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Abstract

Large-scale cancer genomic studies have revealed that the genetic heterogeneity of the same type of cancer is

greater than previously thought. A key question in cancer genomics is the identification of driver genes. Although

existing methods have identified many common drivers, it remains challenging to predict personalized drivers to

assess rare and even patient-specific mutations. We developed a new algorithm called DawnRank to directly

prioritize altered genes on a single patient level. Applications to TCGA datasets demonstrated the effectiveness of

our method. We believe DawnRank complements existing driver identification methods and will help us discover

personalized causal mutations that would otherwise be obscured by tumor heterogeneity. Source code can be

accessed at http://bioen-compbio.bioen.illinois.edu/DawnRank/.

Background

Recent advances in next-generation sequencing (NGS)

technologies have provided us with an unprecedented op-

portunity to better characterize the molecular signatures

of human cancers. The critical challenge facing cancer

genomics today is to analyze and integrate such informa-

tion in the most efficient and meaningful way to advance

cancer biology, and then to translate that knowledge to

clinic [1,2]. A key question in cancer genomics is how to

distinguish ‘driver’ mutations, which contribute to tumori-

genesis, from functionally neutral ‘passenger’ mutations

[3]. The most basic approach is to categorize mutations

based on recurrence, that is, the most commonly occur-

ring mutations are more likely to be drivers [4,5], or by

comparing mutation rates in individual genes based on an

empirically derived background mutation rate, such as

MutSig [6] and MuSiC [7]. Machine learning based ap-

proaches use existing knowledge to help identify drivers.

For example, CHASM utilizes random forest to classify

driver mutations using alterations trained from known

cancer-causing somatic missense mutations [8]. There are

several recent methods that use additional information to

help predict driver genes and driver pathways. CONEXIC

was developed to integrate copy number change and gene

expression data to identify potential driver genes located

in regions that are amplified or deleted in tumors [9]. Net-

work and pathway-based approaches have become one of

the most promising methods to understand drivers due to

their ability to model gene-gene interactions by aggregat-

ing small effect sizes from individual genes. MEMo and

Dendrix rely on predicted mutual exclusivity of driver mu-

tations within pathways or subnetworks [10,11]. MEMo

utilizes driver cliques based on known pathways with mu-

tually exclusive mutations in the patient cohort, whereas

Dendrix identifies subnetworks (de novo) with poten-

tial driver activity as having high coverage and high mu-

tual exclusivity. Another method, PARADIGM-Shift

was developed to utilize pathway-level information along

with other features (such as expression, methylation, copy

number) to infer gain and loss of function for mutations.

PARADIGM-Shift works best with small pathways with

specific genes of interest, that is, focus genes [12]. Driver-

Net classifies driver mutations as mutations that propa-

gate outlying downstream differential expression in the

transcriptional regulatory network [13]. More recently,

TieDIE [14] was developed to find small cancer driver

pathways within a large super-pathway to connect geno-

mic alterations with transcriptomic changes, MAXDRIVER

[15] was proposed to identify driver genes by integrating

multiple omics data and heterogeneous networks, and Var-

Walker [16] was developed to construct cancer-specific

mutation networks to assist driver identification in a
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patient cohort. However, the scope of these methods is

still limited. Most existing methods such as MEMo,

Dendrix, and DriverNet require a large number of pa-

tient samples to generate reliable results and lack the

ability to discover rare and patient-specific drivers. Other

methods such as PARADIGM-Shift are designed to deter-

mine drivers in small pathways and often require detailed

previous knowledge of specific pathways and focus genes

to operate effectively. New methods are needed to identify

novel and rare drivers when we do not have much prior

knowledge of the tumor.

It is now acknowledged that individual tumors of the

same type are highly heterogeneous and have diverse

genomic alterations [2,17]. This stems from the ‘long-tail

phenomenon’ which states that cancer mutations are

characterized by a small number of frequently mutated

genes and a large number of infrequently mutated genes

[18,19]. Discovering rare drivers in the long tail of gen-

etic alterations remains difficult. Therefore, we urgently

need methods to assess the impact of patient-specific

and rare mutations from individual tumor samples in

order to elucidate personalized molecular drivers.

In this work, we introduce a new method called Dawn-

Rank that detects driver genes using data from a single pa-

tient sample. By only using data from an individual patient

sample rather than a large cohort, we identify drivers in a

personalized fashion. The single patient approach classi-

fies drivers regardless of mutation frequency, thereby

allowing us to focus on rare (infrequent) drivers. Dawn-

Rank ranks potential driver genes based on their impact

on the overall differential expression of its downstream

genes in the molecular interaction network. Mutated

genes with higher rankings are more likely to be drivers.

Our method builds on the DriverNet rationale that the

impact of a potential driver gene can be determined by its

effect on the genes that are regulated by it. However,

unlike DriverNet, DawnRank can be applied to a single

patient at a time. It is also important to note that our

approach differs from the aforementioned PARADIGM-

Shift. The small-scale network approach of PARADIGM-

Shift works well when the user has a target pathway and

genes in mind, but is not applicable in determining rare

driver genes distributed across multiple pathways with

a more comprehensive gene network. DawnRank differs

from MEMo and Dendrix as the scope of DawnRank is to

determine individual driver genes rather than driver path-

ways. Although CONEXIC also utilizes pathway informa-

tion to identify important CNVs, DawnRank has a more

generalized framework to assess the impact of both muta-

tions and CNVs at the individual patient level. Such a

patient-specific framework also makes DawnRank differ-

ent from methods such as MAXDRIVER and VarWalker.

DawnRank also differs from TieDIE, which predicts sub-

networks of interlinking genes that highlight cancer

specific subnetworks, whereas DawnRank predicts in-

dividual driver genes.

Methods
Method overview

The DawnRank method ranks mutated genes in a single

patient according to their potential to be drivers. Dawn-

Rank requires the knowledge of a gene interaction net-

work, somatic genomic alterations from the patient’s

cancer genome, and the differential gene expression

profile between the cancer transcriptome and normal

transcriptome. The overview of DawnRank is in Figure 1.

Our method ranks genes according to their impact on

the perturbation of downstream genes, i.e., a gene will

be ranked higher if it causes many downstream genes,

directly or indirectly in the interaction network, to be

differentially expressed. DawnRank views the gene net-

work as a directed graph. We adopted the random walk

approach used in PageRank [20,21] to model this pro-

cess iteratively. The framework effectively reflects the

observation from previous works that mutations in genes

with higher connectivity within the gene network are

more likely to be impactful. In each iteration, a node in

the network can either, with a probability 1 − d (d is called

damping factor, which we defined in a new way. See

below.), revert back to stay at the same node, or with a

probability d to walk randomly to a downstream node,

which symbolizes the impact a particular gene has on its

downstream neighbors. Our method depends on three pa-

rameters: the differential gene expression, the interaction

network as a directed graph, and the damping factor.

These three parameters along with genomic alterations

form the key components of our model to determine

drivers in individual patient samples. The output of the

rank describes gene’s overall impact. In order to produce a

more readable form of the rank, we converted the rank

into percentile form to get the relative order of the genes

in the rest of this paper.

The DawnRank algorithm

In DawnRank, a gene will possess a higher impact score

(that is, rank) if the gene is highly connected to differen-

tially expressed downstream genes (directly and indirectly

connected). Driver genes tend to display a high-degree of

connectivity within the gene network [22,23]. For exam-

ple, using the number of outgoing edges alone, known

driver genes as classified by the Cancer Gene Census

(CGC) [24] have a mean and median of 31.45 and 12 out-

going edges, respectively, whereas genes not typically clas-

sified as drivers (not in CGC) have a mean and median of

17.73 and three outgoing edges, respectively. The higher

number of outgoing connectivity of known driver genes

suggests that the PageRank model would be appropriate

to prioritize driver genes based on their impact in the gene
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interaction network. PageRank has had several adaptations

in genomics. GeneRank utilized PageRank to rank the im-

portance of genes in a molecular network [25]. PageRank

derivatives (such as SPIA [26]) have also been used to

analyze pathway-level importance. More recently, it was

utilized to predict clinical outcome of cancer patients

based on gene expression [27] and to assist subtype iden-

tification [28]. Such approaches also show similarity in

nature to modeling network impact as a heat diffusion

process as used in HotNet [29] and TieDIE [14]. Dawn-

Rank builds on the original PageRank algorithm by pro-

viding a way to model a network’s directionality with

Figure 1 Overview of the DawnRank method.

Hou and Ma Genome Medicine 2014, 6:56 Page 3 of 16

http://genomemedicine.com/content/6/7/56



more stable rankings by utilizing dynamic damping factors

(see below).

DawnRank views the gene network as a directed

graph. Let N be the number of nodes (in our case, genes)

in the directed graph, and A be the adjacency matrix

representation of the graph, a 0-1 matrix (if node i links to

j, then Aij=1). Note that the current 0-1 adjacency matrix

can be naturally extended to consider weighted edges to

further distinguish different gene-gene interactions.

We define the rank of each gene iteratively:

rtþ1
j ¼ 1−dj

� �

f j þ dj

X

N

i¼1

Ajir
t
i

deg i
; 1≤j≤N ð1Þ

rt is the rank in the tth iteration. The output of the rank

describes a gene’s overall impact on the network: the

higher the rank, the higher the impact of the gene. d is

the damping factor, a parameter representing the extent

to which the ranking depends on the structure of the

graph. In DawnRank, the damping factor is individua-

lized based on gene connectivity (discussed below). f is

the prior probability of the gene which we set to the

absolute differential expression. The absolute differen-

tial expression is the absolute value of the difference

of the log scale tumor and normal expression values.

The degi ¼
X

N

j¼1

Aji is the in-degree of i, or the number

of incoming edges to i. This differs from the original

PageRank definition of degi, which was the out-degree

of i.

The zero-one gap problem refers to the potential pit-

fall that assigns biased ranks to some nodes [30]. When

trying to rank nodes with 0 incoming edges, known as

‘dangling nodes’, the degi will be 0, arising to a divide-by-

zero error. In our real gene network data, 15.5% of all

genes do not have any incoming edges. The initial

PageRank algorithm attempts to handle the problem by

setting the damping factor to be 0 for such genes, while

using the damping factor 0.85 for all other nodes. If we

use this approach, the ranks of genes with no incoming

edges will be based solely on its differential expression

(and not the network structure). However, this correc-

tion in itself causes a large gap in the damping factor for

genes with 0 and 1 incoming edge (Additional file 1:

Figure S3). This large gap in the damping factor can

cause a drastic change in the ranking of the gene when

an incoming edge is added to the gene which in turn

may cause unstable rankings [30]. An unstable ranking

system is especially concerning to gene network data, as

it is still not a complete representation of all interactions

among genes [31]. Therefore, small modifications and

additions to certain gene interactions may significantly

alter the rankings of potential drivers. To address this

problem, we utilize dynamic damping factors [30], where

each gene possesses an individualized damping factor

based on the number of incoming edges to that gene

(Eq. 2). As the number of incoming edges increases, the

damping factor gradually rises to incorporate more con-

nectivity information into the ranking of the gene. There-

fore, no large gap is observed from 0 in-degree and 1

in-degree (see Additional file 1: Figure S3).

di ¼
deg i

deg i þ μ
ð2Þ

The parameter μ follows a Dirichlet prior trained from

maximizing the values of μ over 100 random samples.

We selected the μ value of 3 because it had the highest

average DawnRank scores for known drivers in CGC

(see Additional file 1: Supplementary Materials for more

details on how μ was trained). Overall, the dynamic

damping factor mitigates the large change in the dam-

ping factor in nodes with 0 and 1 incoming edges by

gradually increasing the damping factor as the gene’s in-

degree increases, thereby creating more reliable and

more stable rankings. A toy example is in the Additional

file 1: Figure S2. We also show that DawnRank performs

more reliably with a dynamic damping factor than a static

damping factor on the TCGA datasets (see Additional

file 1: Figure S1).

In addition to the iterative version of DawnRank, the

method can also be presented in matrix form:

rtþ1 ¼ 1−dð Þf þ dM � rt ð3Þ

where rt, d, and f are N × 1 matrices to represent the

rank, gene-specific damping factor, and the gene ex-

pression, respectively, and M is the transition matrix

defined by:

M ¼

A1;1

deg1
⋯

A1;n

degn
⋮ ⋱ ⋮

An;1

deg1
⋯

An;n

degn

2

6

6

6

4

3

7

7

7

5

ð4Þ

DawnRank converges when there is no longer a sig-

nificant update in the ranks. This is when the magnitude

of the difference of the ranks between time t + 1 and the

previous time point t falls below a small ε, which we set

to 0.001, the same value suggested by [30]. DawnRank

also stops when no solution is present after a maximum

number of iterations, which we set at 100. In practice,

DawnRank always converges for any reasonable μ be-

tween 0.01 and 20 within 20 iterations. Nonetheless,

there are corner cases at low damping factors (μ < 10− 10)

where DawnRank either does not converge or converges

very slowly. A detailed discussion of the convergence
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of DawnRank can be found in the Additional file 1:

Supplementary Materials.

Condorcet voting for rank aggregation

To aggregate the rankings of genes from individual pa-

tient samples to determine the most impactful drivers in

a population (for example, known drivers for the same

type of cancer or a specific sub-type), DawnRank applies

a modified version of the Condorcet method [32]. The

Condorcet method is a voting scheme in which ‘voters’

vote for the best ‘candidate’ by submitting a rank-

ordered list of candidate preferences. The list of prefer-

ences is allowed to be either partial or full. The Condorcet

method then selects a winning candidate by comparing

every possible pair of candidates A and B and determining

a ‘winner’ by comparing the number of voters that pre-

ferred A to B and vice versa. We applied the Condorcet

method to the personalized rankings of genes to deter-

mine aggregate ranking of genes in a patient population.

Although the Condorcet method is built to handle

partial voting lists, one difficulty of implementing the

Condorcet method is the lack of patient samples that

possess the commonly mutated genes. Many pairwise

comparisons are missing for many gene combinations

due to the lack of patients that have mutations in both

genes simultaneously. However, since DawnRank can

output a ranking as an impact score for all genes regard-

less if a gene is mutated, we evaluated pairwise compari-

sons of two genes based on patients with a mutation in

at least one of the two genes. This approach avoids the

use of non-mutated gene comparisons to calculate the

aggregate score of genes, as the objective of DawnRank

is to determine the altered genes that are the most im-

pactful. However, since mutation recurrence is an im-

portant factor in detecting common drivers, we also

implemented a penalty heuristic δ, a number between 0

and 1 in our approach to lower the ranking of a gene in

a pairwise comparison that is not mutated. This penalty

allows us to rank aggregate frequent drivers based on

both impact and frequency.

PairwiseWinner A;Bð Þ ¼
A if δ Að Þ � Rank Að Þ > δ Bð Þ � Rank Bð Þ

B otherwise

�

ð5Þ

where

δ Að Þ ¼
δ if A is NOT mutated
1 if A is mutated

�

ð6Þ

We used the output from DawnRank, which we con-

verted to percentile rank format, to represent the rank-

ing of the gene. The penalty heuristic lowers the value of

a non-mutated gene when comparing it against a mu-

tated gene. This heuristic serves as both a means to

prevent a rare mutation that is impactful in one patient

from winning all pairwise comparisons (akin to a candi-

date winning just because one and only voter that voted

for it ranked it higher than any other candidate) and to

prevent a low-impact, high-frequency mutation from

winning a pairwise comparison against high-impact genes

that are not frequently mutated (akin to an unpopular

candidate winning just because many voters had a low-

preference vote for that candidate). We selected δ by run-

ning DawnRank over 100 random patient samples for

various instances of δ between 0 and 1 and calculating the

precision with respect to CGC genes (see Additional file 1:

Supplementary Materials). We found δ to be 0.85.

Results and discussion

We applied DawnRank to TCGA datasets. We first showed

that DawnRank outperforms two recent pathway-based

methods DriverNet and PARADIGM-Shift. We also

showed that DawnRank produces reliable results as

compared to cohort-based approaches CHASM and

OncodriveFM. We then used the results of DawnRank

to determine both potential novel drivers (new genes

mutated frequently), and more importantly, potential

rare and personalized drivers that previously could not

be assessed by other methods. We also applied the me-

thod to study breast cancer subtypes and found that the

amount of predicted rare drivers has a strong correl-

ation with the degree of genetic heterogeneity in differ-

ent breast cancer subtypes.

Datasets and network

We applied DawnRank to 512 glioblastoma multiforme

(GBM) samples, 504 breast cancer (BRCA) samples, and

572 ovarian cancer (OV) samples in TCGA. The datasets

we used in this work include gene expression and coding-

region mutation data for three cancer types generated by

TCGA [33-35]. The data were accessed on 20 May 2013.

The mutation data we used included non-synonymous

point mutations and insertions and deletions (indels) in

coding regions.

We built the gene interaction network used in Dawn-

Rank using a variety of sources, including the network

used in MEMo [10] as well as the up-to-date curated in-

formation from Reactome [36], the NCI-Nature Curated

PID [37], and KEGG [38]. The MEMo network consisted

of inferred gene-interaction from sources of information

such as protein interactions, gene co-expression, protein

domain interaction, and text-mined interaction described

by [39]. To aggregate all of the networks together, all

redundant edges were collapsed to single edges. We in-

cluded self-loops within the network to account for auto-

regulation events [40]. The resulting aggregate network

consisted of 11,648 genes and 211,794 edges, and can be

downloaded from our supplementary website.
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To help evaluate the quality of our results, we obtained

a list of 487 known driver genes from the well-studied

cancer gene database, CGC [24]. Additionally, we also

compared the quality of our results to the Pan-Cancer

drivers [41], a driver gene list built using results from well

known cohort-based methods over twelve tumor types. In

practice, there is no gold standard of known drivers. How-

ever, well-curated cancer gene databases such as CGC and

the Pan-Cancer study provide an approximate benchmark

of known drivers [13,42].

DawnRank outperforms pathway-based methods

DriverNet and PARADIGM-Shift

We evaluated the performance of DawnRank’s ability to

identify known drivers and compared it with DriverNet

and PARADIGM-Shift. As mentioned above, we utilized

CGC as an approximate benchmark of known drivers. Note

that here we implicitly assume that all non-synonymous

mutations in driver genes are potential driver mutations if

they are selected by a method. We performed two separate

comparisons: (1) we compared DawnRank to DriverNet

over a large network in order to evaluate the performance

of the two methods using a large human interaction net-

work (which PARADIGM-Shift is not able to work with

practically); (2) we compared DawnRank to PARADIGM-

Shift and DriverNet over a smaller, but well-annotated gene

network based on KEGG in order to determine the effect-

iveness of the three algorithms in smaller networks. The

network used in the first comparison was the same network

described earlier. The network used in the second compari-

son was a smaller network built from the aggregation of

the KEGG cancer pathways with 1,492 gene nodes and

8,070 edges. We ran DriverNet version 1.0.0, defining a dif-

ferentially expressed gene using their default settings of 2

standard deviations [43], and we ran PARADIGM-Shift ver-

sion 0.1.9 using the suggested global-rank transformation

for expression data [44]. To facilitate the comparison, we

applied the Condorcet rank aggregation (see Methods) for

the DawnRank scores based on individual patient samples

to provide the consensus population-level driver scores (see

Additional file 2). For each comparison, we used the follow-

ing three measures (Precision, Recall, and F1 Score):

Precision ¼
#Mutated Genes found in CGCð Þ∩ # Genes foundð Þ

# Genes foundð Þ

Recall ¼
#Mutated Genes found in CGCð Þ∩ # Genes foundð Þ

#Mutated Genes found in CGCð Þ

F1 Score ¼ 2�
Precision� Recall

Precisionþ Recall

ð7Þ

Precision, recall, and F1 scores were based on the top

N genes. We first evaluated the performance between

DawnRank and DriverNet. In general, DawnRank out-

performs DriverNet in all three cancer datasets with

respect to CGC (Figure 2). Although DriverNet performs

comparably in ranking the top genes in GBM, it has

poorer performance in OV and BRCA. A potential expla-

nation of the difference may lie in the total number of

mutations in the three cancer datasets. GBM had 5,478

mutations over 599 genes, while OV had 13,520 mutations

over 4,968 genes and BRCA had 11,900 mutations over

5,205 genes. The numbers indicate that there may be

more passenger mutations in BRCA and OV and Dawn-

Rank is less affected by noise than DriverNet. An illustra-

tion of this is DriverNet’s ranking of the gene TTN as a

top 5 driver in both BRCA and OV. TTN is the longest

gene in the human genome and recent TCGA analysis has

suggested that that higher mutation rate in TTN is likely

to be artifacts [34]. TTN was not ranked among the top

60 genes in any cancer according to DawnRank. We then

evaluated the performance of DawnRank, PARADIGM-

Shift, and DriverNet using the smaller KEGG network.

Overall, DawnRank outperforms both DriverNet and

PARADIGM-Shift in terms of precision, recall, and F1

scores using CGC as a standard (Figure 3) or the Pan-

Cancer results as a standard (Additional file 1: Figure

S11). In BRCA, although some known drivers such as

TP53 and ATM were detected by multiple methods,

DawnRank detected important known driver genes in the

top 10 such as CDH1 and PIK3R1, and BRCA1 in breast

cancer which were not detected by either PARADIGM-

Shift or DriverNet as top ranking drivers.

In addition to its ability to more precisely identify

known driver genes at the entire patient population level,

DawnRank also has an advantage of obtaining high-

quality results from a much smaller patient cohort. To

evaluate this ability, we applied DawnRank to random

subsets of the patient cohort from GBM, OV, and BRCA

from 10, 20, 50, and 100 patients to determine the preci-

sion at which DawnRank identifies known drivers in its

top 30 results. We compared these results with that of

DriverNet using the same patient subsets. The mean of

the precision scores after 10 runs is presented in Figure 4.

We found that even with a small patient cohort, Dawn-

Rank can still perform reasonably well, much better than

DriverNet. Even though DawnRank does not perform as

well with a sample of 10 as it can with the entire dataset,

the average DawnRank precision at 10 samples is compar-

able to the DriverNet precision using the entire cohort.

Our results suggest that DawnRank is able to identify

known drivers even with a small number of samples.

DawnRank achieves reliable results as compared to

cohort-based approaches CHASM and OncodriveFM

In addition to comparing DawnRank to the pathway-

based approaches of DriverNet and PARADIGM-Shift,

we compared DawnRank to non-pathway-based approa-

ches as well. We compared DawnRank with CHASM [8]
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and OncodriveFM [45]. We ran CHASM version 3.0 using

CRAVAT [46] with the cancer driver analysis mode [47],

and we ran OncodriveFM using the IntOGen Mutation

Analysis interface using SIFT, Polyphen2, and Mutation

Assessor data [48]. Both CHASM and OncodriveFM can

rank genes from most likely drivers to least likely ones.

Like in DawnRank, we evaluated all non-synonymous mu-

tations and evaluated each method using precision-recall

metrics in comparison to CGC. The results (Additional

file 1: Figure S10) show that DawnRank performs compar-

ably to both CHASM and OncodriveFM. These results

also demonstrate that the personalized approach of Dawn-

Rank can achieve reliable results at the cohort level.

DawnRank can discover both novel and personalized

drivers

In this section, we use DawnRank to identify driver genes

that may not have been classified as drivers by other

methods. We discuss such driver genes determined by

DawnRank in two main categories: general novel drivers,

and personalized drivers (we are mostly interested in per-

sonalized rare drivers).

� A general novel driver is a recurrent driver that has

not been classified as a driver gene. Here we define

novel drivers as genes that satisfy the following

requirements: (1) Highly ranked (genes that have an

aggregate rank in the top 30 of driver genes based

on the patient cohort), which means it is considered

as driver in multiple samples; (2) Recurrent

(alteration frequency >2% in the patient cohort);

(3) Not previously classified as a driver by CGC.

� A personalized driver is a gene predicted to be a

driver for specific patients. Here we define

personalized drivers as drivers classified as

significant using DawnRank’s maximally selected

rank statistics cutoff (explained later) and as drivers

that display higher than expected rankings under the

Chauvenet’s criterion for detecting outliers. In

other words, personalized driver genes could be

recurrently mutated in multiple samples, but they

Figure 2 A comparison of the precision, recall, and F1-scores for the top ranking genes in DawnRank and DriverNet. The X-axis represents

the number of top ranking genes involved in the precision, recall, and F1 score calculation. The Y-axis represents the score of the given metric.
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are only ranked high enough to be considered as

drivers in specific samples. We are particularly

interested in rare drivers, as rare drivers would be

obscured by the long tail phenomenon of cancer

mutations. Personalized drivers mutated in less than

2% of patients will be considered personalized rare

drivers.

Discovering novel drivers with coding mutations

Using the criteria listed above to detect novel drivers, we

used the aggregate DawnRank score to select genes with

coding mutations that were considered novel drivers. In

GBM, we found several consistently high-ranking poten-

tial novel driver genes. Of them, TGFBR2, HIF1A, and

FOXO3 are the most promising. These genes are highly

ranked, frequently mutated, and are involved in several

cancer functions and pathways (see Additional file 3).

TGFBR2 is a transforming growth factor whose function

is to regulate cell division signals and inhibit cell division

[49]. TGFBR2 is the third-ranked driver in terms of

Condorcet aggregate score, and it is altered in 18.7% of

GBM patient samples. TGFBR2 is classified as a poten-

tial tumor suppressor (it shows decreased expression in

GBM samples), and it is involved in many pathways to

cancer including TGFβ signaling, HTLV infection, and

Hippo signaling [50]. HIF1A is a hypoxia inducing factor

that has been shown to be necessary for the survival of

cancer stem cells in gliomas [51]. HIF1A is involved in

mTOR pathway, which regulates nutrient sensing for

cell growth, which could be responsible for cell growth

and metastasis in cancer. HIF1A is ranked as the fourth

most impactful driver in GBM, and it is mutated in 13.4%

of GBM patient samples [52]. FOXO3 is the eighth-ranked

gene. It is a common phosphorylation target of AKT and

ERK, and is a key trigger for apoptosis in the PIK3/AKT

pathway [53].

In OV and BRCA, there were fewer candidate novel

drivers than GBM, however, we found two genes that

show strong potential to become novel drivers: PDPK1 in

OV and CENPE in BRCA. PDPK1 is a phosphoinositide

Figure 3 A comparison of the precision, recall, and F1 scores for the top ranking genes in DawnRank, DriverNet, and PARADIGM-Shift

on a small network (defined from the KEGG database). The X-axis represents the number of top ranking genes involved in the precision,

recall, and F1 score calculation. The Y-axis represents the score of the given metric.
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dependent protein kinase-1 that interacts with a crucial

driver gene AKT1, and together their signaling plays a crit-

ical role in activating proliferation and survival pathways

within cancer cells such as the PIK3/AKT pathway and

the mTOR pathway [54,55]. PDPK1 is ranked second in

OV and is mutated in 5.4% of OV samples. The mutation

in PDPK1 itself also suggests an important impact in

the functionality of the protein binding. For example,

in sample TCGA-13-0751, the mutation is in a Glycine to

Arginine substitution near a hairpin loop in the middle of

the protein (Additional file 1: Figure S6). The amino acid

change from G to R changes the dynamic of the protein

structure by replacing a non-polar amino acid with a

positively charged amino acid, which may change the

binding interaction with the negatively charged substrate

phosphatidylinositol-3,4,5-trisphosphate, which in turn

may affect the phosphorylation and activation of at least

24 kinases [56].

In BRCA, a potential novel driver we found is CENPE.

CENPE is a centromere-associated protein that contrib-

utes to mechanics of microtubule-chromosome interac-

tions with mitotic checkpoint. Overexpression of CENPE

can lead to excessive cell growth and contribute to tu-

mor proliferation [57]. CENPE is ranked 26th in Dawn-

Rank. We observed that it is highly overexpressed in

tumor samples. CENPE is interesting as it is ranked dif-

ferently among different subtypes of breast cancer. All

but one of the mutations in CENPE was in Luminal B or

Basal subtype. The Basal subtype mutations had the

highest average ranking in the 95.2 percentile and the

average Luminal B subtype mutations ranked lower in

the 90.9 percentile, whereas the Luminal A mutation was

much less significant with a ranking in the 78.3 percentile.

This shows that even though CENPE has mutations in

multiple subtypes, it may harbor different driver potentials

in different subtypes.

Figure 4 Comparison results using subset of patient samples. The figure shows the precision, recall, and F1 scores of the DawnRank and

DriverNet results in determining known drivers among their top 30 genes using a small subset of the patient samples (X-axis) rather than the

entire cohort. The Y-axis represents the average precision of 10 runs using the subset. The error bars show the 1-standard deviation range of each

data point.
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Discovering novel drivers with copy number changes

We then applied DawnRank to examine the role of

CNVs in the three cancer types used in this study. We

included genes that displayed at least a two-fold change

in copy number change (with respect to the normal

baseline) and also had a corresponding change in ex-

pression. We treated CNV events in a similar fashion as

coding mutations to prioritize the genes with an amplifi-

cation and deletion and then determined the most im-

pactful CNVs. In addition to known driver genes with

CNVs, we also identified novel driver CNVs not in CGC

(Additional file 1: Figure S7).

In GBM, known CNV drivers (based on CGC) include

the amplification of some well-known driver genes such

as EGFR, PDGFRA, and MYC and the deletions of MLLT3

and ANK3. A potential novel driver CNV is the amplifica-

tion of SEC61G. SEC61G is a proto-oncogene that is re-

quired for tumor cell survival [58]. SEC61G is altered in

14.3% of GBM cases and it is ranked 17th among CNVs.

ELAVL2 is a potential tumor suppressor gene whose func-

tion is to stabilize and control nervous-specific binding

proteins [59]. ELAVL2 is altered in 6.7% of GBM cases

and is ranked second among CNVs in GBM. In OV, many

known drivers are amplifications such as CCNE1 and

KRAS and deletions such as MAF or PIK3R1. An example

of a novel amplification is FZD5, a ‘frizzled’ gene that has

a strong co-expression event with the Wnt signaling path-

way in ovarian cancer [60]. FZD5 is altered in 2.9% of OV

cases and it is ranked ninth among CNVs in OV. In

BRCA, known driver CNVs include amplifications in

CCND1, MYC, GATA3, and EGFR and deletions in MAF.

An example of a novel amplification event in BRCA is

PAK1, which is a breast cancer oncogene that activates

MAPK and MET signaling pathways [61]. PAK1 is the

third ranked gene with CNVs, and it is altered in 2.4% of

the BRCA patient samples.

Discovering personalized drivers

In this section, we discuss the personalized scope of

DawnRank by demonstrating its ability to determine per-

sonalized novel and rare drivers. The main aspect that dis-

tinguishes DawnRank from existing programs is the ability

to discover rare and even patient-specific drivers. Even if a

gene is altered only in a single patient, DawnRank will still

be able to evaluate the impact of that alteration. We deter-

mined such personalized drivers using the ‘maximally

rank statistics’ method. This method classifies alterations

as ‘drivers’ and ‘non-drivers’ by assigning a cutoff that

maximizes the number of known driver genes (genes in

CGC) ranking higher than the cutoff). Altered genes in

the individual patient with a ranking higher than the cut-

off would be described as personalized drivers. The ave-

rage cutoff for GBM, OV, and BRCA was 98.1, 92.8,

and 92.2, respectively (measured in percentile rank). We

specifically looked for genes that have not been classified

as a driver in CGC and genes that have a significantly

higher than expected rank in specific patients. A rank is

considered significantly high in a patient if the rank is

considered as an outlier under Chauvenet’s criterion for

outlier detection.

In our case, a gene is considered to be a rare driver if

the gene is both classified as a driver using the above

criteria, and it is mutated in only a small number of pa-

tients (<2%). We selected genes that fit the above criteria

to discover potential personalized drivers: genes that la-

beled as significant from the maximally-selected rank

statistics and genes that ranked higher in specific patients

according to the Chauvenet’s criterion. These selection

criteria yielded in 26 potential personalized drivers in

GBM (10 from mutations, 16 from CNV), 56 potential

personalized drivers in BRCA (20 from mutations, 36

from CNV), and 77 potential personalized drivers in

OV (26 from mutations, 51 from CNV) (Figure 5A and

Additional file 1: Figures S8 and S9).

We found 26 potential personalized drivers in GBM.

Of these genes, we found that several of the candidate

driver genes were involved in important known cancer

pathways. Using KEGG to map genes to pathways (see

Additional file 3) [50], mutations in three interferon re-

ceptor genes IFNA14, IFNW1, and IFNA17 belong to

multiple pathways that have significant impact on can-

cer, including the Cytokine-Cytokine receptor pathway

and the JAK/STAT pathway. Cytokines are important

factors in tumor cell control as they are key players in

inflammatory and immune response [62]. JAK/STAT is a

related pathway activated by the binding of cytokines to

its receptor. The pathway is involved in inflammation,

proliferation, and invasion/migration [63]. In either case,

IFNA14, IFNW1, and IFNA17 are interferon receptor

genes that may interact with genes such as TP53 to in-

duce apoptosis of cancer cells [64]. Both the Cytokine-

Cytokine receptor pathway and the JAK/STAT pathway

are common drug targets in GBM [62,63], which could

lead to the implications that IFNA14, IFNW1, and IFNA17

could be targeted. IFNA14, IFNW1, and IFNA17 are

mutated in 4.7%, 5.6%, and 4.5% of GBM patients, respect-

ively. IFNA14 is ranked significantly higher than its aver-

age expected ranking in patients TCGA-32-1978 and

TCGA-19-2619 while IFNW1 and IFNA17 both have high-

ranking mutations in the patient TCGA-28-1749. Although

IFNA14, IFNW1, and IFNA17 are examples of personalized

drivers, they are not personalized rare drivers. An example

of a personalized rare driver is PITX2, which is altered in

only two patients (0.4%). PITX2 is in the TGFβ signaling

pathway, which can be targeted by cancer drugs such as

decanoyl-RVKR chloromethylketone in GBM [65,66].

We found 77 potential personalized driver genes in OV,

and like GBM, many of these genes fall under similar
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KEGG pathways (see Additional file 3). Figure 5A shows

the list of personalized drivers in OV. The most well rep-

resented KEGG pathways are the calcium signaling path-

way and the MAPK signaling pathway. Calcium signaling

is important in the regulation of cancer cell prolifera-

tion and/or apoptosis [67]. In OV, four alterations are

present in the calcium signaling pathway: mutations in

ADORA2B, CACNA1E, and ITPR3 along with a CNV for

SLC8A1. Of these alterations, ADORA2B is often associ-

ated with cancer cell movement and metastasis, and it has

been a drug target in other cancers [68]. The MAPK sig-

naling pathway plays a role in communication with cell

growth, and it can be targeted by cancer drugs such as

MEK and RAF inhibitors [69,70]. Genes mutated in the

MAPK signaling pathway include CACNA1E, TRAF6,

and DUSP16. The TRAF6 gene is especially interest-

ing as it upregulates HIF1A and has implications in tumor

angiogenesis [71]. TRAF6 is another good example to

demonstrate the power of DawnRank because it is mu-

tated in only two patients, TCGA-13-1410 and TCGA-61-

1919, but DawnRank was still able to detect it as a rare

driver. We looked into the TRAF6 mutation further, in-

cluding its connectivity in the network and the potential

functional impact of the mutation (Figure 5B and C). We

found that the mutation in TCGA-13-1410 is considered

to have an important functional impact by MutationAs-

sessor, affecting the MATH domain [72]. The mutation is

located at a loop defining one wall of the binding site and

projects its long side-chain to directly contact the con-

served aromatic residue in the peptide substrate, and

it likely modulates its interaction with its receptors

[73]. TRAF6 is also known to be involved in the NF-κB

pathway, which is related to poor outcomes in ovarian

cancer [74].

We found 56 potential rare drivers in BRCA. Unlike in

GBM and OV, the distribution of rare drivers in BRCA

Figure 5 Personalized drivers in TCGA ovarian cancer samples. (A) The darker red/blue entries (red for point mutations and blue for CNVs)

indicate the personalized drivers that are significant and not documented in CGC. The lighter entries are mutations that are not considered as

drivers by DawnRank in specific samples. The X-axis includes patient samples with a personalized driver that is significant and not documented in

CGC. On the Y-axis, rare drivers (frequency <2%) are in blue and non-rare drivers (frequency >=2%) are in purple. (B) Part of the gene interaction

network where TRAF6 is involved. The size of the node scales according to the DawnRank score in ovarian cancer patient sample TCGA-13-1410

and the color intensity scales with differential expression. Note that this figure shows the impact of TRAF6 to other genes in the network, but

not all the edges where TRAF6 is not involved are shown due to space limitation (for example, the large number of outgoing edges of TP53).

(C) A close-up view of the protein structure of TRAF6 indicates that an amino acid change from the mutation in ovarian cancer patient sample

TCGA-13-1410 causes substitution of the Arginine (R) to Tryptophan (W). The substitution of the mutation occurs in a conserved binding site, and

the substitution from a charged Arginine to a non-polar aromatic amino acid Tryptophan may suggest a change in the substrate binding with

the CD40 peptide substrate.
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seemed to spread out among different pathway with

no major cancer pathway having more than two can-

didate rare drivers. Nevertheless, several important cancer

pathways are highlighted in BRCA (see Additional file 3).

One of them is the KEGG ‘Proteoglycans in Cancer Path-

way’. Proteoglycans bind to ligands and receptors that

regulate tumor neoplastic growth and angiogenesis [75].

Alterations in genes coding for proteoglycans include

ANK3 and FRS2. Of these, FRS2 is especially interesting

due to both its scarcity (only one amplification event in all

BRCA patients) and its function as a fibroblast growth fac-

tor whose amplification activates the FGFR2 [76]. It is also

highly differentially expressed in the patient, having differ-

ential expression 3.21 standard deviations above normal.

The calcium signaling pathway, like in ovarian cancer, also

has multiple potential drivers in breast cancer. These

genes include CACNA1B and GRIN2A. GRIN2A is a po-

tential rare driver as it is mutated in 1.7% of BRCA pa-

tients, but it has been known to be recurrent driver

mutation in other cancers [77].

Distribution of personalized rare drivers across breast

cancer subtypes

We next looked at the distribution of the candidate rare

drivers across breast cancer subtypes. We tested whether

or not the rare drivers show different distribution among

patients in the four major subtypes of breast cancer

(Luminal A, Luminal B, Her2, and Basal-like). Al-

though we used a 2% as a threshold to determine rare

drivers so far, we further modeled the personalized drivers

at low frequencies using cutoffs from 1% to 5% to better

visualize the distribution of infrequent, personalized dri-

vers in BRCA subtypes. As shown in Figure 6A, the

distribution of the driver genes is not the same among

subtypes. The most obvious contrast involves the Basal-

like and Luminal A comparison. Basal-like samples tend

to have more very rare drivers occurring in less than 1%

of the cases and have much small number of drivers occur

over 1%. Luminal A samples, on the other hand, have

fewer drivers occurring in less than 1% of the samples, but

as the cutoff increases, more Luminal A drivers can be

found. A Chi-squared goodness of fit test confirms that

the distribution of Basal and Luminal A breast cancers

have very different distributions (P=0.015). This may

suggest a fundamental difference in the genetic heteroge-

neity of Basal-like and Luminal A breast cancers. The rare

driver distribution of Basal-like cancer is also different

from the frequency distribution of known driver genes

(Figure 6).

The distribution of known drivers and rare drivers

may correspond to the genetic heterogeneity of breast

cancer subtypes. Luminal A is an ER+ subtype with less

heterogeneity and has been defined by its good progno-

sis. Patients with Luminal A subtype generally have the

most favorable outcome and have a smaller chance of

relapse when treated early [78,79]. On the other hand,

the Basal-like subtype, which mainly comprises of triple

negative breast cancers, is difficult to treat due to tumor

heterogeneity. Basal-like breast cancers are known to be

more aggressive with poor prognosis [35,80]. Based on

our results, we found that Luminal A samples seem to

have common drivers more than any other cancer type.

The pattern in the Basal-like type is the opposite. There

are more potential rare drivers in Basal-like samples

than other subtype. This suggests that Luminal A breast

cancers are driven more by common drivers while Basal-

like breast cancers are driven more by rare drivers.

Potential personalized rare driver alterations for Basal-

like breast cancer include LGR5 and BCL2L14. LGR5 is

a CNV that is amplified and overexpressed in the Basal-

Figure 6 Distribution of rare drivers (A) and known drivers (B) across four breast cancer subtypes. The X-axis describes the frequency

cutoffs (1% to 5%). Note that this cutoff is not cumulative. The Y-axis shows the proportion of patient samples that have rare drivers within that

frequency cutoff.
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like patient sample TCGA-AN-A0AT. LGR5 is necessary

for the stimulation of basal cell growth in breast tissue

[81]. BCL2L14 is a key regulator of cell apoptosis at the

mitochondria level [82], and it is altered in the single

Basal-like patient TCGA-AN-A0FJ.

Implementation and running time

DawnRank was implemented in R. Using a network of

1,492 nodes and 8,070 edges and a cohort of the BRCA

samples we used, we compared the run time of Dawn-

Rank, DriverNet, and PARADIGM-Shift on a computer

with 16GB RAM and Intel i5-3317U processor. Driver-

Net was the fastest, with a runtime of 6 min. DawnRank

completed the analysis in 9 min for the main script and

12 min for the Condorcet rank aggregator. PARADIGM-

Shift took approximately 15 h to run.

Conclusions

It is now acknowledged that individual tumors of the

same type are highly heterogeneous and have diverse

genomic alterations. Therefore, we urgently need novel

methods to identify patient-specific and rare drivers

from individual tumor samples in order to elucidate per-

sonalized molecular mechanisms in different types of

cancer. The goal of DawnRank is to integrate mutation

data, gene expression, and network information to dis-

cover drivers in a personalized manner. We applied

DawnRank to a large number of TCGA datasets. By com-

paring to previous studies, our results demonstrated the

effectiveness of DawnRank: (1) Despite its single-patient

scope, DawnRank detects common and known drivers

with as much or more precision than existing methods;

(2) We can identify rare and novel genes that are potential

drivers to specific patients. We believe this method will

complement existing driver identification methods and

will help us discover potential personalized drivers. The

application to breast cancer subtypes further demons-

trated that the rare drivers predicted by DawnRank may

provide new insights into the molecular explanations of

cancer subtypes with higher tumor heterogeneity.

One potential limitation of the current DawnRank

method is that we still largely rely on known molecular

interaction network. Such network information is still

incomplete, which may create false negatives in Dawn-

Rank’s prediction. In addition, currently the overall net-

work information we use in DawnRank is not cancer-

type specific or patient-specific. Therefore, some of the

network level interactions and perturbations specific to

certain cancer subtypes or patient samples may be ob-

scured by this approach. Another potential limitation is

that DawnRank detects only potential drivers that alter

the expression of other genes. However, this may not be

the case for all drivers. In addition, some of the predic-

tions from our method could potentially be caused by

passenger mutations that coincidentally change the

expression of downstream genes. In those cases, it may be

useful to additionally utilize cohort and functional-impact

based methods such as OncodriveFM. As the community

continues to refine our understanding of the interaction

networks and cancer driver genes, we expect that Dawn-

Rank’s ability to predict driver alterations would also

improve.

Our method provides a unique solution to predict po-

tential driver genes in cancer. However, the computa-

tionally predicted personalized drivers should not be

over-interpreted before additional experimental evidence

becomes available. To fully validate such computational

predictions, both in vitro and in vivo experimental vali-

dations would be needed to comprehensively assess the

tumorigenic potentials of predicted drivers in individual

patients. Nevertheless, our method provides a reliable

solution to prioritize such follow-up experimental vali-

dations. Taken together, our personalized approach is

promising to discover potential causal generic variants

that would be otherwise obscured by tumor heterogen-

eity. The personalized framework may help determine

the optimal treatment strategy for each patient through

individualized assessment based on the molecular signa-

tures of their cancers.
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