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Abstract — Energy resource scheduling is becoming 

increasingly important, as the use of distributed resources is 

intensified and massive gridable vehicle (V2G) use is envisaged. 

This paper presents a methodology for day-ahead energy 

resource scheduling for smart grids considering intensive use of 

distributed generation and V2G.  

The main focus of this paper is the comparison of different EV 

management approaches in the day-ahead energy resources 

management, namely uncontrolled charging, smart charging, 

V2G and Demand Response (DR) programs in the V2G 

approach. Three different DR programs are designed and tested 

in this paper (trip reduce, shifting reduce and reduce+shifting). 

Other important contribution of the paper is the comparison 

between deterministic and computational intelligence techniques 

to reduce execution time. 

The proposed scheduling is solved with a modified particle 

swarm optimization. Mixed integer non-linear programming is 

also used for comparison purposes. Full ac power flow 

calculation is included to allow taking into account the network 

constraints. 

A case study with a 33 bus distribution network and 2000 V2G 

resources is used to illustrate the performance of the proposed 

method. 
 

Index Terms — Demand Response, Electric Vehicle, Energy 

Resource Management, Particle Swarm Optimization. 

NOMENCLATURE 

Δt
 

Period t duration (e.g. 15 min., 30 min., 1 hour…)  

( )η
c V

 Grid-to-Vehicle efficiency when the vehicle V is in 

charge mode 

( )η
d V  Vehicle-to-Grid efficiency when the vehicle V is in 

discharge mode 

θ
b

 Voltage angle at bus b (rad) 

max

b
θ  Maximum voltage angle at bus b (rad) 

θ min
b

 Minimum voltage angle at bus b (rad) 

θ
k

 Voltage angle at bus k (rad) 

bk
B  

Imaginary part of the element in ybk corresponding to 

the b row and k column 

( , )Charge V tc  Charge price of vehicle V in period t 
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( , )DG DG t
c  Generation price of DG unit in period t 

( , )Discharge V tc  Discharge price of vehicle V in period t 

( , )EAP DG t
c  Excess available power price of DG unit in period t 

( , )NSD L t
c  Non-supplied demand price of load L in period t 

( , )Shift V tc
 

Trip shifting price for vehicle V in period t 

( , )Supplier S tc  Energy price of external supplier S in period t 

( , )Trip Red V tc
 

Trip reduction price contracted with vehicle V in 

period t 

( )BatCap V
E  Battery energy capacity of vehicle V 

( , )MinCharge V tE  Minimum stored energy to be guaranteed at the end 

of period t, for vehicle V 

( , )Stored V t
E  Active energy stored in vehicle V at the end of period 

t 

( , )Trip V t
E  Vehicle V energy consumption in period t 

( , )Trip Red V tE
 

Demand response energy reduction of vehicle trip V 

in period t 

( , )TripRedMax V tE
 

Maximum energy reduction for vehicle V trip in 

period t  

bk
G  

Real part of the element in ybk corresponding to the b 

row and k column 

b
N  Total number of  buses 

DG
N  Total number of  distributed generators 

b

DG
N  Total number of  distributed generators at bus b 

L
N  Total number of  loads 

b

L
N  Total number of  loads at bus b 

S
N  Total number of  external suppliers 

b

S
N  Total number of  external suppliers at bus b 

V
N  Total number of  vehicles V 

b

V
N  Total number of  vehicles at bus b 

_b noShift

VN  Total number of  vehicles at bus b with original trips 

_b Shift

VN  Total number of vehicles at bus b shifting their trips 

( , )Charge V tP  Power charge of vehicle V in period t 

( , )

b

Charge V tP  Power charge of vehicle V at bus b in period t 

( , )ChargeLimit V tP  Maximum power charge of vehicle V in period t 
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( , )DG DG t
P  Active power generation of distributed generation 

unit DG in period t 

( , )

b

DG DG t
P  

Active power generation of distributed generation 

unit DG at bus b in period t 

( , )DGMaxLimit DG t
P  

Maximum active power generation of distributed 

generator unit DG in period t 

( , )DGMinLimit DG t
P  

Minimum active power generation of distributed 

generator unit DG in period t 

( , )Discharge V tP  Power discharge of vehicle V in period t 

( , )

b

Discharge V tP  Power discharge of vehicle V at bus b in period t 

( , )DischargeLimit V tP  Maximum power discharge of vehicle V in period t 

( , )EAP DG t
P  Excess available power in DG unit in period t  

( , )

b

EAP DG t
P  Excess available power in DG unit at bus b in period 

t  

( , )

b

Load L t
P  Active power demand of load L at bus b in period t 

( , )NSD L t
P  Non-supplied demand for load L in period t  

( , )

b

NSD L t
P  Non-supplied demand for load L at bus b in period t  

( , )Supplier S tP  Active power flow in the branch connecting to 

external supplier S in period t 

( , )

b

Supplier S tP  Active power flow in the branch connecting to 

upstream supplier S at bus b in period t 

( , )SupplierLimit S tP  
Maximum active power of upstream supplier S in 

period t 

( , )

b

DG DG tQ  
Reactive power generation of distributed generation 

unit DG at bus b in period t 

( , )DGMaxLimit DG tQ  
Maximum reactive power generation of distributed 

generator unit DG in period t 

( , )DGMinLimit DG tQ  
Minimum reactive power generation of distributed 

generator unit DG in period t 

( , )

b

Load L tQ  Reactive power demand of load L at bus b in period t 

( , )

b

Supplier S tQ  
Reactive power flow in the branch connecting to 

upstream supplier S at bus b in period t 

( , )SupplierLimit S tQ  
Maximum reactive power of upstream supplier S in 

period t 

T  Total number of periods 

tLast

 

Last connected period of vehicle V before 

( , )Trip V t
E  

max

bk
S  

Maximum apparent power flow established in line 

that connected bus b and k 

( )b t
V  Voltage magnitude at bus b in period t 

max

b
V  Maximum voltage magnitude at bus b 

min

b
V  Minimum voltage magnitude at bus b 

( )k t
V  Voltage magnitude at bus k in period t 

( , )V t
X  

Binary variable of vehicle V related to power 

discharge in period t 

( , )DG DG t
X

 
Binary decision variable of unit DG in period t 

( , )V t
Y  

Binary variable of vehicle V related to power charge 

in period t 

bky  Admittance of line that connect bus b and k 

_Shunt by  Shunt admittance of line connected to bus b 

( )VZ  Trip shifting decision binary variable 

I. INTRODUCTION 

The electrification of the transportation sector brings more 

challenges and offers new opportunities to network planning 

and operation [1]. Continued improvements of Electric 

Vehicles (EVs) envisage their massive use, therefore meaning 

that large quantities of EVs must be considered by future 

power systems, in terms of the required supply to ensure their 

users’ daily travels [2]. In future scenarios of intensive EVs 

penetration, the typical load diagram can be significantly 

changed from the present one without EVs [2]. Smart grids on 

the other hand, can use V2Gs intelligently as distributed 

energy resources when the vehicles are parked. All of these 

adds further complexity to planning and operation of smart 

grids operation requiring new methods and more 

computational resources [2-4]. 

In that context with such complexity, computational 

intelligence methods are important to obtain solutions for 

large dimension problems in an acceptable time [4]. Authors 

in [5]  present a unit commitment model with V2G using the 

Particle Swarm Optimization (PSO) to reduce costs and 

emissions in smart grids, this work attests the importance of 

using computational intelligence methods in many aspects of 

smart grid optimization. PSO is an effective method to 

determine the solution of large-scale nonlinear optimization 

problems [6]. 

Demand Response (DR) has already proven itself as a 

valuable tool to ensure reliability of the bulk electric system 

and is evolving and playing a great role in the electric industry 

[7-9]. For instance, during the summer heat wave of 2006, the 

Midwest ISO avoided firm load shed using interruptible load, 

demand-side management, and public appeals [9].  EVs have 

the possibility to provide a significant amount of DR through a 

variety of approaches while using their storage potential to 

enable a higher penetration of intermittent and variable 

generation such as wind and solar energy resources [9]. In this 

paper EVs DR program are proposed and consist in the 

reduction of the EVs trip distance and/or on trip time shifting, 

changing the initial travel requirements. Considering the 

available alternatives, the paper considers 6 scenarios for EVs:  

• Uncontrolled charging 

• Smart charging 

• Vehicle-to-Grid 

• EVs DR models proposed in this paper: 

o Trip distance reduce 

o Trip shifting 

o Trip distance reduce and shifting together 

The operator managing the network resources will 

remunerate the participation of EVs in the DR event, giving 

this way an incentive in order to reach both economic and 

technical objectives inherent to the network operation.

  

The proposed application uses a modified Particle Swarm 

Optimization (PSO) approach that considers dynamic 

changing of velocity limits [10]. This enables its use for 

addressing real world large-scale problems in shorter 

execution time than deterministic methods, providing system 

operators with adequate decision support and achieving 

efficient resource scheduling, even when a significant number 

of alternative scenarios should be considered [2, 10]. 
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The paper is organized as follows: After the initial 

introductory section, Section II explains the importance of 

V2G contracts and DR opportunities for EVs for energy 

resource management, in the scope of distribution systems, 

using the smart grid paradigm. Section III presents the 

problem formulation, including the resources and network 

constraints. Section IV presents the case studies using a 33 bus 

distribution network and considering 2000 vehicles. Section V 

presents the most important conclusions of the work.   

II. DEMAND RESPONSE FOR EVS IN SMART GRIDS 

This section explains the concepts used in the paper 

regarding EVs management and DR models in the context of 

smart grids. Two DR programs are described with more detail 

in this Section: trip reduce and trip shifting. The use of the 

proposed DR models can be activated every time that the price 

of the energy reaches a predefined value. Other potential use 

of these programs can be fruitful in the context of network 

management or ancillary services [7, 11]. DR program 

participation is voluntary [11]. 

Fig. 1 presents the EVs management strategies considered 

in this paper and the EVs DR proposed approaches. A brief 

description for each strategy is depicted in the figure, e.g. 

problem required constraints, as well as the output expected 

with the scheduling optimization. 

 
Fig. 1. EVs management and DR models considered 

A. Trip reduce demand response program 

The idea is to provide network operator with another useful 

resource that consists in reducing vehicles charging 

necessities. This demand response program enables vehicle 

users to get some profit by agreeing to reduce their travel 

necessities and minimum battery level requirements. 

In phase 1 an initial optimization is made assuming that 

EVs which contracted DR option will participate. With the 

optimization results it is possible to identify which EVs users 

are scheduled to participate in the DR event. After that, these 

EV users can be invited to participate, e.g. through internet 

application, SMS message. The network operator should wait 

for a response within a time limit. With the responses of EVs, 

users the optimization program reschedules the day-ahead 

problem with the updated information. If additionally EV 

users are scheduled to participate in the DR program, 

according to the new optimization results, the operator should 

follow the same procedure. The users that do not respond 

within the time limit are excluded from the present DR event. 
 

B. Trip shifting demand response program 

In what concerns the trip shifting DR program for EVs it 

aims to provide another useful resource for the network 

operator. This demand response program enables vehicle users 

to provide a list of optional travelling periods for their 

expected travel trips. The program enables the network 

operator to shift EVs load by remunerating their users, 

reducing operational costs and alleviating network 

contingencies. The shifting is limited to the alternatives that 

users impose, restraining the computational execution time of 

optimization process at the same time. Phase 1 consist of 

considering users’ alternative trips in the optimization model. 

After this step, the network operator can acknowledge EVs 

users with shifting results from optimization phase 1 to know 

if they are able to participate in the next day. The 

acknowledgment of users’ participation (phase 2) in the 

program is important for network operator in order to obtain 

the appropriate resources scheduling and reduce operational 

costs. 

III. ENERGY RESOURCE SCHEDULING FORMULATION 

This section presents the mathematical formulation of the 

proposed methodology in this paper. The Particle Swarm 

Optimization (PSO) approach is also presented in this section. 

A. Problem formulation 

This methodology is used to support network operator to 

obtain an adequate energy resource management for the next 

day, including Electric Vehicles (EVs) resource, in the smart 

grid context. In terms of problem description, the network 

operator has contracts for managing the resources installed in 

the grid, including load demand. The load demand can be 

satisfied by the distributed generation resources, by the 

discharge of EVs, and by external suppliers (namely retailers, 

the electricity pool). The use of Vehicle-to-Grid (V2G) 

discharge, and the respective charge, considers V2G user 

profiles and requirements. The network influence is included 

in this methodology, through ac power flow calculation, 

voltage limits and line thermal limits. 

The energy resource scheduling problem is a Mixed Integer 

Non-Linear Programming (MINLP) problem. The objective 

function aggregates all the costs with the energy resources. 

The energy resource model includes: distributed generation, 

energy acquisition to external suppliers, the V2G discharge or 

charge energy, the non-supplied demand, the excess available 

power [2, 3], trip reduce demand response and trip shifting 

demand response model for EVs. The present problem differs 
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from previous works [2, 3] by including network constraints, 

which are important in real world operation, and by including 

the EVs demand response programs. 

In order to achieve a good scheduling of the available 

energy resources, it is necessary to apply a multi-period 

optimization; the presented formulation is generic for a 

specified time period (from period t=1 to t=T) [2, 11]. The 

model includes an ac power flow algorithm that allows 

network constraints to be considered, leading to a Mixed 

Integer Non-Linear Programming (MINLP) problem. 

( , ) ( , )

1

( , ) ( , )

1

( , ) ( , )

1

( , ) ( , )
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( , ) ( , )
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( , ) ( , )
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=
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=
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Discharge V t Discharge V t
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N
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N
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P c
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(1) 

The objective function considers Δt to allow different 

period t duration. For instance, for 30 minutes period t 

duration, the value of Δt should be 0.5 if the costs function are 

specified in an hour basis. 

In order to improve the solution feasibility the mathematical 

model includes variables concerning the excess available 

power (
( , )EAP DG t

P ) and non-supplied demand 

(
( , )NSD L t

P ).
( , )EAP DG t

P is important because the network operator 

can establish contracts with uninterruptible generation (“take 

or pay” contracts) with, for instance, producers based on 

renewable energy sources. In extreme cases, when the load is 

lower than uninterruptible generation the value of 
( , )EAP DG t

P is 

different from zero. 
( , )NSD L t

P is positive when the available 

resources are not enough to satisfy load demand. 

The minimization of objective function (1) is subject to the 

following constraints: 

• The network active (2) and reactive (3) power balance with 
power loss in each period t: 

( )

( ) ( )( )

{ }

( , ) ( , ) ( , )

1 1

( , ) ( , ) ( , ) ( , )

1 1

( ) ( ) ( ) ( ) ( ) ( )

1

( ) ( )

cos sin

1,.., ; ;

b b
DG S

bb
VL

B

N N
b b b

DG DG t EAP DG t Supplier S t

DG S

NN
b b b b

NSD L t Load L t Discharge V t Charge V t

L V

N

b t k t bk b t k t bk b t k t

k

b b

V V

P P P

P P P P

V V G B

t T k b N N

θ θ θ θ

= =

= =

=

− + +

− + − =

× − + −

∀ ∈ ≠ =

∑ ∑

∑ ∑

∑
_ _

( , )

noShift b Shift

V V tN Z+ ×

 
(2) 

( ) ( )( )

{ }

( , ) ( , ) ( , )

1 1 1

( ) ( ) ( ) ( ) ( ) ( )

1

sin cos

1,.., ;

θ θ θ θ

= = =

=

+ − =

× − − −

∀ ∈ ≠

∑ ∑ ∑

∑

b b b
DG S L

B

N N N
b b b

DG DG t Supplier S t Load L t

DG S L

N

b t k t bk b t k t bk b t k t

k

Q Q Q

V V G B

t T k b

(3) 

• Bus voltage magnitude and angle limits: 

{ }( ) 1,...,≤ ≤ ∀ ∈min max

b b t b
V V V t T  (4) 

{ }( ) 1,...,θ θ θ≤ ≤ ∀ ∈min max

b b t b
t T (5) 

• Line thermal limits: 

( )
{ }

1

( ) ( ) ( ) ( ) _2

1, ..,

max
V V V y V y S
b t b t k t bk b t Shunt b bk

t T

∗∗
× − + × ≤

∀ ∈

⎛ ⎞⎡ ⎤⎡ ⎤⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠  (6) 

• Maximum distributed generation limit in each period t: 

{ } { }

( , ) ( , ) ( , )

( , ) ( , ) ( , )

1,..., ; 1,...,

≤ ×

≥ ×

∀ ∈ ∀ ∈

DG DG t DG DG t DGMaxLimit DG t

DG DG t DG DG t DGMinLimit DG t

DG

P X P

P X P

t T DG N

 (7) 

{ } { }

( , ) ( , ) ( , )

( , ) ( , ) ( , )

1,..., ; 1,...,

≤ ×

≥ ×

∀ ∈ ∀ ∈

DG DG t DG DG t DGMaxLimit DG t

DG DG t DG DG t DGMinLimit DG t

DG

Q X Q

Q X Q

t T DG N

 (8) 

• Upstream supplier maximum limit in each period t: 

{ } { }
( , ) ( , )

1,..., ; 1,...,

≤

∀ ∈ ∀ ∈

Supplier S t SupplierLimit S t

S

P P

t T S N
 (9) 

{ } { }
( , ) ( , )

1,..., ; 1,...,

≤

∀ ∈ ∀ ∈

Supplier S t SupplierLimit S t

S

Q Q

t T S N
 

(10) 

• Vehicle technical limits in each period t: 

§ The vehicle charge and discharge are not simultaneous: 

{ } { } { }

( , ) ( , )

( , ) ( , )

1

1,..., ; 1,..., ; 0,1

+ ≤

∀ ∈ ∀ ∈ ∈

V t V t

V V t V t

X Y

t T V N X and Y
 

(11) 

§ Battery balance for each vehicle. The energy 
consumption for period t travel has to be considered 
jointly with the energy remaining from the previous 
period and the charge/discharge in the period: 

{ } { }

( , ) ( , 1) ( ) ( , )

( , ) ( , )

( )

( , ) ( , )

1

1,..., ; 1,..., ; ;

η

η

−
= + × × Δ

− × × Δ

∀ ∈ ∀ ∈ = × Δ

Stored V t Stored V t c V Charge V t

Trip V t Discharge V t

d v

V Trip V t Trip V t

E E P t

E P t

t T V N E P t

 (12) 

§ Discharge limit for each vehicle considering the battery 
discharge rate: 

{ } { } { }

( , ) ( , ) ( , )

( , )1, ..., ; 1, ..., ; 0,1∀ ∈ ∀ ∈ ∈

≤ ×

V

Discharge V t DischargeLimit V t V t

V tt T V N X

P P X

 (13) 
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§ Charge limit for each vehicle considering the battery 
charge rate: 

{ } { } { }

( , ) ( , ) ( , )

( , )1, ..., ; 1, ..., ; 0,1∀ ∈ ∀ ∈ ∈

≤ ×

V

Charge V t ChargeLimit V t V t

V tt T V N Y

P P Y

 (14) 

§ Vehicle battery discharge limit considering the battery 
balance: 

{ } { }

( )

( , ) ( , 1)

1, ..., ; 1, ..., ; 1;

1

η
−

∀ ∈ ∀ ∈ Δ =

× × Δ ≤

d V

V

Discharge V t Stored V t

t T V N t

P t E

 (15) 

§ Vehicle battery charge limit considering the battery 
capacity and previous charge status: 

{ } { }

( ) ( , ) ( ) ( , 1)

1, ..., ; 1, ...,

η −

∀ ∈ ∀ ∈

× × Δ ≤ −
c V Charge V t

V

BatCap V Stored V t

t T V N

P t E E

 
(16) 

§ Battery capacity limit for each vehicle: 

{ } { }( , ) ( ) 1,..., ; 1,...,∀ ∈ ∀ ∈≤
VStored V t BatCap V t T V NE E  (17) 

• Minimum stored energy to be guaranteed at the end of 
period t. This can be seen as a reserve energy (fixed by the 
EVs users) that can be used for a regular travel or a 
unexpected travel in each period: 

( , ) ( , ) ( , )Stored V t MinCharge V t TripRed V t
E E E≥ −  (18) 

{ } { }
( , ) ( , )

1,..., ; 1,...,≥ ∀ ∈ ∀ ∈
MinCharge V tLast Trip V t V
E E t T V N

 
(19) 

{ } { }
( , ) ( , )

1, ..., ; 1, ...,∀ ∈ ∀ ∈≤
VTripRed V t TripRedMax V t

t T V NE E
 

(20) 

B. Particle swarm approach 

The PSO concept began as a simulation of simple social 

systems like the flocks of birds or the schools of fish [12]. The 

main advantage of PSO is its simplicity, while being capable 

of delivering accurate results in a consistent manner. It is fast 

and also very flexible, being applicable to a wide range of 

problems, with limited computational requirements [6]. The 

original PSO relies on fixed velocity limits that are not 

changed during the swarm search process (PSO iterations)  

[12, 13]. Research work performed by Fan and Shi [12, 14] 

has shown that an appropriate dynamic change of maximum 

velocities can improve the performance of the PSO algorithm.  

In the present implementation to the problem of day-ahead 

scheduling, maximum and minimum values of velocity limits 

can change dynamically through the search process. The initial 

velocities are set for each variable according to its type, e.g. 

maximum velocities for generators reactive variables are set to 

0.02 while minimum velocities are set to -0.01. Maximum and 

minimum velocities for generators active power are calculated 

by means of a rank algorithm that takes into account the 

generators energy price.  

In the evaluation phase the implemented mechanism will 

check for constraint violations, namely bus lower and 

overvoltage violations (4-5) and line thermal limits (6). If 

there is any violation of the above constraints the algorithm 

will mark the variables that can possibly help to alleviate these 

violations. In the case of bus lower voltage violations, the 

mechanism will mark DG reactive power and V2G resources 

variables, to increase reactive power and discharges, 

respectively. In the case of bus overvoltage violations, the 

mechanism will mark DG reactive power variables to decrease 

and nearby EVs to charge. The buses selected to get the 

appropriate V2G and DG resources are the buses where 

violations occurred as well as the buses that were preceding it. 

Line thermal limit violations can be corrected in two ways: 

reducing V2G charge or increasing generation in the 

downstream lines. The mechanism marks V2G charge to be 

reduced and DG generation production to be increased. More 

information about voltage drop in radial distribution networks 

can be found in [15]. 

The velocity limits of the marked variables are changed 

according to the type of signaling. For instance, when DG 

reactive power variables are marked, the maximum velocities 

of these variables are increased by 20%. When the DG 

reactive power variables are marked to decrease, the minimum 

velocities of these variables are decreased by 20%.  

The described mechanism contributes to a faster 

convergence to a solution without violations, as well as 

improving the solution fitness. To improve fitness function the 

mechanism works as follows: 

• It tries to increase V2G charge variables values when 

V2G charge price is lower than mean generation cost 

acting on maximum velocity limits of corresponding 

variables; 

• It tries to increase V2G discharge variables values when 

V2G discharge price is lower than mean generation cost 

acting on minimum velocity limits of corresponding 

variables; 

• It tries to apply DR V2G trip reduce program (when 

available) by increasing corresponding variables when 

DR program price is lower than the sum of mean 

generation cost and the respective vehicle charge price. 

Looking at the problem formulation presented in Section A, 

namely the objective function, it can be seen why the above 

aspects improve the solution. The variables of DR trip shifting 

program are not controlled by the described mechanism.  

The initial swarm population is randomly generated 

between the upper and the lower bounds of variables, except 

from V2G variables that are initialized with zeros. During 

swarm search the algorithm checks whether to charge or 

discharge vehicles as well as to apply DR trip reduce 

programs as needed or advantageous. DR shifting variables 

are randomly initialized by the swarm. 

A robust power flow model from [16]  is included in the 

modified PSO approach to check solutions feasibility during 

swarm search process. The load system balance (2-3) is 

validated by a power flow algorithm, and the power losses are 

compensated by the energy suppliers or DG generators. 

Vehicle battery balance constraints (12) are checked before 

fitness evaluation. If the values from swarm solutions are not 

according to the constraint limits, the solution is corrected by 

direct repair method. Direct repair method can be used instead 

of indirect repair method such as penalty factors providing an 

efficient way of correcting solutions before evaluating the 
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fitness function [17]. 

IV. CASE-STUDY 

This section presents the case study used in this paper to 

illustrate the proposed models. For that, an exact method, 

namely Mixed Integer Non-Linear Programming (MINLP) 

obtained using the software GAMS, is compared with the PSO 

methodology in terms of execution time and solution quality. 

This case study considers a 33 bus distribution network as 

can be found in [2]. 

Table I presents the values of prices for each resource, 

minimum and maximum available capacity during the day, 

and the number of units for each type of technology. The 

respective values for the ten considered suppliers, connected 

to the network in the substation, are also presented. Only the 

linear component of the sources cost functions is considered in 

this case study. The cost of EV discharge is low because as 

can be seen in the objective function (1) (see Section III), the 

discharge is considered a profit for EV users. The EV charge 

and loads cost is considered 0 (m.u./kWh) in this case study. 
TABLE I 

SOURCES CHARACTERIZATION 

Resource 
Min. price 

(m.u./kWh) 
Max. price 

(m.u./kWh) 

Min. 

capacity 

(kW) 

Max. 

capacity 

(kW) 

Units 

# 

PV 0.110 0.254 0 1,320 32 

Wind 0.060 0.136 255 505 5 

CHP 0.057 0.105 725 725 15 

Biomass 0.136 0.186 350 350 3 

MSW 0.076 0.102 210 210 2 

Hydro 0.059 0.095 80 80 2 

Fuel cell 0.115 0.180 240 240 7 

Suppliers 0.075 0.188 3,350 3,350 10 

EV discharge 0.025 0.025 8,625* 9,877 2,000 

Total   2,076 

*Estimated based on the cars connected to the grid.   

The paper presents the results for five scenarios using 2000 

EVs. This number is adequate for the dimension of the given 

MV distribution network under study considering high 

penetration of EVs in 2040. Uncontrolled charging is not 

presented in the case study because the optimal solution with 

2000 EVs is not found (unfeasible due to network constraints). 

The DR scenarios consider the phase 1 of the described 

approach in Section II.  

Regarding the parameterization of PSO approach, the 

number of iterations is set to 50 for each scenario. The 

parameters definition of PSO can be seen in table II. Gaussian 

mutation weights is used for mutation of the strategic 

parameters of PSO particles movement equation [18]. 
TABLE II 

PARAMETERS OF PSO METHODS 

Parameters Description 

Number of particles 10 

Inertia Weight 

Gaussian mutation weights 
Acceleration Coefficient 

Best Position 

Cooperation Coefficient 

Initial swarm population 
Randomly generated between the upper and 

lower bounds, except from V2G variables. 

Stopping Criteria 50 iterations 

Max. Positions Equal to the upper bound of variables 

Min. Positions Equal to the lower bound of variables 

Fig. 2 and 3 show the load and the EVs charge for the 

scenario using both trip reduce and shifting DR programs. Fig. 

2 presents the results for the GAMS approach and Fig. 3 

depicts the results for the PSO approach. The results are 

similar; however, PSO presents more discharging of EVs in 

load diagram peaks whereas GAMS schedules vehicles to 

charge during night hours and minimizing the impact during 

the day. 

 
Fig. 2. Load and EVs charge and discharge profile of GAMS methodology. 

 

 
Fig. 3. Load and EVs charge and discharge profile of PSO methodology. 

Table III presents the summary of the results for GAMS and 

the PSO approach for the five scenarios. In this case study 

PSO is approximately 2,700 times faster than GAMS 

methodology and the objective function is close to its cost in 

the five scenarios. The solutions for the scenarios presented in 

the paper for the PSO approach are selected arbitrary from a 

200 trials run, thus not representing the best neither the worst 

case of those trials but aiming to show an random run average 

case. GAMS execution time is high and uses more than 24 

hours to solve the optimization problem. This execution time 

is expected to rise exponentially with the increase of the 

number of resources and the complexity of the opportunities 

used in EVs such as DR programs. To note that this case study 

presents a modest 33 bus network size and 2,000 V2G 

resources. The execution time of GAMS approach is high, 

which is prohibitive for the day-ahead optimal resource 

scheduling. It can be desirable to test several forecasting 

scenarios and different renewable energy resources 

availability such as wind power. With the inclusion of V2G 

resources the number of forecasting scenarios will certainly 

increase. 

TABLE III 

RESULTS OF THE MINLP AND PSO APPROACHES 

 
Operation cost (m.u.) Problem 

variables 

Execution time (s) 

GAMS PSO GAMS PSO* 

Smart 

Charging 
8,350.23 8,408.68 53,472 85,475 30.99 

V2G 8,177.47 8,226.12 197,472 89,748 31.98 

Trip Shifting 8,165.03 8,190.59 199,472 88,657 32.14 



 

 

7 

Trip Reduce 7,627.97 7,887.03 245,472 95,657 33.45 

Trip Reduce 

+ Shifting 
7,584.63 7,750.77 293,472 97,416 34.57 

*average values obtained with 200 trials 

Fig. 4 shows the objective function of 200 trials using the 

PSO approach for the V2G scenario. The maximum objective 

function cost in 200 trials is approximately 8,340 m.u. and the 

minimum is approximately 8,180 m.u. with an average value 

of 8,252 m.u. The variability of PSO approach can be 

considered low. A random trial for the given case study will 

fall into these values with high chance. 

 
Fig. 4. Objective function cost for 200 trials using the PSO approach. 

Fig. 5 show the energy resource scheduling for the five 

scenarios in the case study. In these figures, it is presented the 

results for the MINLP and PSO approach. Fig. 6 shows the 

charge and discharge profile obtained for the five scenarios as 

well. PSO approach uses more charging than GAMS approach 

except from V2G scenario. This happens due to PSO’s 

stochasticity nature whereas GAMS is more accurate and thus 

providing solutions with lower cost. 

 
Fig. 4. Energy resource scheduling for the five scenarios. 

 
Fig. 5. Charge and discharge scheduling for the five scenarios. 

Fig. 6 depicts the trips energy consumption for DR trip 

reduce DR scenario. For the reduce program all the vehicles 

can participate reducing at most 50% of the needs of their 

travels. In this scenario almost all vehicles reduce their trips 

according to optimization results. 

 
Fig. 6. Charge and discharge profile for the trip shift scenario. 

Fig. 7 concerns the trip shifting program results. This 

scenario considered at most 200 vehicles to participate 

between periods 17-20. In the optimization solution, using this 

program, the resulting trip of 110 EVs are dislocated from the 

initial forecasted trip. The decision of network operator 

prevails in order to use the DR programs. 

 
Fig. 7. Charge and discharge profile for the trip shift scenario. 

V. CONCLUSION 

The demand response for Electric Vehicles (EVs) users, in 

the context of smart grid, has been proposed in this paper 

considering the day-ahead optimal scheduling. A trip distance 

reduce and a trip shifting demand response (DR) programs has 

been designed and implemented in this paper. It was 

demonstrated the effectiveness of the proposed DR programs 

regarding the reduction of the operation costs in the point of 

view of the network operator. 

The large amount of energy resources, including EVs, leads 

to an increase in the complexity of operation and planning of 

distribution networks. In this field, computational intelligence 

methods have an important role in the smart grid environment, 

where the traditional optimization techniques need high 

execution times to deliver a solution.  Particle Swarm 

Optimization approach (PSO) with integrated ac power flow 

has been applied to each case study scenario. 

When compared with the reference technique, MINLP in 

GAMS, in terms of execution time, the PSO approach is 2,700 

times faster. The meta-heuristic presents low variability of the 

results and provides satisfactory solutions with reasonable 

execution time for the day-ahead problem context.  GAMS 

provides the best solution quality albeit with high execution 

time which for the given context can be considered a useless 

solution. 
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