the spiral arms have been seen in some galaxies,

and attributed to resonances, for example a dip in star for-

mation at corotation (Cepa & Beckman 1990; Knapen et al.

1992). As already mentioned, features associated with reso-

nances are expected at certain radii in a disc. In a few galaxies,

symmetric spurs, or breaks in the spiral arms are relatively

convincing, e.g. NGC 1566 (Elmegreen & Elmegreen 1990).

Features such as outer rings due to bars can also be seen

(e.g. Buta & Crocker 1991). However in many cases subtle

features associated with spiral arms may simply be due to

the shearing of clouds, or bridges where spiral arms in the

gas remain whilst corresponding features in the stars have

dissipated (Section 3.7).

In the global model theory of spiral arms, see Section 2.1.4,

the spiral pattern is thought to correspond to an interference

pattern resulting from leading and trailing waves in the stellar

disc. Elmegreen (1989) found some signs of leading waves

for M51, M81 and M100, but equally the patterns they found

could be simply due to the underlying complex structure of

the disc.
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4.5 Observations of grand design and flocculent

structure

Any theory(ies) of spiral structure also need to explain the ob-

served frequency of grand design and flocculent spirals. One

of the arguments for quasi-stationary density waves has been

the large number of galaxies with m = 2 spiral structure. In

density wave theory, density waves with m > 3 are less likely

to be stable (Lin & Shu 1967; Toomre 1977; Thomasson et al.

1990) compared with m = 2, explaining the preference for

m = 2 spirals. An alternative explanation is that the m = 2

spirals are all tidally induced or bar driven. This hypothe-

sis was made by Kormendy & Norman (1979), who found

the majority of grand design galaxies had bars or compan-

ions. Some isolated galaxies exhibited arms which did not

extend to the flat part of the rotation curve, which meant that

they could potentially be longer lived spirals, as the wind-

ing problem is avoided. Other isolated grand design galax-

ies in their sample were thought to have undergone recent

mergers.

Observations also show that the frequency of grand design

galaxies doubles in clusters or groups compared to other-

wise (Elmegreen & Elmegreen 1983a). There are thus few

isolated grand design galaxies, but even then, determining

whether there are examples which could not be explained by

tidal interactions is difficult, partly due to the difficulty of

establishing truly isolated galaxies and those that have not

undergone a recent merger (see e.g. Verley et al. 2007). It is

also not established either theoretically, or using cosmologi-

cal simulations, whether interactions are likely to be frequent

enough to account for the observed number of grand design

spirals. As discussed in Section 2.4.4, spiral galaxies can

be expected to retain m = 2 structure for ∼ 1 Gyr after an

interaction.

One argument for the existence of long-lived spiral arms

is the finding that some galaxies that appear flocculent or

multi-armed in the optical exhibit an underlying grand de-

sign pattern in the old stellar population, i.e. as seen in the

K band (Block & Wainscoat 1991; Block et al. 1994; Block,

Elmegreen, & Wainscoat 1996; Thornley 1996; Thornley &

Mundy 1997; Grosbol & Patsis 1998; Seigar, Chorney, &

James 2003). Whilst these structures could be tidally in-

duced, Block et al. (1994) suggested that in fact the stellar

disc supports low m modes whereas the gas (and young stars)

does not since low m modes are damped at the ILR. Thus

in this scenario the two components of the disc are assumed

to be decoupled. Given that theory, and simulations, show

that gas shocks at the spiral arms, presumably there is still

some relation of the gas to the stars, many of the examples

in Block et al. (1994) simply show an extra optical arm. An

alternative scenario, in the dynamic arm picture is that these

galaxies, which are sufficiently massive to exhibit only a

small number of spiral arms, are transitioning between 2 and

3 armed patterns, and the features in the optical are remain-

ders of spiral arms where the stellar pattern has dispersed,

but the gas arm (which is clearly denser and colder) still per-

sists. Chakrabarti et al. (2003) provided an alternative pic-

ture whereby resonances may be responsible for generating

substructure from an underlying stationary m = 2 pattern,

particularly for highly flocculent galaxies, although other

means of generating substructure (e.g. instabilities, stellar

feedback) may be just as likely responsible (see reference to

Elmegreen, Elmegreen, & Leitner 2003 below). The most re-

cent observations found that most flocculent galaxies do not

exhibit grand-design structure (Elmegreen et al. 2011) and

those that do have very weak spiral arms (Elmegreen et al.

1999), but the co-existence of different patterns still needs to

be explained.

Conversely all galaxies may be flocculent galaxies, which

merely develop an overwhelming m = 2 mode during tidal

perturbations, or with a bar (Sections 2.3 and 2.4). Colombo

et al. (2014) found evidence for an underlying flocculent spi-

ral in the grand-design spiral M51, proposed for the old stars

as well as the gas (CO). Elmegreen et al. (2003) suggested

that both grand design and flocculent spirals (as seen in the

old stars) exhibit a similar structure in the gas and young

stars (independent of the underlying old stellar population)

which is driven by turbulence in the disc.

4.6 The Milky Way

The spiral structure of our Galaxy is reviewed thoroughly in

Benjamin (2014), so we only briefly discuss the Milky Way

here.

The number of spiral arms in our Galaxy is still debated

somewhat (see e.g. Vallée 2005), but is most frequently con-

sidered to be either 2 or 4. There are 4 main spiral arms; the

Perseus, Sagittarius, Scutum-Crux, and Norma spiral arms,

and at least one bar. There is in addition the Outer Arm,

which may be the outer part of one of the inner arms, and

the Local or Orion arm, which is much shorter, and may be

a bridge or spur rather than a real arm.

A large number (m > 2) of arms would support the view

that the Galaxy better resembles a flocculent, rather than

grand design spiral, with multiple dynamic arms induced by

local gravitational instabilities. An alternative interpretation

is that the Galaxy has two main spiral arms (the Perseus and

Scutum-Centaurus arms), with the other two arms lesser fea-

tures, perhaps only present in gas and young stars (Drimmel

2000). Such a scenario could arise in the quasi-stationary

density wave picture if the secondary arms are resonance

related features (Martos et al. 2004). In the Churchwell

et al. (2009) map of the Galaxy, the secondary arms ap-

pear to start at the ends of the bar, and/or be connected with

the inner 3 kpc arms, and the main arms also start at the

bar.

As well as gravitational instabilities induced locally by

perturbations in the stellar distribution, or GMCs, the Galaxy

is surrounded by low mass companions, and contains one or

two bars. Hence there is no shortage of mechanisms to gen-

erate spiral arms. Purcell et al. (2011) showed that a recent

passage of the Sagittarius galaxy could have induced spiral
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arms, though their simulations did not show the detailed spi-

ral structure. Either the bar(s) or interactions could lead to

an m = 2 pattern. One of the most striking pieces of evi-

dence that there is a symmetric m = 2 pattern, suggestive of

Lin-Shu density wave theory is the recent discovery of an

outer HI arm, which is found to match up exactly with the

inner Sagittarius arm, assuming a continuous m = 2 loga-

rithmic spiral pattern (Dame & Thaddeus 2011). Some other

models of the Galaxy tend to show kinked arms, rather than

continuous spiral arms (e.g. Taylor & Cordes 1993).

Numerical simulations have also been performed to ex-

amine the structure of the Milky Way, by comparing l − v

maps of simulations with those observed (Wada 1994; Fux

1999; Englmaier & Gerhard 1999; Rodriguez-Fernandez &

Combes 2008; Baba, Saitoh, & Wada 2010; Dobbs & Burkert

2012; Pettitt et al. 2014). Dobbs & Burkert (2012) showed

that the nearest spiral arm, in their instance from adopting a

symmetric m = 2 spiral, likely corresponds to the ‘molec-

ular ring’. However generally it is difficult to reproduce

the outer Milky Way with logarithmic spirals (Englmaier

& Gerhard 1999; Pettitt et al. 2014). Fitting the l − v map

from a simulation of a bar and dynamic spiral arms ap-

pears more successful (Baba et al. 2010). Baba et al. (2009)

also analysed the velocities of gas and young stars from N-

body+hydrodynamical simulations, and concluded that the

high peculiar (non-circular) velocities they obtain, in gen-

eral agreement with those observed in the Galaxy, arise from

dynamic rather than stationary spiral arms.

Generally, the spiral pattern remains uncertain for the

Milky Way, particularly as little is known about the spiral

structure on the other side of the Galactic Center. There is

also no conclusive observational evidence yet on the nature

of the dynamics of the spiral arms. The Very Long Base-

line Interferometer (VLBI) astrometry (e.g., VERA; Honma

2013), as well as future space missions for infrared astrom-

etry GAIA (Perryman et al. 2001) and JASMINE (Gouda

2012), may well be able to provide a better indication of the

nature of the spiral structure of our Galaxy.

4.7 Spiral arm triggering of star formation

A related question to the inducement of spiral arms in galax-

ies is whether the spiral arms induce star formation. This pos-

sibility has been considered in the quasi-stationary density

wave picture, where the spiral arms induce a shock in the gas,

thus raising the gas to the densities where it becomes molec-

ular and self gravitating (Fujimoto 1968; Roberts 1969). In

this scenario, the star formation is significantly higher with

the presence of spiral shocks than it would be in a galaxy with

no, or weak spiral arms. Some evidence in support of spiral

arm triggering is observations by Seigar & James (2002), that

show a correlation between arm strength and star formation.

However other work suggests there is no difference in the star

formation rate between grand design and flocculent galaxies

(Elmegreen & Elmegreen 1986; Stark, Elmegreen, & Chance

1987; Foyle et al. 2011; Eden et al. 2012). Instead, the spi-

ral arms are supposed merely to gather gas which would

anyway form stars, into the spiral arms (Vogel, Kulkarni, &

Scoville 1988), with the increase in gas densities and star

formation in the arms offset by lower values in the inter arm

regions. Numerical simulations support this picture (Dobbs

et al. 2011), finding only a factor of ∼ 2 increase with spiral

arms compared to without. The act of the spiral arms sim-

ply gathering up gas is also consistent with the picture of

shocks being highly dynamic, and intermittent, as described

in Section 3.5.2. However there is a tendency to form more

massive clouds, and more stable clouds in the spiral arms,

which may well lead to higher star formation rates in stronger

spiral arms (Dobbs et al. 2011).

5 SUMMARY AND DISCUSSION

The origin of spiral arms in galaxies is a longstanding

problem in astrophysics. Although, by no means solved,

here we summarise the progress of different theories and

observations.

5.1 Quasi-stationary density wave theory

In the late 1960s and 1970s the problems of maintaining

quasi-stationary spiral density waves were emerging, and the

WASER mechanism/ swing amplification proposed to main-

tain standing waves in the disc. This approach has been de-

veloped further, for example investigating damping and gas

dissipation to maintain a steady state, as described in Sections

2.1 and 4.2. As also described in Section 2.1, solutions and

stability criteria for non-uniformly rotating discs have also

been investigated. However as yet there has not been any

demonstration that the WASER mechanism works, and that

standing waves can develop. N-body simulations of galaxies

were just developing in the 1970s and 80s, but the picture has

remained largely unchanged. Instead, as discussed in Section

2.1.5, spirals in simulations appear to be dynamic features,

more associated with the swing amplification mechanism for

generating spiral features. Some simulations find longer last-

ing modes than predicted by swing amplification alone, but

the overall spiral pattern is still transient, recurrent in nature

(D’Onghia et al. 2013; Sellwood & Carlberg 2014). Others

specifically designed to support a standing wave between the

ILR and OLR, still find a pattern that changes from m = 2 to

m = 3 and is ultimately transient recurrent (Sellwood 2011).

The simulations of Salo & Laurikainen (2000b) also resemble

the density waves proposed by density wave theory (Kalnajs

1965; Lin & Shu 1966). In this case, self gravity of the disc

is high, and the tidally induced features in their models may

indeed be sufficiently self-gravitating to allow propagating

waves. However it is still not clear that these waves are main-

tained, or indeed any clear necessity that the density waves

need to be maintained.

We note that the success of these models in reproducing

density wave theory depends to some extent on the interpre-

tation of quasi-stationarity, and whether current simulations
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satisfy quasi-stationarity. However for those simulations with

longer lived spirals, it has not been shown that that the spi-

rals satisfy global mode theory (e.g. Bertin et al. 1989a,

1989b) and do not exhibit a steady shape over their lifetime.

Observationally we do not readily distinguish between very

transient spiral arms, and spiral arms which are ultimately

still transient, but survive multiple rotation periods.

5.2 Dynamic spirals

Spiral arm formation from swing amplified instabilities was

demonstrated nearly 30 years ago in simulations by Sellwood

& Carlberg (1984), and still remains a clear mechanism for

producing spiral arms. Typically the dynamic spiral arms

produced resemble multi-armed or flocculent galaxies, but

as discussed in the previous section, it also possible to pro-

duce low m patterns. In recent work, as described in Section

2.2, more details of this mechanism have emerged, for ex-

ample non-linear evolution, radial migration of stars, the be-

haviour of the arms and how they corotate with the gas. The

simulations have also demonstrated that the predictions of

the number and properties of spiral arms are in agreement

with the theory. The simulations have recently shed light on a

long-standing conundrum with regards the longevity of spiral

patterns generated in this way. High resolution calculations

(Fujii et al. 2011; D’Onghia et al. 2013) demonstrate that in

fact the heating of the spiral arms due to dissipation is much

less than previously thought. Thus it possible for such spiral

patterns to last for much longer, up to ∼ 10 Gyr. Coupled to

this, observations also demonstrate that spiral galaxies exist

with little or no star formation (Masters et al. 2010), so there

is no longer a need for a gas component, or cold accretion

onto the galaxy.

5.3 Tidal interactions

Tidal interactions were certainly recognised as a means of

producing spiral arms by the 1980s, but it was not clear

whether the induced arms would correspond to kinematic

density waves or stationary waves, and whether tidal interac-

tions could produce spiral structure extending to the centres

of galaxies. It is now clear from simulations that tidal interac-

tions can readily reproduce grand design structure, although

are unlikely to account for multi-armed or flocculent patterns.

The dynamics of the arms is dependent on the self gravity of

the disc. In the absence of self gravity, the arms are kinematic

waves. With increasing self gravity, the arms become more

rigid, less susceptible to winding, and with a higher pattern

speed. In particular, the central parts of galaxies which are

most dense are most susceptible to developing a more rigid

pattern, and in some cases a bar. Simulations have shown that

tidally induced spirals can last around a Gyr, thus certainly

in galaxy groups interactions may well be frequent enough

to explain the presence of m = 2 spirals.

5.4 Bar driven spirals

As described in Section 2.3, there are now numerous means

by which bars can induce spiral arms, and consequently dif-

ferent behaviour of the spiral arms in relation to the bar.

As yet however, there is no clear indication which scenario,

whether manifold theory, bar induced spirals, different pat-

terns for the bar and arms, or nonlinear coupling prevails.

And, as discussed in Section 2.3, the behaviour of the spiral

arms. Whether they have near constant pattern speeds, or are

trailing in nature more similar to the swing amplified model

of arm formation, is different between different simulations,

and in any case is likely to evolve with time. The range of

morphology in observed barred galaxies suggests that spirals

in barred galaxies have multiple origins.

5.5 Other mechanisms

As we have stated in Section 2.5, the stochastic star forma-

tion mechanism has fallen out of favour. Self propagating

star formation likely leads to structure in the gas and new

stars in galaxies, which produces a much more irregular and

flocculent appearance than the underlying old stars. How-

ever, simulations that adopt a smooth (structureless) stellar

disc and follow the gas and new star formation with hydro-

dynamics do not find very realistic spiral patterns. At least

some structure is required in the stars, for example from

swing-amplified noise or perturbations.

Dark matter halos are certainly a plausible means of gener-

ating spiral structure but at present we have no way of telling

where they are or what effects they are having (if any) on the

dynamics of stellar discs.

5.6 Observations

As discussed in Section 4, current observational tests do not

yet rule out any of the proposed mechanisms for determining

spiral structure. However we note that now the resolution

of observational data is such that tests on determining the

origin of spiral arms are becoming feasible, and results in-

creasingly reported in the literature. We emphasised that in

the past, observational results have often been limited by the

assumption of a constant pattern speed. Applications of the

radially dependent Tremaine-Weinberg method have shown

that the arms in both grand-design and flocculent galaxies

exhibit radially decreasing pattern speeds. Mapping the ages

of stellar clusters appears to be a useful test of distinguishing

galaxies where gas does not flow through the spiral arms,

as is the case for local swing amplified instabilities. Distin-

guishing the nature of pattern speeds in clear grand design

galaxies may be a good way of testing the rigidity of spi-

ral arms. Examining clusters in galaxies that appear to be

isolated grand design galaxies (or multi-arm galaxies with

a prominent m = 2 pattern), may be a good test of whether

the arms originate from swing amplified instabilities, or are

density waves.
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Interestingly, the gas response seems to first order inde-

pendent of the nature of the spiral arms (whereas bars for

example induce such large shear that star formation appears

to be suppressed). Gas and young stars dominate the ob-

served structure, but the spiral potential merely gathers the

gas together in the arms than change the gas properties or

star formation rate. Thus, other processes in the ISM, such as

turbulence, gravity and cloud collisions may have a greater

role on the gas dynamics and star formation than spiral arms.
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Martos, M., Hernandez, X., Yáñez, M., Moreno, E., & Pichardo,

B., 2004, MNRAS, 350, L47

Masset, F., & Tagger, M., 1997, A&A, 322, 442

Masters, K. L., Mosleh, M., Romer, A. K., et al. 2010, MNRAS,

405, 783

McCray, R., & Kafatos, M., 1987, ApJ, 317, 190

Meidt, S. E., Rand, R. J., & Merrifield, M. R., 2009, ApJ, 702, 277

Meidt, S. E., Rand, R. J., Merrifield, M. R., Debattista, V. P., &

Shen, J. 2008a, ApJ, 676, 899

Meidt, S. E., Rand, R. J., Merrifield, M. R., Shetty, R., & Vogel,

S. N. 2008b, ApJ, 688, 224

Meidt, S. E., Schinnerer, E., Garcia-Burillo, S., et al. 2013, ApJ,

779, 45

Merrifield, M. R., Rand, R. J., & Meidt, S. E., 2006, MNRAS, 366,

L17

Miller, R. H., Prendergast, K. H., & Quirk, W. J., 1970, ApJ, 161,

903

Minchev, I., Famaey, B., Quillen, A. C., Di Matteo, P., Combes, F.,

Vlajic, M., Erwin, P., & Bland-Hawthorn, J., 2012, A&A, 548,

A126

Mishurov, I. N., & Suchkov, A. A., 1975, Ap&SS, 35, 285

Mo, H., van den Bosch, F. C., & White, S. 2010, Galaxy Formation

and Evolution

Mouschovias, T. C., Kunz, M. W., & Christie, D. A., 2009, MN-

RAS, 397, 14

Mouschovias, T. C., Shu, F. H., & Woodward, P. R., 1974, A&A,

33, 73

Mueller, M. W., & Arnett, W. D., 1976, ApJ, 210, 670

Nelson, A. H., & Matsuda, T., 1977, MNRAS, 179, 663

Nomura, H., & Kamaya, H., 2001, AJ, 121, 1024

Oh, S. H., Kim, W.-T., Lee, H. M., & Kim, J., 2008, ApJ, 683, 94

Ostriker, J. P., & Peebles, P. J. E., 1973, ApJ, 186, 467

Pasha, I. I. 2004a, ArXiv Astrophysics e-prints, arXiv:astro-

ph/0406142

Pasha, I. I. 2004b, ArXiv Astrophysics e-prints, arXiv:astro-

ph/0406143

Patsis, P. A., Grosbol, P., & Hiotelis, N., 1997, A&A, 323, 762

Patsis, P. A., Hiotelis, N., Contopoulos, G., & Grosbol, P., 1994,

A&A, 286, 46

Perryman, M. A. C., de Boer, K. S., Gilmore, G., et al. 2001, A&A,

369, 339

PASA, 31, e035 (2014)
doi:10.1017/pasa.2014.31

https://doi.org/10.1017/pasa.2014.31 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2014.31


Spiral Structures in Disc Galaxies 39

Pettitt, A. R., Dobbs, C. L., Acreman, D. M., & Price, D. J. arXiv,

1406, 4150

Pfleiderer, J., 1963, ZA, 58, 12

Pfleiderer, J., & Siedentopf, H., 1961, ZA, 51, 201

Pichon, C., & Cannon, R. C., 1997, MNRAS, 291, 616

Polyachenko, E. V., 2004, MNRAS, 348, 345

Polyachenko, E. V., 2005, MNRAS, 357, 559

Pringle, J. E., & King, A. 2007, Astrophysical Flows

Puerari, I., & Dottori, H. A., 1992, A&A, 93, 469

Purcell, C. W., Bullock, J. S., Tollerud, E. J., Rocha, M., &

Chakrabarti, S., 2011, Natur, 477, 301

Quillen, A. C., Dougherty, J., Bagley, M. B., Minchev, I., &

Comparetta, J., 2011, MNRAS, 417, 762

Quirk, W. J., & Crutcher, R. M., 1973, ApJ, 181, 359

Rafikov, R. R., 2001, MNRAS, 323, 445

Rand, R. J., & Wallin, J. F., 2004, ApJ, 614, 142

Rautiainen, P., & Salo, H., 1999, A&A, 348, 737

Rautiainen, P., & Salo, H., 2000, A&A, 362, 465

Regan, M. W., & Wilson, C. D., 1993, AJ, 105, 499

Reynolds, J. H., 1927, Obs, 50, 185

Roberts, W. W., 1969, ApJ, 158, 123

Roberts, Jr., W. W., Roberts, M. S., & Shu, F. H., 1975, ApJ, 196,

381

Roberts, Jr., W. W., & Shu, F. H., 1972, ApL, 12, 49

Roberts, Jr., W. W., & Stewart, G. R., 1987, ApJ, 314, 10

Roberts, Jr., W. W., & Yuan, C., 1970, ApJ, 161, 887

Robertson, B. E., & Kravtsov, A. V., 2008, ApJ, 680, 1083
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