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Abstract—Software side channel attacks have become a serious
concern with the recent rash of attacks on speculative processor
architectures. Most attacks that have been demonstrated exploit
the cache tag state as their exfiltration channel. While many
existing defense mechanisms that can be implemented solely in
software have been proposed, these mechanisms appear to patch
specific attacks, and can be circumvented. In this paper, we
propose minimal modifications to hardware to defend against
a broad class of attacks, including those based on speculation,
with the goal of eliminating the entire attack surface associated
with the cache state covert channel.

We propose DAWG, Dynamically Allocated Way Guard, a
generic mechanism for secure way partitioning of set asso-
ciative structures including memory caches. DAWG endows a
set associative structure with a notion of protection domains
to provide strong isolation. When applied to a cache, unlike
existing quality of service mechanisms such as Intel’s Cache
Allocation Technology (CAT), DAWG fully isolates hits, misses,
and metadata updates across protection domains. We describe
how DAWG can be implemented on a processor with minimal
modifications to modern operating systems. We describe a non-
interference property that is orthogonal to speculative execution
and therefore argue that existing attacks such as Spectre Variant
1 and 2 will not work on a system equipped with DAWG. Finally,
we evaluate the performance impact of DAWG on the cache
subsystem.

I. INTRODUCTION

For decades, processors have been architected for perfor-

mance or power-performance. While it was generally assumed

by computer architects that performance and security are

orthogonal concerns, there are a slew of examples, including

the recent Google Project Zero attacks [22] (Spectre [31] and

Meltdown [35]) and variants [30], that show that performance

and security are not independent, and micro-architectural

optimizations that preserve architectural correctness can affect

the security of the system.

In security attacks, the objective of the attacker is to create

some software that can steal some secret that another piece of

code, the victim, should have exclusive access to. The access

to the secret may be made directly, e.g., by reading the value

of a memory location, or indirectly, e.g., inferred from the

execution flow a program takes. In either case, this leakage

of information is referred to as violating isolation, which is
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Fig. 1. Attack Schema: an adversary 1) accesses a victim’s secret, 2) transmits
it via a covert channel, and 3) receives it in their own protection domain.

different from violating integrity (corrupting the results obtained

through program execution).1

In a well-designed system the attacker cannot architecturally

observe this secret, as the secret should be confined to a

protection domain that prevents other programs from observing

it architecturally. However, vulnerabilities may exist when an

attacker can observe side effects of execution via software

means.

The mechanism by which such observations are made are

referred to as software side channels. Such channels must be

modulated, i.e., their state changed, as a function of activity in

the victim’s protection domain and the attacker must be able to

detect those state changes. Currently, the most widely explored

channel is based on the state of a shared cache. For example,

if the attacker observes a hit on an address, the address must

be cached already, meaning some party, maybe the victim,

had recently accessed it, and it had not yet been displaced.

Determining if an access is a hit can be accomplished by

measuring the time it takes for a program to make specific

references.

A covert communication channel transfers information

between processes that should not be allowed to communicate

by existing protection mechanisms. For example, when a side

channel is used to convey a “secret” to an attacker, an attack

would include code inside the victim’s protection domain for

accessing the secret and a transmitter for conveying the secret

to the attacker. Together they form a data tap that will modulate

the channel based on the secret. A receiver controlled by the

attacker, and outside the victim’s protection domain, will listen

for a signal on the channel and decode it to determine the

secret. This is pictorially illustrated in Fig. 1.

A classic attack on RSA relied on such a scenario [9]. Specif-

ically, existing RSA code followed a conditional execution

1Violating isolation and obtaining a secret may result in the attacker being
able to violate integrity as well, since it may now have the capability to modify
memory, but in this paper we focus on the initial attack that would violate
isolation.



sequence that was a function of the secret, and inadvertently

transmitted private information by modifying instruction cache

state in accord with that execution sequence. This resulted

in a covert communication that let an observing adversary

determine bits of the secret. In this case, the code that accessed

the secret and the transmitter that conveyed the secret were

pre-existing in the RSA code. Thus, an attacker that shared the

icache needed only provide a receiver that could demodulate

the secret conveyed over the cache tag state-based channel.

Recent work has shown that a broad space of viable attacks

exfiltrate information via shared caches.

A. Generalized Attack Schema

Recently, multiple security researchers (e.g., [22], [31], [35])

have found ways for an attacker to create a new data tap in

the victim. Here, an attacker is able to create a data tap in the

victim’s domain and/or influences the data tap to access and

transmit a chosen secret. Spectre and Meltdown have exploited

the fact that code executing speculatively has full access to

any secret.

While speculative execution is broadly defined, we focus

on control flow speculation in this paper. Modern processors

execute instructions out of order, allowing downstream in-

structions to execute prior to upstream instructions as long

as dependencies are preserved. Most instructions on modern

out-of-order processors are also speculative, i.e., they create

checkpoints and execute along a predicted path while one or

more prior conditional branches are pending resolution. A

prediction resolved to be correct discards a checkpoint state,

while an incorrect one forces the processor to roll back to

the checkpoint and resume along the correct path. Incorrectly

predicted instructions are executed, for a time, but do not

modify architectural state. However, micro-architectural state

such as cache tag state is modified as a result of (incorrect)

speculative execution causing a channel to be modulated, which

may allow secrets to leak.

By exploiting mis-speculated execution, an attacker can exer-

cise code paths that are normally not reachable, circumventing

software invariants. One example has the attacker speculatively

executing data tap code that illegally accesses the secret and

causes a transmission via micro-architectural side effects before

an exception is raised [35]. Another example has the attacker

coercing branch predictor state to encourage mis-speculation

along an attacker-selected code path, which implements a data

tap in the victim’s domain. There are therefore three ways of

creating the data tap:

1) Data tap pre-exists in victim’s code, which we described

in the RSA attack [9].

2) Attacker explicitly programs the data tap. Meltdown [35]

is an example of this.

3) Attacker synthesizes a data tap out of existing code in the

victim — exemplified by Spectre variants [22], [30], [31].

This framework can be applied for side channels other than

the cache state, describing exfiltration via branch predictor

logic or TLB state, for example. Given the intensified research

interest in variants of this new attack class, we also imagine

that there will be new ways that data taps can be constructed.

We therefore wish to design a defense against a broad class of

current and future attacks.

B. Our approach to defense

Defense mechanisms that can be implemented solely in

software have been proposed (e.g., [11], [43]). Unfortunately,

these mechanisms appear very attack specific: e.g., a compiler

analysis [43] identifies some instances of code vulnerable to

Spectre Variant 1; microcode updates or compiler and linker

fixes reduce exposure to Spectre Variant 2 [11]. Instructions to

turn off speculation in vulnerable regions have been introduced

(e.g., [2]) for future compilers to use. In this paper, we

target minimal modifications to hardware that defend against

a broad class of side channel attacks, including those based

on speculation, with the goal of eliminating the entire attack

surface associated with exfiltration via changing cache state.

To prevent exfiltration, we require strong isolation between

protection domains, which prevents any transmitter/receiver

pair from sharing the same channel. Cache partitioning is

an appealing mechanism to achieve isolation. Unfortunately,

set (e.g., page coloring [29], [50]) and way (e.g., Intel’s

Cache Allocation Technology (CAT) [21], [23]) partitioning

mechanisms available in today’s processors are either low-

performing or do not provide isolation.

We propose DAWG, Dynamically Allocated Way Guard, a

generic mechanism for secure way partitioning of set associative

structures including caches. DAWG endows a set associative

structure with a notion of protection domains to provide strong

isolation. Unlike existing mechanisms such as CAT, DAWG

disallows hits across protection domains. This affects hit paths

and cache coherence [42], and DAWG handles these issues

with minimal modification to modern operating systems, while

reducing the attack surface of operating systems to a small

set of annotated sections where data moves across protection

domains, or where domains are resized/reallocated. Only in

these handful of routines, DAWG protection is relaxed, and

other defensive mechanisms such as speculation fences are

applied as needed. We evaluate the performance implications

of DAWG using a combination of architectural simulation and

real hardware and compare to conventional and quality-of-

service partitioned caches. We conclude that DAWG provides

strong isolation with reasonable performance overhead.

C. Contributions and organization

The contributions of our paper are:

1) We motivate strong isolation of replacement metadata

by demonstrating that the replacement policy can leak

information (cf. Section II-B2) in a way-partitioned cache.

2) We design a cache way partitioning scheme, DAWG, with

strong isolation properties that blocks old and new attacks

based on the cache state exfiltration channel (cf. Section

III). DAWG does not require invasive changes to modern

operating systems, and preserves the semantics of copy-

on-write resource management.
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3) We analyze the security of DAWG and argue its security

against recent attacks that exploit speculative execution

and cache-based channels (cf. Section V-A).

4) We illustrate the limitations of cache partitioning for

isolation by discussing a hypothetical leak framed by our

attack schema (cf. Fig. 1) that circumvents a partitioned

cache. For completeness, we briefly describe a defense

against this type of attack (cf. Section V-C).

5) We evaluate the performance impact of DAWG in com-

parison to CAT [21] and non-partitioned caches with a

variety of workloads, detailing the overhead of DAWG’s

protection domains, which limit data sharing in the system

(cf. Section VI).

The paper is organized as follows. We provide background

and discuss related work in Section II. The hardware modifi-

cations implied by DAWG are presented in Section III, and

software support is detailed in Section IV. Security analysis

and evaluation are the subjects of Section V and Section VI,

respectively. Section VII concludes.

II. BACKGROUND AND RELATED WORK

We focus on thwarting attacks by disrupting the channel

between the victim’s domain and the attacker for attacks that

use cache state-based channels. We state our threat model in

Section II-A, describe relevant attacks in Section II-B, and

existing defenses in Section II-C.

A. Threat model

Our focus is on blocking attacks that utilize the cache state

exfiltration channel. We do not claim to disrupt other channels,

such as L3 cache slice contention, L2 cache bank contention,

network-on-chip or DRAM bandwidth contention, branch data

structures, TLBs or shared functional units in a physical core.

In the case of the branch data structures, TLBs, or any other set

associative structure, however, we believe that a DAWG-like

technique can be used to block the channel associated with the

state of those structures. We assume an unprivileged attacker.

The victim’s domain can be privileged (kernel) code or an

unprivileged process.

B. Attacks

The most common channel modulation strategy corresponds

to the attacker presetting the cache tag state to a particular
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value, and then after the victim runs, observing a difference in

the cache tag state to learn something about the victim process.

A less common yet viable strategy corresponds to observing

changes in coherence [59] or replacement metadata.

1) Cache tag state based attacks: Attacks using cache

tag state-based channels are known to retrieve cryptographic

keys from a growing body of cryptographic implementations:

AES [7], [40], RSA [9], Diffie-Hellman [32], and elliptic-

curve cryptography [8], to name a few. Such attacks can be

mounted by unprivileged software sharing a computer with

the victim software [3]. While early attacks required access

to the victim’s CPU core, more recent sophisticated channel

modulation schemes such as flush+reload [60] and variants of

prime+probe [38] target the last-level cache (LLC), which is

shared by all cores in a socket. The evict+reload variant of

flush+reload uses cache contention rather than flushing [38]. An

attack in JavaScript that used a cache state-based channel was

demonstrated [39] to automatically exfiltrate private information

upon a web page visit.

These attacks use channels at various levels of the memory

cache hierarchy and exploit cache lines shared between an

attacker’s program and the victim process. Regardless of the

specific mechanism for inspecting shared tags, the underlying

concepts are the same: two entities separated by a trust

boundary share a channel based on shared computer system

resources, specifically sets in the memory hierarchy. Thus,

the entities can communicate (transmitting unwittingly, in the

case of an attack) on that cross-trust boundary channel by

modulating the presence of a cache tag in a set. The receiver

can detect the transmitter’s fills of tag TA either directly, by

observing whether it had fetched a shared line, or indirectly,

by observing conflict misses on the receiver’s own data caused

by the transmitter’s accesses, as shown in Fig. 2.



2) A cache metadata-based channel: Even without shared

cache lines (as is the case in a way-partitioned cache), the

replacement metadata associated with each set may be used as

a channel. Most replacement policies employ a replacement

state bit vector that encodes access history to the cache set in

order to predict the ways least costly to evict in case of a miss.

If the cache does not explicitly partition the replacement state

metadata across protection domains, some policies may violate

isolation in the cache by allowing one protection domain’s

accesses to affect victim selection in another partition. Fig. 3

exemplifies this with Tree-PLRU replacement (Section III-J1):

a metadata update after an access to a small partition overwrites

metadata bits used to select the victim in a larger partition. A

securely way-partitioned cache must ensure that replacement

metadata does not allow information flow across the cache

partition(s).

This means defenses against cache channel-based attacks

have to take into account the cache replacement policy and

potentially modify the policy to disrupt the channel and hence

ensure isolation.

C. Defenses

Broadly speaking, there are five classes of defenses, with

each class corresponding to blocking one of the steps of the

attack described in Fig. 1.

1) Prevent access to the secret. For example, KAISER

[13], which removes virtual address mappings of kernel

memory when executing in user mode, is effective against

Meltdown [35].

2) Make it difficult to construct the data tap. For example,

randomizing virtual addresses of code, flushing the Branch

Table Buffer (BTB) when entering victim’s domain [46].

3) Make it difficult to launch the data tap. For example,

not speculatively executing through permission checks,

keeping predictor state partitioned between domains, and

preventing user arguments from influencing code with

access to secrets. The Retpoline [53] defense against

Spectre Variant 2 [11] makes it hard to launch (or

construct) a data tap via an indirect branch.

4) Reduce the bandwidth of side channels. For example,

removing the APIs for high resolution timestamps in

JavaScript, as well as support for shared memory buffers

to prevent attackers from creating timers.

5) Close the side channels. Prevent the attacker and victim

from having access to the same channel. For example,

partitioning of cache state or predictor state.

The latter is the strategy of choice in our paper, and we consider

three subclasses of prior approaches:

1) Set partitioning via page coloring: Set partitioning, i.e.,

not allowing occupancy of any cache set by data from different

protection domains, can disrupt cache state-based channels. It

has the advantage of working with existing hardware when

allocating groups of sets at page granularity [34], [61] via

page coloring [29], [50]. Linux currently does not support page

coloring, since most early OS coloring was driven by the needs

of low-associativity data caches [51].

Set partitioning allows communication between protection

domains without destroying cache coherence. The downsides

are that it requires some privileged entity, or collaboration, to

move large regions of data around in memory when allocating

cache sets, as set partitioning via page coloring binds cache set

allocation to physical address allocation. For example, in order

to give a protection domain 1/8 of the cache space, the same

12.5% of the system’s physical address space must be given

to the process. In an ideal situation, the amount of allocated

DRAM and the amount of allocated cache space should be

decoupled.

Furthermore, cache coloring at page granularity is not

straightforwardly compatible with large pages, drastically reduc-

ing the TLB reach, and therefore performance, of processes. On

current processors, the index bits placement requires that small

(4KB) pages are used, and coloring is not possible for large

(2MB) pages. Large pages provide critical performance benefits

for virtualization platforms used in the public cloud [44], and

reverting to small pages would be deleterious.

2) Insecure way and fine-grain partitioning: Intel’s Cache

Allocation Technology (CAT) [21], [23] provides a mechanism

to configure each logical process with a class of service, and

allocates LLC cache ways to logical processes. The CAT

manual explicitly states that a cache access will hit if the line

is cached in any of the cache’s ways — this allows attackers

to observe accesses of the victim. CAT only guarantees that

a domain fill will not cause evictions in another domain. To

achieve CAT’s properties, no critical path changes in the cache

are required: CAT’s behavior on a cache hit is identical to a

generic cache. Victim selection (replacement policy), however,

must be made aware of the CAT configuration in order to

constrain ways on an eviction.

Via this quality of service (QoS) mechanism, CAT improves

system performance because an inefficient, cache-hungry

process can be reined in and made to only cause evictions

in a subset of the LLC, instead of trashing the entire cache.

The fact that the cache checks all ways for cache hits is also

good for performance: shared data need not be duplicated,

and overhead due to internal fragmentation of cache ways is

reduced. The number of ways for each domain can also be

dynamically adjusted. For example, DynaWay [16] uses CAT

with online performance monitoring to adjust the ways per

domain.

CAT-style partitioning is unfortunately insufficient for block-

ing all cache state-based channels: an attacker sharing a

page with the victim may observe the victim’s use of shared

addresses (by measuring whether a load to a shared address

results in a cache hit). Furthermore, even though domains

can fill only in their own ways, an attacker is free to flush

shared cache lines regardless where they are cached, allowing

straightforward transmission to an attacker’s receiver via

flush&reload, or flush&flush [20]. CAT-style partitioning allows

an attacker to spy on lines cached in ways allocated to the

victim, so long as the address of a transmitting line is mapped

by the attacker. This is especially problematic when considering

Spectre-style attacks, as the victim (OpenSSL, kernel, etc.) can



be made to speculatively touch arbitrary addresses, including

those in shared pages. In a more subtle channel, access

patterns leak through metadata updates on hitting loads, as the

replacement metadata is shared across protection domains.

Applying DAWG domain isolation to fine-grain QoS parti-

tioning such as Vantage [47] would further improve scalability

to high core counts. Securing Vantage, is similar to securing

CAT: hits can be isolated, since each cache tag is associated

with a partition ID; replacement metadata (timestamps or

RRIP [26]) should be restricted to each partition; addition-

ally Vantage misses allow interference, and demotion to the

unmanaged 10% of the cache, which must be secured.

3) Reducing privacy leakage from caches: Since Spectre

attacks are outside of the threat model anticipated by prior work,

most prior defenses are ineffective. LLC defenses against cross-

core attacks, such as SHARP [58] and RIC [28], do not stop

same-core OS/VMM attacks. In addition, RIC’s non-inclusive

read-only caches do not stop speculative attacks from leaking

through read-write cache lines in cache coherence attacks [52].

PLcache [33], [56] and the Random Fill Cache Architecture

(RFill, [37]) were designed and analyzed in the context of

a small region of sensitive data. RPcache [33], [56] trusts

the OS to assign different hardware process IDs to mutually

mistrusting entities, and its mechanism does not directly scale

to large LLCs. The non-monopolizable cache [14] uses a well-

principled partitioning scheme, but does not completely block

all channels, and relies on the OS to assign hardware process

IDs. CATalyst [36] trusts the Xen hypervisor to correctly

tame Intel’s Cache Allocation Technology into providing

cache pinning, which can only secure software whose code

and data fits into a fraction of the LLC, e.g., each virtual

machine is given 8 “secure” pages. [49] similarly depends on

CAT for the KVM (Kernel-based Virtual Machine) hypervisor.

Using hardware transactional memory, Cloak [19] preloads

secrets in cache within one transaction to prevent access

pattern observation of secrets. Blocking channels used by

speculative attacks, however, requires all addressable memory

to be protected.

SecDCP [55] demonstrate dynamic allocation policies, as-

suming a secure partitioning mechanism is available; they

provide only ‘one-way protection’ for a privileged enclave

with no communication. DAWG offers the desired partitioning

mechanism; we additionally enable two-way communication

between OS and applications, and handle mutually untrusted

peers at the same security level. We allow deduplication, shared

libraries, and memory mapping, which in prior work must all

be disabled.

III. DYNAMICALLY ALLOCATED WAY GUARD (DAWG)

HARDWARE

The objective of DAWG is to preclude the existence of any

cache state-based channels between the attacker’s and victim’s

domains. It accomplishes this by isolating the visibility of any

state changes to a single protection domain, so any transmitter

in the victim’s domain cannot be connected to the same channel
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as any receiver in the attacker’s domain. This prevents any

communication or leaks of data from the victim to the attacker.

A. High-level design

Consider a conventional set-associative cache, a structure

comprised of several ways, each of which is essentially a direct-

mapped cache, as well as a controller mechanism. In order to

implement Dynamically Allocated Way Guard (DAWG), we

will allocate groups of ways to protection domains, restricting

both cache hits and line replacements to the ways allocated to

the protection domain from which the cache request was issued.

On top of that, the metadata associated with the cache, e.g.,

replacement policy state, must also be allocated to protection

domains in a well-defined way, and securely partitioned. These

allocations will force strong isolation between the domains’

interactions with one another via the cache structure.

DAWG’s protection domains are disjoint across ways and

across metadata partitions, except that protection domains may

be nested to allow trusted privileged software access to all

ways and metadata allocated to the protection domains in its

purview.

Fig. 4 shows the hardware structure corresponding to a

DAWG cache, with the additional hardware required by DAWG

over a conventional set-associative cache shown highlighted.

The additional hardware state for each core is 24 bits per

hardware thread – one register with three 8-bit active domain

selectors. Each cache additionally needs up to 256 bits to

describe the allowed hit and fill ways for each active domain

(e.g., 16× intervals for a typical current 16-way cache).

B. DAWG’s isolation policies

DAWG’s protection domains are a high-level property

orchestrated by software, and implemented via a table of policy

configurations, used by the cache to enforce DAWG’s isolation;

these are stored at the DAWG cache in MSRs (model-specific

registers). System software can write to these policy MSRs



for each domain_id to configure the protection domains as

enforced by the cache.

Each access to a conventional cache structure is accompanied

with request metadata, such as a Core ID, as in Fig. 4. DAWG

extends this metadata to reference a policy specifying the

protection domain (domain_id) as context for the cache

access. For a last-level memory cache the domain_id field

is required to allow system software to propagate the domain

on whose behalf the access occurs, much like a capability. The

hardware needed to endow each cache access with appropriate

domain_id is described in Section III-C.

Each policy consists of a pair of bit fields, all accessible via

the DAWG cache’s MSRs:

• A policy_fillmap: a bit vector masking fills and

victim selection, as described in Sections III-D and III-E.

• A policy_hitmap: a bit vector masking way hits in

the DAWG cache, as described in Section III-F.

Each DAWG cache stores a table of these policy configura-

tions, managed by system software, and selected by the cache

request metadata at each cache access. Specifically, this table

maps global domain_id identifiers to that domain’s policy

configuration in a given DAWG cache. We discuss the software

primitives to manage protection domains, i.e., to create, modify,

and destroy way allocations for protection domains, and to

associate processes with protection domains in Section IV-A1.

C. DAWG’s modifications to processor cores

Each (logical) core must also correctly tag its memory

accesses with the correct domain_id. To this end, we endow

each hardware thread (logical core) with an MSR specifying

the domain_id fields for each of the three types of accesses

recognized by DAWG: instruction fetches via the instruction

cache, read-only accesses (loads, flushes, etc), and modifying

accesses (anything that can cause a cache line to enter the

modified state, e.g., stores or atomic accesses). We will refer

to these three types of accesses as ifetches, loads, and stores;

(anachronistically, we name the respective domain selectors

CS, DS, and ES). Normally, all three types of accesses are

associated with the same protection domain, but this is not the

case during OS handling of memory during communication

across domains (for example when servicing a system call).

The categorization of accesses is important to allow system

software to implement message passing, and the indirection

through domain selectors allows domain resizing, as described

in Section IV.

The bit width of the domain_id identifier caps the

number of protection domains that can be simultaneously

scheduled to execute across the system. In practice, a single

bit (differentiating kernel and user-mode accesses) is a useful

minimum, and a reasonable maximum is the number of sockets

multiplied by the largest number of ways implemented by any

DAWG cache in the system (e.g., 16 or 20). An 8-bit identifier

is sufficient to enumerate the maximum active domains even

across 8-sockets with 20-way caches.

Importantly, MSR writes to each core’s domain_id,

and each DAWG cache’s policy_hitmap and

policy_fillmap MSRs must be a fence, prohibiting

speculation on these instructions. Failing to do so would

permit speculative disabling of DAWG’s protection mechanism,

leading to Spectre-style vulnerabilities.

D. DAWG’s cache eviction/fill isolation

In a simple example of using DAWG at the last level cache

(LLC), protection domain 0 (e.g., the kernel) is statically

allocated half of DAWG cache’s ways, with the other half

allocated to unprivileged software (relegated to protection

domain 1). While the cache structure is shared among all

software on the system, no access should affect observable

cache state across protection domains, considering both the

cache data and the metadata. This simple scenario will

be generalized to dynamic allocation in Section III-H and

we discuss the handling of cache replacement metadata in

Section III-J for a variety of replacement policies.

Straightforwardly, cache misses in a DAWG cache must

not cause fills or evictions outside the requesting protection

domain’s ways in order to enforce DAWG’s isolation. Like

Intel’s CAT (Section II-C2), our design ensures that only the

ways that a process has been allocated (via its protection

domain’s policy_fillmap policy MSRs) are candidates for

eviction; but we also restrict CLFLUSH instructions. Hardware

instrumentation needed to accomplish this is highlighted in

Fig. 4.

E. DAWG’s cache metadata isolation

The cache set metadata structure in Fig. 4 stores per-line

helper data including replacement policy and cache coherence

state. The metadata update logic uses tag comparisons (hit

information) from all ways to modify set replacement state.

DAWG does not leak via the coherence metadata, as coherence

traffic is tagged with the requestors’s protection domain and

does not modify lines in other domains (with a sole exception

described in Section III-G).

DAWG’s replacement metadata isolation requirement, at a

high level, is a non-interference property: victim selection in

a protection domain should not be affected by the accesses

performed against any other protection domain(s). Furthermore,

the cache’s replacement policy must allow system software to

sanitize the replacement data of a way in order to implement

safe protection domain resizing. Details of implementing

DAWG-friendly partitionable cache replacement policies are

explored in Section III-J.

F. DAWG’s cache hit isolation

Cache hits in a DAWG cache must also be isolated, requiring

a change to the critical path of the cache structure: a cache

access must not hit in ways it was not allocated – a possibility

if physical tags are shared across protection domains.

Consider a read access with address A =⇒ (TA, SA) (tag

and set, respectively) in a conventional set associative cache.

A match on any of the way comparisons indicates a cache

hit (∃ i | TWi
== TA =⇒ hit); the associated cache line

data is returned to the requesting core, and the replacement



policy metadata is updated to make note of the access. This

allows a receiver (attacker) to communicate via the cache state

by probing the cache tag or metadata state as described in

Section II-B.

In DAWG, tag comparisons must be masked with a policy

(policy_hitmap) that white-lists ways allocated to the re-

quester’s protection domain ( ∃ i | policy hitmap[i] & (TWi

== TA) =⇒ hit). By configuring policy_hitmap,

system software can ensure cache hits are not visible across

protection domains. While the additional required hardware

in DAWG caches’ hit path adds a gate delay to each cache

access, we note that modern L1 caches are usually pipelined.

We expect hardware designers will be able to manage an

additional low-fanout gate without affecting clock frequency.

In addition to masking hits, DAWG’s metadata update

must use this policy-masked hit information to modify any

replacement policy state safely, preventing information leakage

across protection domains via the replacement policy state, as

described in Section III-E.

G. Cache lines shared across domains

DAWG effectively hides cache hits outside the white-

listed ways as per policy_hitmap. While this prevents

information leakage via adversarial observation of cached lines,

it also complicates the case where addresses are shared across

two or more protection domains by allowing ways belonging

to different protection domains to have copies of the same

line. Read-only data and instruction misses acquire lines in the

Shared state of the MESI protocol [42] and its variants.

Neither a conventional set associative cache nor Intel’s CAT

permit duplicating a cache line within a cache: their hardware

enforces a simple invariant that a given tag can only exist in

a single way of a cache at any time. In the case of a DAWG

cache, the hardware does not strictly enforce this invariant

across protection domains; we allow read-only cache lines (in

Shared state) to be replicated across ways in different protection

domains. Replicating shared cache lines, however, may leak

information via the cache coherence protocol (whereby one

domain can invalidate lines in another), or violate invariants

expected by the cache coherence protocol (by creating a

situation where multiple copies of a line exist when one is in

the Modified state).

In order to maintain isolation, cache coherence traffic must

respect DAWG’s protection domain boundaries. Requests on the

same line from different domains are therefore considered non-

matching, and are filled by the memory controller. Cache flush

instructions (CLFLUSH, CLWB) affect only the ways allocated

to the requesting domain_id. Cross-socket invalidation

requests must likewise communicate their originating protection

domain. DAWG caches are not, however, expected to handle a

replicated Modified line, meaning system software must not

allow shared writable pages across protection domains via a

TLB invariant, as described in Section IV-B2.

Stale Shared lines of de-allocated pages may linger in the

cache; DAWG must invalidate these before zeroing a page to be

granted to a process (see Section IV-B2). To this end, DAWG

requires a new privileged MSR, with which to invalidate

all copies of a Shared line, given an address, regardless of

protection domain. DAWG relies on system software to prevent

the case of a replicated Modified line.

H. Dynamic allocation of ways

It is unreasonable to implement a static protection domain

policy, as it would make inefficient use of the cache resources

due to internal fragmentation of ways. Instead, DAWG caches

can be provisioned with updated security policies dynamically,

as the system’s workload changes.

In order to maintain its security properties, system software

must manage protection domains by manipulating the domains’

policy_hitmap and policy_fillmap MSRs in the

DAWG cache. These MSRs are normally equal, but diverge to

enable concurrent use of shared caches.

In order to re-assign a DAWG cache way, when creating or

modifying the system’s protection domains, the way must be

invalidated, destroying any private information in form of the

cache tags and metadata for the way(s) in question. In the case

of write-back caches, dirty cache lines in the affected ways

must be written-back, or swapped within the set. A privileged

software routine flushes one or more ways via a hardware

affordance to perform fine-grained cache flushes by set&way,

e.g., available on ARM [1].

We require hardware mechanisms to flush a line and/or

perform write-back (if M), of a specified way in a DAWG

memory cache, allowing privileged software to orchestrate

way-flushing as part of its software management of protection

domains. This functionality is exposed for each cache, and

therefore accommodates systems with diverse hierarchies

of DAWG caches. We discuss the software mechanism to

accommodate dynamic protection domains in Section IV-A2.

While this manuscript does describe the mechanism to adjust

the DAWG policies in order to create, grow, or shrink protection

domains, we leave as future work resource management support

to securely determine the efficient sizes of protection domains

for a given workload.

I. Scalability and cache organization

Scalability of the number of active protection domains is

a concern with growing number of cores per socket. Since

performance critical VMs or containers usually require multiple

cores, however, the maximum number of active domains does

not have to scale up to the number of cores.

DAWG on non-inclusive LLC caches [25] can also assign

zero LLC ways to single-core domains, since these do not

need communication via a shared cache. Partitioning must be

applied to cache coherence metadata, e.g., snoop filters. Private

cache partitioning allows a domain per SMT thread.

On inclusive LLC caches the number of concurrently active

domains is limited by the number of ways — for high-core

count CPUs this may require increasing associativity, e.g., from

20-way to 32-way. Partitioning replacement metadata allows

high associativity caches with just 1 or 2 bits per tag for

metadata to accurately select victims and remain secure.
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J. Replacement policies

In this section, we will exemplify the implementation of

several common replacement policies compatible with DAWG’s

isolation requirement. We focus here on several commonplace

replacement policies, given that cache replacement policies

are diverse. The optimal policy for a workload depends on

the effective associativity and may even be software-selected,

e.g., ARM A72 [1] allows pseudo-random or pseudo-LRU

cache-replacement.

1) Tree-PLRU: pseudo least recently used: Tree-PLRU

“approximates” LRU with a small set of bits stored per cache

line. The victim selection is a (complete) decision tree informed

by metadata bits. 1 signals “go left”, whereas 0 signals “go

right” to reach the PLRU element, as shown in Fig. 5.

The cache derives plru_mask and plru_policy from

policy_fillmap. These fields augment a decision tree

over the ways of the cache; a bit of plru_mask is 0 if

and only if its corresponding subtree in policy_fillmap

has no zeroes (if the subtree of the decision tree is entirely

allocated to the protection domain). Similarly, plru_policy

bits are set if their corresponding left subtrees contain

one or more ways allocated to the protection domain.

For example, if a protection domain is allocated ways

W0,W1 of 8 ways, then plru_mask=0b11111110, and

plru_policy=0bxxx0x0x (0b0000001, to be precise,

with x marking masked and unused bits).

At each access, set_metadata is updated by changing

each bit on the branch leading to the hitting way to be the

opposite of the direction taken, i.e., “away” from the most

recently used way. For example, when accessing W5, metadata

bits are updated by b0 → 0, b2 → 1, b5 → 0. These updates

are masked to avoid modifying PLRU bits above the allocated

subtree. For example, when {W2,W3} are allocated to the

process, and it hits W3, b0 and b1 remain unmodified to avoid

leaking information via the metadata updates.

Furthermore, we must mask set_metadata bits that

are made irrelevant by the allocation. For example, when

{W2,W3} are allocated to the process, the victim selection

should always reach the b4 node when searching for the pseudo-

LRU way. To do this, ignore {b0, b1} in the metadata table,

W
5

W
4

W
7

W
6

W
3

W
2

Protection domain
for this request

nru_mask

W
1

W
0

nru_victim

10
set_metadata? ? ? ? ? 0

0 effective metadata

victim

nru update

1

Consider a cache access that misses in its protection domain:

Now, update set metadata to record an access on W
1

? 1

1
0000 0

0 0000 0

? ? ? ? ? ? 0 0
nru_mask10

0 new set_metadata
1

0
0000 0

? ? ? ? ? ?

Consider the next miss: no “1” NRU bits in protection domain:

W
5

W
4

W
7

W
6

NRU victimizes
the first “1” 

from the left

W
3

W
2

Protection domain
for this request

nru_mask

W
1

W
0

10
set_metadata? ? ? ? ? 0

0 effective metadata

victim

nru update

1
? 0

0
0000 0

0 0000 0

1
nru_mask10

1 new set_metadata
1

1
0000 0

? ? ? ? ? ?

if none exist:
1). victimize nru_victim
2). set all nru bits to “1”

nru_victim
(specifies a “default” victim way)

111111 1

NRU victimizes
the first “1” 

from the left

Fig. 6. Victim selection and metadata update with a DAWG-partitioned NRU
policy.

and use values 0 and 1, respectively.

Observe that both are straightforwardly implemented via

plru_mask and plru_policy. This forces a subset of

decision tree bits, as specified by the policy: victim se-

lection logic uses ( (set_metadata & ˜plru_mask)

| (plru_mask & plru_policy) ). This ensures that

system software is able to restrict victim selection to a subtree

over the cache ways. Metadata updates are partitioned also, by

constraining updates to set_metadata & ˜plru_mask.

When system software alters the cache’s policies, and re-assigns

a way to a different protection domain, it must take care to

force the way’s metadata to a known value in order to avoid

private information leakage.

2) SRRIP and NRU: Not recently used: An NRU policy

requires one bit of metadata per way be stored with each set.

On a cache hit, the accessed way’s NRU bit is set to “0”. On

a cache miss, the victim is the first (according to some pre-

determined order, such as left-to-right) line with a “1” NRU

bit. If none exists, the first line is victimized, and all NRU bits

of the set are set to “1”.

Enforcing DAWG’s isolation across protection domains for

an NRU policy is a simple matter, as shown in Fig. 6. As

before, metadata updates are restricted to the ways white-listed

by nru_mask = policy_fillmap. In order to victimize

only among ways white-listed by the policy, mask the NRU

bits of all other ways via set_metadata & nru_mask at

the input to the NRU replacement logic.

Instead of victimizing the first cache line if no “1” bits are

found, the victim way must fall into the current protection

domain. To implement this, the default victim is specified

via nru_victim, which selects the leftmost way with a

corresponding “1” bit of nru_mask, whereas the unmodified

NRU is hard-wired to evict a specific way.

The SRRIP [26] replacement policy is similar, but expands

the state space of each line from two to four (or more) states

by adding a counter to track ways less favored to be victimized.

Much like NRU, SRRIP victimizes the first (up to some

pre-determined order) line with the largest counter during

a fill that requires eviction. To partition SRRIP, the same

nru_mask = policy_fillmap is used, where each line’s

metadata is masked with the way’s bit of nru_mask to ensure

other domains’ lines are considered “recently used” and not

candidates for eviction.



IV. SOFTWARE MODIFICATIONS

We describe software provisions for modifying DAWG’s

protection domains, and also describe small, required modifi-

cations to several well-annotated sections of kernel software

to implement cross-domain communication primitives robust

against speculative execution attacks.

A. Software management of DAWG policies

Protection domains are a software abstraction implemented

by system software via DAWG’s policy MSRs. The policy

MSRs themselves (a table mapping protection domain_id to

a policy_hitmap and policy_fillmap at each cache,

as described in Section III-B) reside in the DAWG cache

hardware, and are atomically modified.

1) DAWG Resource Allocation: Protection domains for a

process tree should be specified using the same cgroup-

like interface as Intel’s CAT. In order to orchestrate DAWG’s

protection domains and policies, the operating system must

track the mapping of process IDs to protection domains. In a

system with 16 ways in the most associative cache, no more

than 16 protection domains can be concurrently scheduled,

meaning if the OS has need for more mutually distrusting

entities to schedule, it needs to virtualize protection domains

by time-multiplexing protection domain IDs, and flushing the

ways of the multiplexed domain whenever it is re-allocated.

Another data structure, dawg_policy, tracks the resources

(cache ways) allocated to each protection domain. This is

a table mapping domain_id to pairs (policy_hitmap,

policy_fillmap) for each DAWG cache. The kernel uses

this table when resizing, creating, or destroying protection

domains in order to maintain an exclusive allocation of ways

to each protection domain. Whenever one or more ways are re-

allocated, the supervisor must look up the current domain_id

of the owner, accomplished via either a search or a persistent

inverse map cache way to domain_id.

2) Secure Dynamic Way Reassignment: When modifying an

existing allocation of ways in a DAWG cache (writing policy

MSRs), as necessary to create or modify protection domains,

system software must sanitize (including any replacement

metadata, as discussed in Section III-E) the re-allocated way(s)

before they may be granted to a new protection domain. The

process for re-assigning cache way(s) proceeds as follows:

1) Update the policy_fillmap MSRs to disallow fills in

the way(s) being transferred out of the shrinking domain.

2) A software loop iterates through the cache’s set indexes

and flushes all sets of the re-allocated way(s). The

shrinking domain may hit on lines yet to be flushed,

as policy_hitmap is not yet updated.

3) Update the policy_hitmap MSRs to exclude ways to

be removed from the shrinking protection domain.

4) Update the policy_hitmap and policy_fillmap

MSRs to grant the ways to the growing protection domain.

Higher level policies can be built on this dynamic way-

reassignment mechanism.

3) Code Prioritization: Programming the domain selectors

for code and data separately allows ways to be dedicated to

code without data interference. Commercial studies of code

cache sensitivity of production server workloads [25], [27], [41]

show large instruction miss rates in L2, but even the largest

code working sets fit within 1–2 L3 ways. Code prioritization

will also reduce the performance impact of disallowing code

sharing across domains, especially when context switching

between untrusted domains sharing code.

B. Kernel changes required by DAWG

Consider a likely configuration where a user-mode appli-

cation and the OS kernel are in different protection domains.

In order to perform a system call, communication must occur

across the protection domains: the supervisor extracts the

(possibly cached) data from the caller by copying into its

own memory. In DAWG, this presents a challenge due to

strong isolation in the cache.

1) DAWG augments SMAP-annotated sections: We take

advantage of modern OS support for the Supervisor Mode

Access Prevention (SMAP) feature available in recent x86

architectures, which allows supervisor mode programs to raise

a trap on accesses to user-space memory. The intent is to harden

the kernel against malicious programs attempting to influence

privileged execution via untrusted user-space memory. At each

routine where supervisor code intends to access user-space

memory, SMAP must be temporarily disabled and subsequently

re-enabled via stac (Set AC Flag) and clac (Clear AC Flag)

instructions, respectively. We observe that a modern kernel’s

interactions with user-space memory are diligently annotated

with these instructions, and will refer to these sections as

annotated sections.

Currently Linux kernels use seven such sections for sim-

ple memory copy or clearing routines: copy_from_user,

copy_to_user, clear_user, futex, etc. We propose

extending these annotated sections with short instruction

sequences to correctly handle DAWG’s communication re-

quirements on system calls and inter-process communication,

in addition to the existing handling of the SMAP mechanism.

Specifically, sections implementing data movement from user

to kernel memory are annotated with an MSR write to

domain_id: ifetch and store accesses proceed on behalf of

the kernel, as before, but load accesses use the caller’s (user)

protection domain. This allows the kernel to efficiently copy

from warm cache lines, but preserves isolation. After copying

from the user, the domain_id MSR is restored to perform all

accesses on behalf of the kernel’s protection domain. Likewise,

sections implementing data movement to user memory ifetch

and load on behalf of the kernel’s domain, but store in the user’s

cache ways. While the annotated sections may be interrupted

by asynchronous events, interrupt handlers are expected to

explicitly set domain_id to the kernel’s protection domain,

and restore the MSR to its prior state afterwards.

As described in Section III-C, DAWG’s domain_id MSR

writes are a fence, preventing speculative disabling of DAWG’s

protection mechanism. Current Linux distributions diligently



pair a stac instruction with an lfence instruction to prevent

speculative execution within regions that access user-mode

memory, meaning DAWG does not significantly serialize

annotated sections over its insecure baseline.

Finally, to guarantee isolation, we require the annotated

sections to contain only code that obeys certain properties: to

protect against known and future speculative attacks, indirect

jumps or calls, and potentially unsafe branches are not to be

used. Further, we cannot guarantee that these sections will not

require patching as new attacks are discovered, although this

is reasonable given the small number and size of the annotated

sections.

2) Read-only and CoW sharing across domains: For mem-

ory efficiency, DAWG allows securely mapping read-only pages

across protection domains, e.g., for shared libraries, requiring

hardware cache coherence protocol changes (see Section III-G),

and OS/hypervisor support.

This enables conventional system optimizations via page

sharing, such as read-only mmap from page caches, Copy-

on-Write (CoW) conventionally used for fork, or for page

deduplication across VMs (e.g., Transparent Page Sharing [54];

VM page sharing is typically disabled due to concerns raised

by shared cache tag attacks [24]). DAWG maintains security

with read-only mappings across protection domains to maintain

memory efficiency.

Dirty pages can be prepared for CoW sharing eagerly, or

lazily (but cautiously [57]) by installing non-present pages

in the consumer domain mapping. Preparing a dirty page

for sharing requires a write-back of any dirty cache lines

on behalf of the producer’s domain (via CLWB instructions and

an appropriate load domain_id). The writeback guarantees

that read-only pages appear only as Shared lines in DAWG

caches, and can be replicated across protection domains as

described in Section III-G.

A write to a page read-only shared across protection domains

signals the OS to create a new, private copy using the

original producer’s domain_id for reads, and the consumer’s

domain_id for writes.

3) Reclamation of shared physical pages: Before cache lines

may be filled in a new protection domain, pages reclaimed from

a protection domain must be removed from DAWG caches as

part of normal OS page cleansing. Prior to zeroing (or preparing

for DMA) a page previously shared across protection domains,

the OS must invalidate all cache lines belonging to the page,

as described in Section III-G. The same is required between

unmap and mmap operations over the same physical addresses.

For most applications, therefore cache line invalidation can

be deferred to wholesale destruction of protection domains at

exit, given ample physical memory.

V. SECURITY ANALYSIS

We explain why DAWG protects against attacks realized

thus far on speculative execution processors by stating and

arguing a non-interference property in Section V-A. We then

argue in Section V-B that system calls and other cross-domain

communication are safe. Finally, we show a generalization

of our attack schema and point out the limitations of cache

partitioning in Section V-C.

A. DAWG Isolation Property

DAWG enforces isolation of exclusive protection domains

among cache tags and replacement metadata, as long as:

1) victim selection is restricted to the ways allocated to the

protection domain (an invariant maintained by system

software), and

2) metadata updates as a result of an access in one domain

do not affect victim selection in another domain (a

requirement on DAWG’s cache replacement policy).

Together, this guarantees non-interference – the hits and

misses of a program running in one protection domain are

unaffected by program behavior in different protection domains.

As a result, DAWG blocks the cache tag and metadata chan-

nels of non-communicating processes separated by DAWG’s

protection domains.

B. No leaks from system calls

Consider a case where the kernel (victim) and a user program

(attacker) reside in different protection domains. While both

use the same cache hierarchy, they share neither cache lines

nor metadata (Section III-B), effectively closing the cache

exfiltration channel. In few, well-defined instances where data

is passed between them (such as copy_to_user), the kernel

accesses the attacker’s ways to read/write user memory, leaking

the (public) access pattern associated with the bulk copying

of the syscall inputs and outputs (Section IV-B). Writes to

DAWG’s MSRs are fences, and the annotated sections must

not offer opportunity to maliciously mis-speculate control flow

(see Section IV-B1), thwarting speculative disabling or misuse

of DAWG’s protection domains. DAWG also blocks leaks via

coherence Metadata, as coherence traffic is restricted to its

protection domain (Section III-G), with the sole exception of

cross-domain invalidation, where physical pages are reclaimed

and sanitized.

When re-allocating cache ways, as part of resizing or

multiplexing protection domains, no private information is

transferred to the receiving protection domain: the kernel

sanitizes ways before they are granted, as described in

Section IV-A2. Physical pages re-allocated across protection

domains are likewise sanitized (Section IV-B3).

When an application makes a system call, the necessary com-

munication (data copying) between kernel and user program

must not leak information beyond what is communicated. The

OS’s correct handling of domain_id MSR within annotated

sections, as described in Section IV-B ensures user space cache

side effects reflect the section’s explicit memory accesses.

C. Limitations of cache partitioning

DAWG’s cache isolation goals are meant to approach the

isolation guarantees of separate machines, yet, even remote

network services can fall victim to leaks employing cache

tag state for communication. Consider the example of the

attacker and victim residing in different protection domains,
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sharing no data, but communicating via some API, such as

system calls. As in a remote network timing leak [10], where

network latency is used to communicate some hidden state in

the victim, the completion time of API calls can communicate

insights about the cache state [31] within a protection domain.

Leakage via reflection through the cache is thus possible: the

receiver invokes an API call that accesses private information,

which affects the state of its private cache ways. The receiver

then exfiltrates this information via the latency of another

API call. Fig. 7 shows a cache timing leak which relies

on cache reflection entirely within the victim’s protection

domain. The syscall completion time channel is used for

exfiltration, meaning no private information crosses DAWG’s

domain boundaries in the caches, rendering DAWG, and cache

partitioning in general, ineffective at closing a leak of this type.

The transmitter is instructed via an API call to access a[b[i]],
where i is provided by the receiver (via syscall1), while

a, b reside in the victim’s protection domain. The cache tag

state of the transmitter now reflects b[i], affecting the latency

of subsequent syscalls in a way dependent on the secret b[i].
The receiver now exfiltrates information about b[i] by selecting

a j from the space of possible values of b[i] and measuring

the completion time of syscall2, which accesses a[j]. The

syscall completion time communicates whether the transmitter

hits on a[j], which implies a[j] ∼= a[b[i]], and for a compact a,

that b[i] = j – a leak. This leak can be amplified by initializing

cache state via a bulk memory operation, and, for a machine-

local receiver by malicious mis-speculation.

While not the focus of this paper, for completeness, we

outline a few countermeasures for this type of leak. Observe

that the completion time of a public API is used here to

exfiltrate private information. The execution time of a syscall

can be padded to guarantee constant (and worst-case) latency,

no matter the input or internal state. This can be relaxed to

bound the leak to a known number of bits per access [17].

A zero leak countermeasure requires destroying the trans-

mitting domain’s cache state across syscalls/API invocations,

preventing reflection via the cache. DAWG can make this

less inefficient: in addition to dynamic resizing, setting the

replacement mask policy_fillmap to a subset of the

policy_hitmap allows locking cache ways to preserve

the hot working set. This ensures that all unique cache lines

accessed during one request have constant observable time.

TABLE I
SIMULATED SYSTEM SPECIFICATIONS.

Cores DRAM Bandwidth

Count Frequency Controllers Peak

8 OoO 3 GHz 4 x DDR3-1333 42 GB/s

Private Caches Shared Cache

L1 L2 Organization L3 Organization
2× 32 KB 256 KB 8-way PLRU 8× 2 MB 16-way NRU

VI. EVALUATION

To evaluate DAWG, we use the zsim [48] execution-

driven x86-64 simulator and Haswell hardware [15] for our

experiments.

A. Configuration of insecure baseline

Table I summarizes the characteristics of the simulated

environment. The out-of-order model implemented by zsim

is calibrated against Intel Westmere, informing our choice of

cache and network-on-chip latencies. The DRAM configuration

is typical for contemporary servers at ∼5 GB/s theoretical

DRAM bandwidth per core. Our baseline uses the Tree-

PLRU (Section III-J1) replacement policy for private caches,

and a 2-bit NRU for the shared LLC. The simulated model

implements inclusive caches, although DAWG domains with

reduced associativity would benefit from relaxed inclusion [25].

We simulate CAT partitioning at all levels of the cache, while

modern hardware only offers this at the LLC. We do this by

restricting the replacement mask policy_fillmap, while

white-listing all ways via the policy_hitmap.

B. DAWG Policy Scenarios

We evaluate several protection domain configurations for

different resource sharing and isolation scenarios.

1) VM or container isolation on dedicated cores: Isolating

peer protection domains from one another requires equitable

LLC partitioning, e.g., 50% of ways allocated to two active

domains. In the case of cores dedicated to each workload

(no context switches), each scheduled domain is assigned the

entirety of its L1 and L2.

2) VM or container isolation on time-shared cores: To allow

the OS to overcommit cores across protection domains (thus

requiring frequent context switches between domains), we also

evaluate a partitioned L2 cache.

3) OS isolation: Only two DAWG domains are needed to

isolate an OS from applications. For processes with few OS

interventions in the steady state, e.g., SPECCPU workloads,

the OS can reserve a single way in the LLC, and flush L1 and

L2 ways to service the rare system calls. Processes utilizing

more OS services would benefit from more ways allocated to

OS’s domain.

C. DAWG versus insecure baseline

Way partitioning mechanisms reduce cache capacity and

associativity, which increases conflict misses, but improves

fairness and reduces contention. We refer to CAT [21] for

analysis of the performance impact of way partitioning on a
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Fig. 8. Way partitioning performance at low associativity in all caches (8-way
L1, 8-way L2, and 16-way L3).

subset of SPEC CPU2006. Here, we evaluate CAT and DAWG

on parallel applications from PARSEC [6], and parallel graph

applications from the GAP Benchmark Suite (GAPBS) [4],

which allows a sweep of of workload sizes.

Fig. 8 shows DAWG partitioning of private L1 and

L2 (Section VI-B2) caches in addition to the L3. We

explore DAWG configurations on a subset of PARSEC

benchmarks on simlarge workloads. The cache insensitive

blackscholes (or omitted swaptions with 0.001 L2

MPKI (Misses Per 1000 Instructions)) are unaffected at any

way allocation. For a VM isolation policy (Section VI-B1)

with 8/16 of the L3, even workloads with higher MPKI such as

facesim show at most 2% slowdown. The 〈2/8 L2, 2/16 L3〉
configuration is affected by both capacity and associativity

reductions, yet most benchmarks have 4–7% slowdown, up to

12% for x264. Such an extreme configuration can accommodate

4 very frequently context switched protection domains.

Fig. 9 shows the performance of protection domains using

different fractions of an L3 cache for 4-thread instances of

graph applications from GAPBS. We use variable size synthetic

power law graphs [12], [18] that match the structure of real-

world social and web graphs and therefore exhibit cache

locality [5]. The power law structure, however, implies that

there is diminishing return from each additional L3 way. As

shown, at half cache capacity (8/16 L3, Section VI-B1), there

is at most 15% slowdown (bc and tc benchmarks) at the

largest simulated size (220 vertices). A characteristic eye is

formed when the performance curves of different configurations

cross over the working set boundary (e.g., graph size of 217).

Performance with working sets smaller or larger than the

effective cache capacity is unaffected — at the largest size cc,

pr, and sssp show 1–4% slowdown.

Reserving for the OS (Section VI-B3), one way (6% of LLC

capacity) adds no performance overhead to most workloads.

The only exception would be a workload caught in the eye,

e.g., PageRank at 217 has 30% overhead (Fig. 9), while at 216

or 218 — 0% difference.

D. CAT versus DAWG

We analyze and evaluate scenarios based on the degree of

code and data sharing across domains.

1) No Sharing: There is virtually no performance differ-

ence between secure DAWG partitioning, and insecure CAT

partitioning in the absence of read-sharing across domains.

DAWG reduces interference in replacement metadata updates

and enforces the intended replacement strategy within a domain,
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while CAT may lose block history effectively exhibiting random

replacement – a minor, workload-dependent perturbation. In

simulations (not shown), we replicate a known observation that

random replacement occasionally performs better than LRU

near cache capacity. We did not observe this effect with NRU

replacement.

2) Read-only Sharing: CAT QoS guarantees a lower bound

on a workload’s effective cache capacity, while DAWG isolation

forces a tight upper bound. DAWG’s isolation reduces cache

capacity compared to CAT when cache lines are read-only

shared across mutually untrusting protection domains. CAT

permits hits across partitions where code or read-only data are

unsafely shared. We focus on read-only data in our evaluation,

as benchmarks with low L1i MPKI like GAPBS, PARSEC, or

SPECCPU are poorly suited to study code cache sensitivity.

We analyze real applications using one line modifications



to GAPBS to fork (a single-thread process) either before or

after creating in-memory graph representations. The first results

in a private graph for each process, while the latter simulates

mmap of a shared graph. The shared graphs access read-only

data across domains in the baseline and CAT, while DAWG

has to replicate data in domain-private ways. Since zsim does

not simulate TLBs, we ensure different virtual addresses are

used to avoid false sharing. We first verified in simulation

that DAWG, with memory shared across protection domains,

behaves identically to CAT and the baseline with private data.

Next, we demonstrate (in Fig. 10) that these benchmarks

show little performance difference on real hardware [15] for

most data sizes; Shared baseline models Shared CAT, while

Private baseline models Shared DAWG. The majority of cycles

are spent on random accesses to read-write data, while read-

only data is streamed sequentially. Although read-only data is

much larger than read-write data (e.g., 16 times more edges

than vertices), prefetching and scan- and thrash- resistant

policies [26], [45] further reduce the need for cache resident

read-only data. Note that even at 223 vertices these effects are

immaterial; real-world graphs have billions of people or pages.

E. Domain copy microbenchmark

We simulated a privilege level change at simulated system

calls for user-mode TCP/IP. Since copy_from_user and

copy_to_user permit hits in the producer’s ways, there is

no performance difference against the baseline (not shown).

VII. CONCLUSION

DAWG protects against attacks that rely on a cache state-

based channel, which are commonly referred to as cache-timing

attacks, on speculative execution processors with reasonable

overheads. The same policies can be applied to any set-

associative structure, e.g., TLB or branch history tables. DAWG

has its limitations and additional techniques are required to

block exfiltration channels different from the cache channel.

We believe that techniques like DAWG are needed to restore

our confidence in public cloud infrastructure, and hardware and

software co-design will help minimize performance overheads.

A good proxy for the performance overheads of secure

DAWG is Intel’s existing, though insecure, CAT hardware.

Traditional QoS uses of CAT, however, differ from desired

DAWG protection domains’ configurations. Research on soft-

ware resource management strategies can therefore commence

with evaluation of large scale workloads on CAT. CPU vendors

can similarly analyze the cost-benefits of increasing cache

capacity and associativity to accommodate larger numbers of

active protection domains.
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