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Abstract  

In many power markets around the world the energy generation decisions result from two-sided 
auctions in which producing and consuming agents submit their price-quantity bids. The 
determination of optimal bids in power markets is a complicated task that has to be undertaken 
every day. In the present work, we propose an optimization model for a price-taker hydropower 
producer in Nord Pool that takes into account the uncertainty in market prices and both production 
and physical trading aspects. The day-ahead bidding takes place a day before the actual operation 
and energy delivery. After this round of bidding, but before actual operation, some adjustments in 
the dispatched power (accepted bids) have to be done, due to uncertainty in prices, inflow and 
load. Such adjustments can be done in the Elbas market, which allows for trading physical 
electricity up to one hour before the operation hour. This paper uses stochastic programming to 
determine the optimal bidding strategy and the impact of the possibility to participate in the Elbas. 
ARMAX and GARCH techniques are used to generate realistic market price scenarios taking into 
account both day-ahead price and Elbas price uncertainty. The results show that considering Elbas 
when bidding in the day-ahead market does not significantly impact neither the profit nor the 
recommended bids of a typical hydro producer. 
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1 INTRODUCTION 

In recent years, many countries have deregulated their power sectors, leading to 
new challenges for energy producers and increasing the interest in power 
optimization approaches to develop appropriate bidding strategies. The 
liberalization of the electricity markets in the Nordic countries started in the 
beginning of the 1990s, with Norway as the pioneer. Already in 1993 the Nord 
Pool was established as a Norwegian electricity market, and extended its trade to 
Sweden in 1996, followed by Finland and Denmark in 1998 and 2000, 
respectively. It thus became the world’s first multinational exchange for trade in 
electric power.  

The Nordic power market has successfully adapted to the competitive 
environment and has inspired the restructuring of other power markets. The day-
ahead market in Nord Pool, the Elspot (also known as Nord Pool Spot), takes the 
form of a pool-based market in which market participants exchange power 
contracts for physical delivery the following operation day. The value of turnover 
traded in the Elspot in 2007 was EUR 9.1 billion and the energy volumes 
amounted to 291 TWh. This is more than 65% of the total electricity consumption 
in the Nordic countries, while the remaining is traded through bilateral contracts. 
Hence, the power sales in the day-ahead market constitute a substantial part of the 
revenues for the producers. This makes the bidding into the day-ahead market one 
of the most important tasks the power producers are faced with. 

Like in many other power markets around the world, the dispatch in the Elspot is 
the result of two-sided auctions in which producing and consuming agents submit 
their price-quantity bids. Since day-ahead market clearing prices are determined 
by the balance between sales and purchase bids, the volumes dispatched and the 
prices at which transactions are settled are unknown until the market has been 
cleared and market clearing prices have been determined. In practice, short-term 
power planning and operation is often based on deterministic optimization tools, 
such as the Short-term Hydro Operation Planning (SHOP) model (Flatabø et al. 
2002, Fosso and Belsnes 2004 and Fosso et al. 1999), widely used in Norway, 
whereas the bidding tasks rests on skills and experience of the operating 
engineers.  

Bidding strategies are extremely relevant to hydropower producers, since they can 
store water in their reservoirs and use this flexibility to decide the best time to 
produce energy, according to the development in market prices. When prices are 
high, water is released and energy is produced and sold, whereas when prices are 
low, the water is saved for future use at higher prices. Therefore, the price 
uncertainty is an important aspect to be considered when developing a bidding 
strategy.  

Regarding the literature on bidding strategies for hydropower generators, we give 
a few references. Fleten and Kristoffersen (2007) consider a Nordic hydropower 
producer that owns a series of power plants along a river and introduce a 
stochastic programming model to maximize the profit of its bidding strategy. The 
balancing market adjustments in generation are represented in a simplified way. 
Ladurantaye et al. (2007) also integrates bids and reserve sales in a deregulated 
electricity market using a stochastic programming model. Fleten and Pettersen 
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(2005) consider a price-taker power marketer who supplies power to end users 
through purchases in the day-ahead market and propose a stochastic programming 
formulation for its bidding problem. The bidding is subject to market price 
uncertainty, which is represented by scenarios generated by moment matching 
(Høyland et al. 2003). Regarding strategies for thermal generators, Conejo et al. 
(2002) takes the perspective of a price-taker thermal power producer and develops 
a simple bidding strategy to bid in the day-ahead market. The expected value 
problem is solved, i.e., the stochastic prices are replaced by expected prices, and 
the optimal solution is used to build the bidding curves. Problems that comprise 
thermal and hydro generation are studied by Oliveira et al. (2003) and Shawwash 
et al. (2000), which develop deterministic short-term optimization models, 
whereas Nowak et al. (2003) present a stochastic version of the like. Philpott et al. 
(2000) represent uncertainty in demand and hydropower unit commitment in a 
multi-stage stochastic programming model. Finally, Anderson and Philpott (2000) 
study strategies of generators bidding in competitive power markets where the 
behaviors of other agents are uncertain and modeled by a so-called market 
distribution function. The bidding curves are determined by solving an optimal 
control problem. For power optimization models in stochastic programming 
similar to the present work, see the reviews of Wallace and Fleten (2003) and 
Kristoffersen and Fleten (2009), the last one with emphasis on short-term power 
production and trading problems. 

After the spot prices are published (up to 14:00) and the accepted bids are set, the 
generators must send their production plans for the next day to the transmission 
system operators (TSO), before 19:00 every day. Possible imbalances between 
load and generation during the day are handled by the TSO within each country, 
who buy system services such as ramping and frequency control from the 
producers through short-term auctions. 

Imbalances between volumes produced and volumes dispatched in the day-ahead 
market are settled in the regulating market, where the participants submit their 
bids to increase or decrease the generation (or consumption). Bids placed on the 
regulating market must be executable within a short period of time (15 minutes). 
For further details, see Olsson and Söder (2008), who model balancing market 
prices using combined seasonal auto regressive integrated moving average 
(SARIMA) and discrete Markov processes in order to generate scenarios 
considering the fact that in some periods there is no demand for balancing power. 

Adjustments in the actual generation can also be done by trading energy in the 
Elbas market, which allows for trading physical electricity between the 
participants. Especially when the agents are allowed to trade energy in the Elbas 
market, the volume traded in the balancing market is very low, and therefore it is 
not taken into account in this work.  

The objective of this work is to develop a model to support the day-ahead bidding 
of a price-taker producer taking into account the possibility of trading energy in 
the Elbas market. 

The decision process is divided into stages. The day-ahead bids must be sent to 
Nord Pool before 12:00 every day, which means that there is a substantial gap 
between bidding and the actual generation. To a small market participant, whose 
decisions have no impact on the spot price, the bidding process is subject to 
uncertainty in day-ahead and Elbas prices. The problem is approximated as a two-
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stage mixed integer stochastic program. The first stage concerns day-ahead 
market exchange whereas the second stage takes in trades in the Elbas market and 
real-time hydropower production. 

To a price-taker producer, i.e., that is sufficiently small and does not have market 
power to affect the prices with its bids, the market prices can be modeled as 
exogenous. The uncertainty in day-ahead prices and Elbas prices are represented 
by a set of scenarios generated by stochastic processes calibrated from historical 
data.  The model we use is an ARMA with GARCH (Generalized Autoregressive 
Conditional Heteroskedastic) error components. The GARCH model, firstly 
introduced by which is already being used to analyze electricity time series 
(Garcia and Contreras 2005). The Elbas prices, which are very correlated with the 
day-ahead prices, are also modeled by an ARMAX with GARCH methodology, 
using day-ahead prices as explanatory variables. 

The problem is solved as a deterministic equivalent (see Wets 1974, and Thénié et 
al. 2007), where the objective function is to maximize the expected value of the 
profit considering all the possible Elspot and Elbas prices scenarios. The model is 
implemented and solved with the commercial software Xpress-MP, providing, 
most importantly, the first stage solution, i.e., the bidding decisions into the day-
ahead market. The second stage decisions are the production schedule and trades 
in the Elbas market. Start-up and stop costs are modeled using binary variables. 
The value of considering the trades in the Elbas market is analyzed, and tests are 
done with data from three hydroelectric stations of Agder Energi, a medium sized 
power producer in Norway. 

The outline of the present paper is as follows. We explain the composition of the 
day-ahead market and model the bidding process in Section 2. In Section 3 we 
describe the Elbas market. In Section 4 we model the short-term hydropower 
production. In Section 5 we introduce the price uncertainty and incorporate it into 
the stochastic programming model, whereas Section 6 is devoted to scenario 
generation. Section 7 illustrates a case study from a Norwegian hydropower 
producer and Section 8 presents the conclusions. 

2 DAY-AHEAD BIDDING 

The Elspot contracts commit generators and buyers to deliver or receive power for 
a period of one hour or longer. Contract types include hourly bids, block bids and 
flexible hourly bids. Bids consist of price and volume pairs that together 
constitute the bidding curve. Elspot makes linear interpolation between 
consecutive price-volume pairs to construct the bidding curve. For each buyer or 
seller, the volume dispatched is determined by the point on the bidding curve that 
corresponds to the calculated market-clearing price. All transactions are settled at 
the market price. Block bids are lumped bids valid for at least two consecutive 
hours and contain only one price and volume and are accepted or rejected as a 
whole. Roughly, a mean price condition determines whether a block bid is 
accepted or rejected; the average market price over the relevant hours must be 
higher (lower) than the block bid price for a sales (purchase) bid for the bid to be 
accepted. So-called flexible hourly bids are omitted here as the bids are mainly 
used by large industrial consumers that are able to temporarily reduce their load. 



The Elspot market clearing price calculation is based on a mixed integer program 
that seeks to maximize the welfare gain (consumers’ utility minus producers’ 
cost), subject to physical constraints such as transmission capacities, area balances 
(accepted supply plus net import equals accepted demand) and maximal 
transmission ramp rates (the transmission between two given areas in two 
successive hours should not differ more than a maximum allowed amount). 
Besides the constraints mentioned above, the market price is calculated 
considering the influence of the various types of block bids on the price 
calculation of successive hours. 

The Nordic grid is divided into fixed price areas. Sweden, Finland, East and West 
Denmark are one area each, whereas Norway can be divided into several areas, 
usually between 2 and 4. This is determined by the TSO for months at a time, 
which will depend on the expected market equilibrium, transmission capacities 
and demand for inter-zonal transmission. If the contractual flow between two 
areas does not exceed the grid capacity, their market prices are equal. Otherwise, 
different prices are calculated 1. 

This section describes the bidding process and how the decisions are represented 
in the model developed in this work. We assume that the producer does not have 
any bilateral exchange contract (as this does not affect the bidding problem), but 
instead concentrates the entire production in the day-ahead and Elbas markets. 
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= 1; : : : ; 24 = b ; : : : ; b

½t; t 2 T

The model is designed for a time horizon corresponding to the 24 hours of the 
next day, which is divided into hourly time intervals and is denoted 
T f g. Within the 24 hours the set of blocks B f 1 Bg is 
constructed. A block is a number of minimum two consecutive hours and the total 
number of such blocks within 24 hours is B = 276. However, for computational 
reasons, we consider in this work a set of 6 blocks of 4 consecutive hours (B=6): 
b1 = {1, … ,4}, b2 = {5, … ,8}, b3 = {9, … ,12}, b4 = {13, … ,16}, 
b5 = {17, … ,20} and b6 = {21, … ,24}.  

The bidding process consists of selecting both bid prices and bid volumes, which 
would lead to a product of variables. However, following Fleten and Pettersen 
(2005), the nonlinearities are avoided by fixing prices in advance, so that only 
volumes have to be selected. Let I  index the possible bid prices and 
denote these prices pi  where p . The corresponding bid volumes are 
represented by the variables xit 2  for hourly bids and 

  for block bids. The variables yt 2  and 
 are the volumes dispatched, for hourly bids and block bids 

respectively. The hourly market prices are denoted  and average market 
prices for the blocks 

= f1; : : : ; Ig
i · pi+1

R+; i 2 I
; i 2 I

2 B
; t 2 T

xib 2 R+; i 2 I; b
yb 2 R+; b 2 B

R+; t 2 T

½b; b 2  where B ½b = (1=jbj)
P

t2b ½

X
t2T

½tyt +

t. Thus, the total sales 
revenues of the producer is: X

b2B
        (1) ½ yb

t 2 T

b

Hourly bids are handled as in Fleten and Kristoffersen (2007). For each hour 
, the bids (xit; pi); i 2 I

                                                

 are interpreted as price-volume points on a bidding 

 
1 For further details visit the Nord Pool Spot AS website: http://www.nordpoolspot.com . 



curve that determines the relation between volumes bid and volumes dispatched. 
The curve is constructed by making a linear interpolation between the points 
which results in a piecewise linear curve. Thus, in terms of prices, the bidding 
curve can be expressed as (see Figure 1): 
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½t =

8>>>>>>><>>>>>>>

p1 + p2¡p1

x2t¡x1t
(yt ¡ x1t) ; if x1t · yt < x2t

...

pi¡1 + pi¡pi¡1

xit¡xi¡1;t
(yt ¡ xi¡1;t) ; if xi¡1;t · yt < xit

...

pI¡1 +
pIt¡pI¡1;t

xIt¡xI 1;t
(yt ¡ xI¡1;t) ; if xI¡1;t · yt · xIt¡

>>>>

 (2) 

or equivalently, in terms of volumes: 

yt =

8>>>>>>><>>>

½t¡p1

:

p2¡p1
x2t + p2¡½t

p2¡p1
x1t ; if p1 · ½t < p2

...
½t¡pi¡1

pi¡pi¡1
xit + pi¡½t

pi¡pi¡1
xi¡1;t ; if pi¡1 · ½t < pi

...

  (3) 

½t¡pI¡1

pI¡pI¡1
xIt + pI¡½t

I¡p pI¡1
xI¡1;t ; if pI¡1 · ½t · pI :

xit · xi+1;t; i 2 InfIg; t 2 T

Considering the sales bids from the perspective of a producer, it would be natural 
for the bidding curve to be increasing2: 

     (4) 

The block bids are (xib; pi); i 2 I  and, for each b , the relation between 
volumes bid and volumes dispatched is 

2 B

yb =
X

j:pj·½b

xjb; b 2 B      (5) 

i.e., in a given block, the volume dispatched comprises the volumes of accepted 
bids. For example, consider the block b2 = {5, … , 8}. If two bids are given by 
(x1,2, p1) = (100, 120) and (x2,2, p2) = (200, 150) and the average market price is 

=130, then only the first bid is accepted and the volume dispatched is y2 = 100. ½2

 Price

x1t ytx2t x3t x4t x5t x6t  V olume
p1

p2

p3

p4

½t

 Price

p1
x1t ytx2t x3t x4t x5t x6t  V olume

p2

p3

p4

½t

 
Figure 1 - Bidding curve of time interval t . 2 T

                                                 
2  Nord Pool does not require that the bidding curve be increasing and therefore such constraints 
may in principle be omitted. Omitting the constraints, however, does not affect the optimal 
objective function values. 



3 THE ELBAS MARKET 3 

Adjustments in the actual generation (or consumption) during the day can be 
achieved by trading energy in the Elbas market, which allows the participants to 
start trading physical electricity for the next day at 14:00, when the spot prices for 
the next day are published. Trades are allowed up to one hour before the operation 
hour. Figure 2 shows the scheme of the day-ahead bidding and Elbas trading 
schedule. 

 
Figure 2 – Schedule of the day-ahead bidding and Elbas trading 

The Elbas market is open around the clock every day of the year and the traded 
products are 1 MWh of electric power contracts, one for each specific hour. 
Today this market is open in Finland, Sweden, Denmark and Germany. Norway is 
joining the Elbas during the first quarter of 2009. 

A bid in the Elbas consists of the bid type (sell or buy), a price in EUR/MWh and 
a volume in MWh for a specific hour. The trading process works as in a stock 
market, where the participants place their bids into a web based real-time trading 
system. The bids are anonymous and the trading system developed for continuous 
trading allows the participants to easily follow the situation on the market, place 
bids and search trade and cash-flow information.  

Like in a stock market, there is always a gap between the minimum selling price 
and the maximum buying price. If one participant wants to sell energy 
immediately it must bid at a price at least as low as the maximum buying price, 
and if one wants to buy energy immediately, it must bid at a price at least as high 
as the minimum selling price. Considering the block bids in Elbas is left for future 
work. 

The trading system automatically controls the cross-border capacity, which is 
given when the deadline for filing complaints on the Elspot has elapsed and the 
cross border capacity that is left after Elspot is known. For example if there is no 
transmission capacity from Finland to Sweden the participants in the Swedish and 
the Eastern Danish market area do not see the sale bids placed by participants in 
the Finnish market area in their trading system. If all the bids are inside the given 

                                                 
3 The source of information in this section is Nord Pool Spot AS website: 
http://www.nordpoolspot.com . 
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cross border capacity the different market areas are treated as one. 
To model the Elbas market we include the variable zt 2 , which represents the 
volume of energy traded in each hour t 2 T . The Elbas price for which the 
volume is traded is denoted 't. Since any participant can sell or buy energy on the 
Elbas market, the variable zt can be either positive, to represent a revenue when 
energy is sold, or negative, to represent a debit when energy is bought. Together 
with the results of the day-ahead market bidding defined in the previous section, 
the total sales revenues considering the trades in the Elbas market accumulate to: 

R
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2T 2B

X
t

½tyt +
X
b

½byb +
X
t

'tzt

2T
     (6) 

The total energy traded in Elbas in 2007 amounted to 1.6 TWh; this is low 
compared to the Elspot trading (291 TWh in 2007) and to the regulating market 
(about 13 TWh in 2007). Norway, which is the second biggest country regarding 
total generation in Nord Pool, will make the total energy traded in Elbas increase. 
However, it is hard to predict how much larger this number will become.  

Considering the relatively low liquidity on Elbas, and the fact that we are looking 
at a small market participant, we need to prevent the model’s Elbas trading 
volume from becoming unrealistically high. Hence, we impose a limit on the 
volume of energy traded for each hour t 2 T . The model results are analyzed for 
3 different limits, which are specified through percentages of the total installed 
capacity of the plants: 5%, 10% and 20%. The results of the 3 cases are shown in 
Section 7. 

4 SHORT-TERM HYDROPOWER PRODUCTION 

This section introduces the part of the model related to the short-term hydropower 
production. Modeling is restricted to mixed-integer linear programming and 
follows the lines of Fleten and Kristoffersen (2008). The case study used in this 
work corresponds to a set of three hydropower plants from the upper part of the 
Otra cascade. Figure 3 shows the cascade with two plants (Holen12 and Holen3) 
located upstream of the third one (Brokke). The total capacity is 719 MW, divided 
among the 7 power units represented by the circles. 

Holen3Holen12

Brokke

Holen3Holen12

Brokke

 
Figure 3 - Upper part of the Otra cascade used as case study 

The hydropower production results from the coordinated operation of all three 
plants, and, in a simplified way, works as follows. Upstream water reaching each 
upper plant flows to the reservoirs where it is stored until released for generation. 
When released, the water flows to the next downstream reservoir, which is the 



same for both upstream stations. There, water is again stored for later generation. 
Electricity is generated by transforming the potential energy of the water into 
electricity. Water that is released but not discharged for generation is considered 
spill. After leaving each plant, the water proceeds downstream. 

To model hydropower generation in a cascade, let J  index the reservoirs and let 
I , index the generators of the connected power stations. For the case 
study, 

j; j 2 J
J = f1; 2; 3g, I1 = f1; 2g, I2 = f3g, I3 = f4; 5; 6; 7g. Let the variables 

 represent the on/off states of the generators, 
, 2 J  the generation levels and v , 
2 J  the corresponding discharges from each generator. Also, let 

the variables l , j 2 J  be the reservoir storage levels and r , 
2 T  the spill. As concerns direct costs of hydropower generation, 

operating costs are negligible. However, start-up costs amount to 

uit 2 f0; 1
wit 2 R+

i 2 Ij; j

j 2 J ; t

g; i 2 Ij ; j

i 2 Ij; j

; t 2 T
jt 2 R+

2 J ; t 2 T
; t 2 T

; t 2 T

it 2 R+

jt 2 R+

X
t2T

X
j2J

X
i2Ij

Si(ui;t¡1; uit)      (7) 

where the cost functions are 

  (8) Si(ui;t¡1; uit) = ci maxf ; i 2 Ij ; j 2 J ; t 2 T

i0 = ui;init; i 2 Ij; j 2 J

j(:); j 2 J

uit ¡ ui;t¡1; 0g

i; i 2 Ij; j 2 Jand the costs per start-up are c . It should be remarked that the 
formulation can be transformed to a mixed-integer linear formulation. Initial 
on/off states of the generators are u . 

Indirect costs include opportunity costs of releasing water, as the water could be 
stored and saved for future generation. Including these opportunity costs avoids 
end effects such as the tendency of the problem solution to empty the reservoir in 
the final stage. Such costs are measured as the future value of stored water, 
represented by the functions V , and available from more long-term 
models.  

These functions are concave with respect to the stored water and approximated by 
a set of piecewise linear functions to support a linear formulation. The opportunity 
costs are measured by: X

j2J
(Vj(lj0)¡ Vj(ljT ))       (9) 

where 

   (10) 
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Vj(ljt) = min
h2H

; t 2 T
1
hj; d

2
hj; h 2 H; j 2 J

=

fd1
hjljt + d2

hjg; j 2 J

and where d  are the coefficients of the concave water value 
functions (Figure 4), and H f1; : : : ; Hg, where H is the number of piecewise 
linear functions used. Again, the formulation corresponds to a mixed-integer 
linear formulation. 



 
Figure 4 – Water value functions of reservoir Holen12 

To impose limits on the power generation the following constraints are included:  

   (11) uitwi
min · uitw

max
i ; i 2 Ij; j 2 J ; t 2 T

uitv
min
i · vit · uitv

max
i ; i 2 Ij ; j 2 J ; t 2 T

min max

X
i2

· wit

where  and w  are the minimum and maximum generation level of each 
unit i. Similar bounds apply to the discharges, i.e.,  

wmin
i

max
i

   (12)  

where v  and v  are the minimum and maximum discharge levels of each unit 
i. The following constraints are also included to impose a limit to the total 
discharge of the turbines of each plant:  

i i
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Ij

max; j 2 J ; t 2 T

max

lmin
j · ljt · lmax

j ; j 2 J ; t 2 T
min
j ; j 2 J and lmax

j ; j 2 J

; j 2 J ; t 2 T

l3t ¡ l3;t¡1 3t 3t 3t +
2X

j=1

(vj;t¡¿j
+ rj;t¡¿j

); t 2 T

¿j 2 J

     (13) vit · Vj

where V  is the maximum discharge from each set of turbines of each 
reservoir. 

j ; j 2 J

To impose limits on storage level the following constraints are included: 

     (14) 

where l  denote minimal and maximal storage levels. 

The water balance must be imposed to each reservoir at each hour, such that the 
final storage from the previous period plus the inflow equals the final storage 
minus the discharged and spilled water. In the case of the upper reservoirs the 
balance equations are 

ljt ¡ lj;t¡1 + vjt + rjt = ºjt; t 2 T ; j 2 J n f3g   (15) 

where º are the inflows from upstream. In the case of the lower 
reservoir (j=3), the balance equations are: 

jt

 (16) + v + r = º

where  is the time delay between each upper reservoir j n f3g and the 
lower reservoir (j=3). The initial storage levels are  

       (17) lj0 = lj;init; j 2 J



The generation level is a function of the water discharge from the reservoir and 
the net water head of the power station. The net water head is the difference 
between the headwater elevation and the tailwater elevation and whereas the 
former is a function of the reservoir storage level, the latter is a function of the 
discharge. It is, however, assumed that the net water head only varies with the 
discharge over the course of the short-term planning horizon. The assumption is 
justified in the case of relatively small storage level variations, which holds for the 
case study. Ignoring some head variation effects, the relation between generation 
and discharge is approximated fairly well by a concave function, and is 
approximated by a set of piecewise linear functions to support a linear 
formulation. Hence, 
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wit = Gi(vit); i 2 Ij ; j 2 J ; t 2 T

G (v ) = min

    (18) 

where 

i it
k2K

ff1
kivit + f 2

kig; i ; j ; t 2 T

; f

k ; i j

2 Ij 2 J   (19) 

and the coefficients of the piecewise linear functions are fki ki, 
2 K 2 I  (Figure 5), and K

1 2

; j 2 J = f1; : : : ;Kg, where K  is the number 
of functions used. 

 

Figure 5 – Power generation functions of the third turbine of Brokke 

Since we specify the piecewise functions for both power generation and water 
values exogenously, it is a relatively important to note that the model chooses to 
operate close to the intersections of these curves. It means that we should be very 
careful in specifying these curves. 

To define the amount of energy that should be generated in each hour the set of 
unit commitment constraints must be included to determine that the total 
generation must be equal the sum of the accepted bids in the day-ahead market 
and the adjustments made by the trades in the Elbas market: 

  y +t

X
b2B:t2b

yb + zt =
X
i2Ij

wit ; j 2 J ; t = 1; : : : ; T   (20) 



5 THE STOCHASTIC PROGRAMMING MODEL 

Stochastic programming is widely applied to solve problem with uncertainties. 
For an introduction to the subject, see Birge and Louveaux (1997), or Kall and 
Wallace (1994). A stochastic program is characterized by decisions taken 
according to information flow, and is divided into stages. 

For hydropower production, data uncertainty can arise with respect to reservoir 
inflows and market prices. However, since the idea is to analyze uncertainty that 
relates directly to bidding, and due to the time horizon considered (24 hours), 
inflows are assumed to be deterministic and only prices are stochastic.  
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After the day-ahead prices are set, there is still uncertainty concerning the 
development of the Elbas prices. As information is revealed gradually, a multi-
stage formulation is suitable. However, we approximate the problem using two 
stages, collapsing the dynamic prices and trading opportunities into only one 
opportunity for trading in Elbas for each delivery hour in the second stage. So 
there will be one Elbas price and one corresponding Elbas trading opportunity zt 
for each hour t . 

The first stage concerns the decisions before observing uncertainty and involves 
the bidding process, whereas the second stage includes the trading decisions in the 
Elbas market and real-time hydropower production. As bids are submitted before 
the market has cleared, prices are unknown at the time of first-stage decision 
making. In contrast, second-stage decision making is put off until the market has 
cleared and takes advantage of the additional information from observing the spot 
and Elbas prices. The aim is to obtain the optimal bidding strategies in terms of 
expected sales and production profit. 

To incorporate uncertainty, market spot prices f½tgt2T  are assumed to be 
described as a stochastic process whose distribution is known and given by a 
finite number of realizations S = f1; : : : ; Sg, referred to as scenarios. Denote the 
scenario probabilities by ¼  and the corresponding market prices by 

.  
s; s 2 S

f½s
tgt2T ;s2S

To incorporate the uncertainty in the Elbas prices we must take into account that 
there is a high correlation between spot prices and the average Elbas prices (equal 
to 0.80 using the historical data from 1 January to 30 November 2007).  

Given that Norway was not participating in the Elbas market when this analysis 
was made, the correlation mentioned above was calculated using spot prices from 
Sweden, which is, among the Elbas participants, the biggest country in volume 
traded. It is important to note that the trading system automatically controls the 
cross-border capacity between the areas of Nord Pool. If there is no capacity for 
energy transmission between two given areas, two agents, one in each area, are 
not allowed to trade energy. Therefore the Elbas prices observed by each agent are 
correlated to the spot prices in their own area. 

The historical series of the logarithm of the Elspot prices in Sweden (black line) 
and the logarithm of the average Elbas prices (gray line) are plotted in Figure 6. 
Figure 7 shows the regression between them. 
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Figure 6 – Historical series of the logarithm of the spot prices in Sweden (black line) and 

logarithm of the Elbas prices (gray line) - (1 January to 30 November 2007) 
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Figure 7 - Regression between the logarithm of the spot prices and the logarithm of the Elbas 

prices (2007) 

Because of the high correlation, we assume that the Elbas prices are described by 
a stochastic process whose distribution is conditioned on the spot prices of each 
area. Thus, for each spot prices scenario s  we generate a finite number of 
conditional realizations of Elbas prices e 2 , where E

2 S
E = f1; : : : ; Eg4. Denote the 

scenario probabilities of Elbas prices by ¼ E  and the corresponding Elbas 
prices by f . Section 6 explains in detail the scenario generation of 

e; e 2
's;e

t gt2T ;s2S;e2E

                                                 
4 We assume that there is always the same number of scenarios of Elbas (E) for each scenario of 
spot price s. 
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spot and Elbas prices used in this work.  

Whereas first-stage decisions xit , i.e., volumes bid, are 
independent of future market prices, second-stage decisions z , 

, i.e., volumes traded on Elbas and production 
decisions, are dependent on realizations of future market prices and are indexed 
by the spot and Elbas price scenarios superscripts s 2 S . Note that the 
volumes dispatched, y  and y , do not depend on the Elbas prices scenarios, but 
only on the realizations of future spot prices, and are indexed by only the spot 
price scenarios superscripts s .  

; xib; i 2 I; t 2 T ; b 2 B

2 S

s;e
t 2 R; vs;e

it ; ws;e
it

2 E

rs;e
jt ; ls;ejt 2 R+; us;e

it 2 f0; 1g

s
t

; e
s
b

The system operators require Elspot bids to be unbiased. This means that a 
producer must not expect to generate more or less than what is indicated by his 
Elspot bids5. In our case, it implies that Elbas trading is only used for unexpected 
situations, and translates into the following constraint: 
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s2S e2E
     (21) 

X
¼s

¡X
¼ezs;e

t

¢
= 0; t = 1; : : : ; T

Figure 8 shows the scheme of the decision process for a simple case with 3 spot 
prices scenarios, and each of them with 3 Elbas prices scenarios. The black circles 
represent decisions made by the producer, whereas the white ones correspond to 
variables calculated after the 1st stage decisions. 
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Figure 8 - Decision process scheme 

The stochastic program consists of maximizing the expected sales and production 
profit subject to the bidding and operational constraints. The constraints (3)-(5) 
couples first-stage and second-stage decisions through the relation between 

                                                 
5 This is because the system operators want the Elspot market to be the de facto spot market for 
physical delivery of power; they do not want shorter term markets like Elbas to assume this role. 



volumes bid and volumes dispatched whereas the constraints (7)-(21) applies to 
second-stage decisions only and model hydropower production. The two-stage 
stochastic mixed-integer program formulated as a deterministic equivalent is ÃX

t

½s
ty

s
t +

X
b

¹½s
by

s
bmax

X
s

¼s  
2S 2T 2B

+
X

¼e

μ
¡

X³
Vj(lj0)¡ Vj(l

s;e
jT )

´
¡

XXX
e j t2T j2J i22E 2J Ij t2T

Si(u
s;e
i;t¡1; u

s;e
it ) +

X
's;e

t zs;e
t

¶!
s.t. (3), (5), (8), (10), (11)-(21), 
xit; xib 2 R+; i 2 I; t 2 T ; b 2 B 
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jt ; ls;ejt 2 R+; zs;e

t 2 R; us;e
it 2 f0; 1g

2 Ij; j 2 J ; t 2 T ; b 2 B; s 2 S; e 2 E

x

;   (22) 

 i

Note that the decisions made on stage 1 (day-ahead hourly bids xit and block bids 
ib) are the same for all realizations of spot and Elbas prices, and only constraints 

(3) and (5), which represent the accepted hourly bids and accepted block bids, are 
binding the scenarios together. All the other constraints are related to the physical 
production and depend on each price scenario. 

Equations (3) and (5) can be simplified if the price points i 2 I  are fixed in 
advance. For a fixed t 2 T  and s 2 S , the market price ½  is located between two 
adjacent points, and the remaining price points are irrelevant for determining the 
volume to be dispatched. Letting i · , the accepted bid 

s
t

pi(t; s) = maxfi 2 I : ½s
tg

(ys; ½s) is located on the line segment between (x (t;s)) and i(t;s)t i; pt t

(xi(t;s)+1t; pi(t;s)+1). From this, (3) is equivalent to 

ys
t =

½t ¡ pi(t;
s

s)

p

pi(t;s)+1 ¡ ½t
s

i(t;s)+1 ¡ pi(t;s)

xi(t;s)+1t +
pi(t;s)+1 ¡ pi(t;s)

xi(t;s)t t 2 T ; s 2 S

axfi 2 I : pi · ¹½s
bg

ys
b =

X
j·i(b;s)

xjb; b 2 B; s 2 S

;  (23) 

Similarly, letting i , (5) is equivalent to (b; s) = m

     (24) 

The price points pi 2 I  are fixed in advance within the interval of spot prices 
realizations, and are equidistant to each other. 

; i

6 SCENARIO GENERATION 

Some of the widely applied methods in price forecasting and simulation are based 
on time series analysis, by modeling an advanced stochastic process calibrated 
from historical price profiles. The stochastic process of hourly day-ahead prices 
constitutes a time series characterized by seasonal changes, periodic cycles and 
stochastic variations. Basically, ARMA processes are a specific class of stochastic 
processes adopted for the analysis of time series and date back to Box and Jenkins 
(1970). The use of ARMA models and variants of these to forecast hourly day-
ahead prices are often seen in the literature, see Contreras et al. (2003), Nogales et 
al.(2002) and Haldrup and Nielsen (2006). 

However, the electricity prices are traditionally assumed to be driven by models 



whose error terms follow a normal distribution with constant variance. 
Unfortunately, these models neglect their changeable volatility, and only a few 
studies on price forecasting pay attention to the modeling of the dynamic 
properties of the price variance. This paper, following Garcia and Contreras 
(2005), focuses on day-ahead price simulation using a GARCH approach. The 
Autoregressive Conditional Heteroskedastic (ARCH) class of models was 
introduced by Engle (1982), and the extended ARCH model called GARCH 
(Generalized Autoregressive Conditional Heteroskedastic) was proposed by 
Bollerslev (1986). GARCH models assume the conditional variance of the error 
term to be serially correlated and, therefore, we do not have to assume that it has 
zero mean and constant variance, as with an ARMA model. 

Two kinds of scenario generation models are designed in this work, one for 
simulating day-ahead prices and another for simulating Elbas prices. Both models 
are based on GARCH. The day-ahead spot prices are modeled as an ARMA 
process with GARCH error components, whereas the Elbas prices are modeled as 
an ARMAX process with GARCH error components and spot prices as 
explanatory variables. The next two subsections explain the two models in detail. 

6.1 Scenario generation for day-ahead prices 

The first model is designed for scenario generation of spot prices for Norway, 
more specifically for the NO1 area, where the set of hydropower plants from the 
upper part of the Otra cascade is located. 

The data set used consists of hourly spot prices in the NO1 region from 1 January 
2007 to 30 November 2007, and was obtained from Nord Pool. The model 
consists of an ARMA process with GARCH error components. 

The general ARMA(p,q) process is formulated as  
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C + t¡i +
X
j=1

μj"t¡j + "t

p qX
i=1

Áiy     (25) yt =

©

or, 

      (26) (B)yt = C + £(B)"t; t 2 Z

©where ) and £(B (B) are polynomials of the form ©( i and 

 and B denotes the back-shift operator, i.e., B .  

B) = 1¡
X
i=1

ÁiB

1 +

qX
j=1

μ iy

p

£(B) = jB
j

t = yt¡i

The innovations f"tgt2Z are assumed a Gaussian white noise process, i.e., 
t 2  are independent normally distributed random variables with zero mean 

and constant variance, i.e., E
" ; t Z

= 0 E("2
t ) = ¾2 and , for all t; and E("t) ("t"s) = 0

6= t

("2) = ¾2

, 
for s .  

The constant variance assumption E t  does not necessarily need to hold, 
and a generalized heteroscedastic error specification is strongly supported by the 
data, which significantly improves the model’s goodness of fit. 

The general GARCH(p,q) model for the conditional variance of innovations, 



¾2
t = Var("tjÃt¡1), where Ã  is the set of all information  available at time t-1, 

is formulated as: 
t¡1
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"t = zt¾t t s iidN , where z (0; 1)     (27) 

¾t = K +
X
i=1

®i¾t¡i +
X
j=1

¯j"t¡j

t t

2
p

2
q

2

    (28) 

The GARCH model considers the conditional variance as time dependent, i.e., the 
dynamics of "  can be explained through past volatility shocks " ¡i. Note that "2 2 t

¾t
, 

which is equal zt, is a white noise with zero mean and variance equal to 1, and this 
assumption is tested on the validation of the fitted model (step 3 below). 

The development of the proposed model follows the steps: 

1. Identify a statistical model of the historical data 

2. Estimate the parameters of the model 

3. Validate the model 

4. Use simulation to generate scenarios 
1. For identification we use historical data of hourly spot prices, and the analysis 
begins with a careful inspection of the main characteristics of the time series. 
Non-constant mean and variance as well as calendar effects and seasonal trends 
corresponding to daily and weekly periodicity are observed. In the creation of a 
trial model the data is made stationary by a transformation of the original data. 
The price series is converted to a return series (first difference of the logarithm of 
the prices), i.e., yt = log

½t+1

½
= log ½t+1 ¡ log ½

t
t, which results in a more stable 

variance and avoids negative numbers for generated price scenarios6. The 
structure of the polynomials is determined by investigating the autocorrelations 
and partial autocorrelations of the transformed data.  In successive trials using the 
general ARMA-GARCH model (25)-(27)-(28), refinements can be made based on 
the autocorrelations and partial autocorrelations of the residuals, and the final 
model  identified is: 

(1¡ Á 2 ¡ Á4 24B
24 ¡ Á48B

48 ¡ Á72B
72

¡ Á120B ¡ Á144B
144 ¡ Á167B ¡ Á168B

168 ¡ Á336B
336 ¡ Á504B

504

1B
1 ¡ Á2B

120

B4 ¡ Á23B
23 ¡ Á

167 )

 (29) £ (1¡B) log ½t = C + "t

"t = zt¾ t s iidN

where "t is an GARCH(25) model, such that (27)-(28) are: 

t , where z (0; 1)     (30) 

                                                 
6 The correlation between the return series of spot prices and the return series of Elbas prices is 
0.54 for the historical data used in this work. 



¾2
t = K +

4X
i=1

®i¾
2
t¡i +

25X
j=22

®j¾
2
t¡j    (31) 

2. On completion of the identification parameter estimates may be computed by 
the use of maximum likelihood optimization. Estimates are displayed in Table 1. 

3. The model is validated by testing the assumptions of the ARMA-GARCH 
model proposed in step 1. The assumption of a Gaussian white noise process 
made on the standardized innovations (fitted innovations7 divided by conditional 
standard deviations) is tested by studying their autocorrelation and partial 
autocorrelation as well as the Ljung-Box statistics (test for no correlation, or 
randomness) and Engle's hypothesis test (test for presence of conditional 
volatility) for different lags. The AIC/BIC (Akaike and Bayesian information 
criteria) also helps to compare and penalize the excess of parameters of different 
models. When the statistical significance of the parameters and the residuals tests 
are validated the model is ready to be used for simulating. Otherwise, the model is 
refined in step 1. 
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½t t

4. Simulation of price scenarios can be done by withdrawing the starting values 
, t = −504,…,0 and  " , t = −25,…, 0 from the historical data and sampling from 

the independent identically normally distributed random variables zt, t = 1,…,T. 
Monte Carlo sampling has been used to simulate a large number of scenarios. 

Steps 1–4 are all carried out using Matlab (GARCH Toolbox 2). We considered 
using reduction techniques on the generated scenarios (Heitsch and Römisch, 
2006), however, we found the solutions stable enough using crude Monte Carlo 
sampling. 

Table 1 – Parameter estimates of hourly day-ahead spot prices in the NO1 area 

Parameter C Á1 Á2 Á4 Á23 Á24 Á48 

Estimates 3.00e-04 0.1821 -0.0608 -0.0462 0.0614 0.2125 0.0284 

Parameter Á72 Á120 Á144 Á167 Á168 Á336 Á504 

Estimates 0.0492 0.0326 0.0480 0.0484 0.1466 0.0121  0.0354  

Parameter K ®1 ®2 ®3 ®4 ®22 ®23     

Estimates 4.44e-005 0.3529 0.0737  0.0601  0.0138   0.0488  0.1898 

Parameter ®24 ®25       

Estimates 0.1954 0.0655      

For illustration purposes a number of demonstration scenarios are generated and 
plotted (Figure 9). 

                                                 
7 Actual prices minus fitted values. 
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Figure 9 – 20 simulation scenarios of spot prices in the NO1 area 

6.2 Scenario generation for Elbas prices 

The second model is designed for scenario generation for Elbas prices. As stated 
in Section 5, there is a high correlation between spot prices and the Elbas prices. 
Therefore, we assume that the Elbas prices are described by a stochastic process 
whose distribution is conditional on the spot prices, and the Elbas prices are 
modeled as an ARMAX process with GARCH error components and spot prices 
as explanatory variables. 

Given that Norway had not entered Elbas when the study was carried out, we fit 
the ARMAX model using historical data of Elbas prices with spot prices from 
Sweden as explanatory variable. After that, to generate scenarios of Elbas prices 
to agents of the NO1 area, we use the fitted model and scenarios of spot prices in 
the NO1 area as explanatory variable. Here we assume that the relationship 
between Elbas prices and spot prices in Sweden is going to be similar to Elbas 
prices and spot prices in the NO1 area. 

The data set used was obtained from Nord Pool and consists of hourly spot prices 
of Sweden and Elbas prices8 from 1 January 2007 to 30 November 2007.  

The general ARMAX(p,q) process is formulated as  

yt = C +

pX
i=1

Áiyt¡i +

qX
j=1

μj"t¡j + »Xt + "t   (32) 

where the innovations f"tgt2  are assumed a Gaussian white noise process, Xt is 
the explanatory variable and » is the regression coefficient. 

Z

2 = V ar("t Ãt 1

Again, assuming the general GARCH(p,q) model for the conditional variance of 
the innovations,  ¾t j ¡ ) is formulated as in (27)-(28), where Ã  is 
the set of all information  available at time t-1. 

t¡1

                                                 
8 Average of the prices in Elbas during each hour. 
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The design of the proposed GARCH model for Elbas prices follows the same 3 
first steps presented in the Subsection 6.1. Again, in order to get a more stable 
variance and avoid negative numbers for generated scenarios, the Elbas prices 
series is also converted to a return series. The difference from Subsection 6.1 is 
the simulation part (step 4), which considers the spot prices realizations in the 
NO1 area as explanatory variables. 
In successive trials using the general GARCH model, refinements can be made 
based on the autocorrelations and partial autocorrelations of the residuals, and the 
final model is identified as: 

(1¡ Á1B
1 ¡ Á4B

4)

£ (1¡B) log 't = C + »h(t)Xt + "t    (33) 

where Xt is the explanatory variable, the return series of the logarithm of the spot 
prices, and "t is a GARCH(24,4) model, such that (27)-(28) are: 
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"t = zt¾t t s iidN , where z (0; 1)     (34) 

¾2
t = K +

24X
i=23

®i¾
2
t¡i +

4X
j=1

¯j"
2
t¡j

»

    (35) 

’s are the regression coefficients indexed by h(t), a function whose output is one 
of the 24 hours of the day corresponding to period t. For example, h(1)=1, 
h(2)=2,…, h(24)=24, h(25)=1, h(26)=2,…, h(48)=24, and so on. Therefore, »k, k = 
{1,...,24}, are the coefficients estimated for each of the 24 hours of the day9. 
Estimates of all parameters are displayed in Table 2. 

Table 2 – Parameter estimates of hourly day-ahead spot prices in the NO1 area 

Parameter C Á1 Á4 »1 »2 »3 »4 

Estimates -0.0814 0.5653 0.0206 0.4221 0.4200 0.4232 0.4274 

Parameter »5 »6 »7 »8 »9 »10 »11 

Estimates 0.4346 0.4516 0.4635 0.4720 0.4644 0.4479 0.4477 

Parameter »12 »13 »14 »15 »16 »17 »18 

Estimates 0.4529 0.4309 0.4332 0.4358 0.4310 0.4364 0.4451 

Parameter »19 »20 »21 »22 »23 »24 K 

Estimates 0.44292 0.4421 0.44249 0.4280 0.4337 0.4196 3.67e-04

Parameter ®23 ®24 ¯1 ¯2 ¯3 ¯4       

Estimates 0.2676 0.3624 0.2388 0.0941 0.0189 0.0182  

                                                 
9 As in the general ARMAX model (32), we could use only one coefficient » for all hours, and in 
this case fewer parameters have to be estimated. This option was analyzed and the fitted model 
was compared to others using the AIC/BIC criteria, but the results are worse than using the more 
flexible model. 



For illustration purposes a number of demonstration scenarios have been 
generated. Figure 10 shows 10 Elbas scenarios generated for 3 different spot 
prices in the NO1 area (thick curves). 
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Figure 10 – 10 Elbas scenarios generated for 3 different spot price scenarios in the NO1 area 

7 CASE STUDY 

We consider three hydroelectric stations with total installed capacity of 719 MW 
owned by Agder Energi, a Norwegian producer. To generate scenarios of day-
ahead prices and Elbas prices Nord Pool has provided real data from 2007 of the 
NO1 area in Norway, Sweden and Elbas market. 

Three kinds of scenario sets are used in the case study: 20, 40 and 60 realizations 
of day-ahead spot prices for the first-stage, with 10 scenarios of Elbas prices to 
each scenario of spot price. Basically the sets correspond to a total of 200, 400 
and 600 scenarios in the second-stage. 

The problem is a large-scale mixed-integer linear program and is solved with 
Xpress-MP v2008 on an Intel Core 2 Duo 1.60 GHz processor with 2 GB RAM. 
Table 3 shows the results summary of problem sizes and computational times for 
each scenario set. 



Table 3 - Summary of problem sizes and computational times 

 # Spot price scenarios  
(with 10 Elbas price scenarios each) 

 20 40 60 

Linear variables 136,369 271,989 407,609 

Binary variables 33,600 67,200 100,800 

Constraints 276,019 550,839 825,659 

Computational time (s) 87 191 349 

Figure 11 shows typical results of bidding curves for three given hours. In all 
cases of this example the generator aims to dispose its whole capacity (719 MW) 
for any spot price greater than 29 EUR/MWh.  
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Figure 11 – Bidding curves for three given hours 

The model stability is an important feature that we should pay attention to when 
evaluating the results (Kaut and Wallace, 2003a and 2003b). Basically we aim to 
guarantee that the errors’ sampling applied to the scenario generation approach 
has an insignificant influence in the bidding decisions results. In other words, we 
run the same model using several scenarios generated with the same input and 
check if the optimal values of the objective function are reasonably similar to each 
other.  

We carry out the stability tests by generating five times a set of 20, 40 and 60 spot 
prices scenarios in the NO1 area, with 10 Elbas prices scenarios for each of them. 
Table 4 shows the results. By using 20 scenarios of prices in the NO1 area the 
maximum deviation from the mean is 1%, by using 40 the maximum deviation is 
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0.6% and by using 60 scenarios the maximum deviation is 0.3%. For this reason, 
we conclude that the model results are stable, since the results of all scenario sets 
are sufficiently similar and never deviate more than 1% from the mean. 

Table 4 – Stability Results: Optimal objective function for each scenario set and % difference from 
the mean 

23 

 

mean 1,093,244

scenario set Obj. function % Diff.
1 1,085,478 -0.7%
2 1,091,804 -0.1%
3 1,098,273 0.5%
4 1,104,355 1.0%
5 1,083,559 -0.9%

mean 1,092,694

scenario set Obj. function % Diff.
1 1,091,496 -0.5%
2 1,098,966 0.2%
3 1,103,447 0.6%
4 1,100,873 0.3%
5 1,097,288 0.0%

mean 1,098,414

scenario set Obj. function % Diff.
1 1,090,202 -0.3%
2 1,093,094 0.0%
3 1,095,645 0.2%
4 1,093,272 0.0%
5 1,094,007 0.1%

60 spot price scenarios in Norway
(with 10 Elbas price scenarios each)

20 spot price scenarios in Norway
(with 10 Elbas price scenarios each)

40 spot price scenarios in Norway
(with 10 Elbas price scenarios each)

 
The main objective of this section is to measure the effect of considering the Elbas 
market on the day-ahead bidding decisions. The effect is measured by what we 
call value of considering Elbas, which is calculated by the percentage difference 
of two results: 

(i) The optimal expected profit of the model considering Elbas trades, i.e., 
the deterministic equivalent defined in (22); 

(ii) The optimal expected profit of the model (22) using fixed day-ahead 
bids calculated without considering Elbas trades. 

Thus, the value of considering Elbas ¢(%) is calculated by: 

 ¢(%) = [(i) - (ii)] / (ii) × 100  

The whole process involves 3 steps: 

1. Solve the complete model (22); 



2. Solve model (22) without considering Elbas (i.e., forcing the variables 
 to equal 0) and save the day-ahead bidding solutions x  and x ; zt

¤
t

¤
b

3. Solve the complete model (22) using the fixed day-ahead bidding 
solutions x  and , but letting the variables z¤

t x¤b t be different from 0. 

Figures 12 and 13 show two examples of bidding curve resulting from model (22) 
considering and not considering Elbas. The dashed line is the bidding curve result 
of the model considering Elbas (step 1 above) and the full-drawn line is the 
bidding curve without considering Elbas (step 2 above). The differences of the 
curves results from the fact that in the case of considering Elbas the producer has 
more flexibility to change its generation in the future by trading energy in Elbas. 
Thus, for a given price, the volume output from model considering Elbas (dashed 
line) is occasionally lower than the output from model not considering Elbas (full-
drawn line), indicating that in the first case the generator decides to save some 
energy considering the possibility of trading energy in Elbas market within the 
next day. 
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Figure 12 – Bidding curves considering (dashed line) and not considering Elbas (full-drawn line) 
hour 23:00-24:00 
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Figure 13 – Bidding curves considering (dashed line) and not considering Elbas (full-drawn line) 
hour 12:00-13:00 

Table 5 shows the value of considering Elbas results for the first 3 sets of 
scenarios and 3 different Elbas trade liquidity bounds, which are specified by 
percentages of the total installed capacity of the plants: 5%, 10% and 20%. The 
value of considering Elbas calculated are very low, never greater than 0.12%. 
Furthermore, considering that the ARMA-GARCH model used for generating 
scenarios is very sensitive to the current volatility of spot and Elbas prices, the 
model is also tested with a different set of scenarios generated with initial 
conditions from a period with higher volatility. Table 6 shows the results and the 
higher volatility produced higher values of considering Elbas, but still low, never 
greater than 0.65%.  

Table 5 – Value of considering Elbas for different limits on Elbas trading volumes 

 # Spot price scenarios 
(with 10 Elbas price scenarios each) 

% limit Elbas 
trades 20 40 60 

5% 0.03% 0.03% 0.02% 

10% 0.05% 0.06% 0.05% 

20% 0.08% 0.12% 0.07% 
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Table 6 – Value of considering Elbas for different limits on Elbas trading volumes  
Different Initial conditions with higher volatility 

 # Spot price scenarios  
(with 10 Elbas price scenarios each) 

% Limit Elbas 
Trades 20 40 60 

5% 0.18% 0.14% 0.17% 

10% 0.35% 0.25% 0.35% 

20% 0.65% 0.57% 0.64% 

8 CONCLUSIONS 

This paper proposes a mixed-integer program to support the day-ahead bidding of 
a price-taker hydropower producer in Norway taking into account the possibility 
of trading energy in the Elbas market. The model corresponds to a stochastic 
programming problem with two stages: the one related to determining the bidding 
curve and the second to the Elbas trades and production decisions. 

The uncertainty in day-ahead prices and Elbas prices are represented in the model 
by a set of scenarios generated with an ARMA-GARCH model calibrated from 
historical data. 

The impact of considering the possibility of trading in the Elbas in the day-ahead 
bidding decision is measured, and for this we introduce the value of considering 
Elbas concept. The results indicate that, for a price-taker medium-sized producer, 
considering Elbas when bidding on the day-ahead market does not impact 
significantly its profit. Therefore, the day-ahead bidding problem can be modeled 
without Elbas trading, thus simplifying that operational challenge. Future work 
involves tests considering thermal producers, whose results may be different.  
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