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Abstract: With the deepening of China’s electricity spot market construction, spot market price
prediction is the basis for making reasonable quotation strategies. This paper proposes a day-ahead
spot market price forecast based on a hybrid extreme learning machine technology. Firstly, the
trading center’s information is examined using the Spearman correlation coefficient to eliminate
characteristics that have a weak link with the price of power. Secondly, a similar day-screening model
with weighted grey correlation degree is constructed based on the grey correlation theory (GRA)
to exclude superfluous samples. Thirdly, the regularized limit learning machine (RELM) is tuned
using the Marine Predators Algorithm (MPA) to increase RELM parameter accuracy. Finally, the
proposed forecasting model is applied to the Shanxi spot market, and other forecasting models and
error computation methodologies are compared. The results demonstrate that the model suggested
in this paper has a specific forecasting effect for power price forecasting technology.

Keywords: electricity market; price prediction; CRITIC; MPA; RELM

1. Introduction

With the promulgation of the No. 9 Document of Electric Power Reform, China has
entered a new round of electric power system reform, and the market has gradually realized
diversification. One of the most important features of the current power system reform is
to restore the commodity nature of power, transform the original integrated distribution
market into a free market, and realize the marketization of power transactions. At the
same time, the electricity transaction price equation was changed from the government to a
market transaction formation. Therefore, for market players, a more accurate understanding
of the electricity price formation mechanism and the ability to forecast future trends in
electricity prices will become an important link for the adaptation to market-oriented
electricity trading.

In a market economy, the market mechanism plays a certain role in regulating the
sustainable development of power and can effectively regulate the supply–demand re-
lationship in the electricity market. The price of electricity is the fundamental basis for
production and consumption behavior. To achieve the sustainable development goals of
energy-saving and environmental protection, it is necessary to have more accurate electric-
ity price forecasting so as to provide a more scientific and effective decision-making basis
for the market players. In recent years, in order to achieve China’s sustainable development,
China has been building a new energy system focused on promoting the consumption of
new energy. On the one hand, effective electricity price forecasting can save the economic
cost of the operation of the new power system and optimize the operation efficiency of
market operators; on the other hand, one of the characteristics of the new power system is
that the new energy generation capacity will increase the instability of the power system.
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Effective electricity-price forecasting can send power system regulation signals to the mar-
ket players, effectively regulate the power system balance, and establish the stability and
sustainable development of the power system.

The price of electricity is an economic reflection of the market operation mode, which
is formed by the interaction of various factors. Therefore, it is complex and comprehensive.
Importantly, the volatility of the spot market increases the difficulty of price forecasting. At
present, many experts at home and abroad research the characteristics of spot market price
formation to analyze the spot market price forecast, arriving at a number of notable conclu-
sions. Among them, the forecasting methods are mainly divided into three methods: time
series models, machine learning, and the combination of time series and machine learning.

The time series model represents a time series composed of a series of discrete numbers
observed at a series of times by one or a group of variables, and are mainly the follow-
ing: moving average method, weighted moving average method, exponential smoothing
method, and trend forecasting method. The use of the time series model currently takes
three main forms: (a) The use of optimization algorithms to correct the core parameters of
the time series model to ensure that the weights of the time series and the fluctuations of
the series are within a reasonable range, such as Wang Ruiqing et al. in the use of particle
swarm algorithm to correct the weights of GM (1,2) to achieve the purpose of improving
the accuracy of short-term electricity price forecasting [1]; (b) The time series model is
mainly composed of four components: seasonal component, trend component, cyclical
component, and residuals. Due to the fine time granularity of spot electricity price forecast-
ing, more experts choose to correct for residuals [2,3]; (c) Using the adaptability of different
time series models, multiple time series are combined with each other, for example, using
generalized autoregressive conditionally heteroscedastic (GARCH) to ARIMA to correct
for heteroskedasticity [4,5].

Time series models perform forecasting with the prerequisite assumption that histor-
ical trends and future development change in the same pattern, so when large external
changes occur, a certain bias can occur. To overcome this drawback, many experts focus
on machine learning algorithms, which are trained on a large amount of data by machine
learning to analyze the interaction between forecast data and other factors to predict future
trends. Machine learning is an interdisciplinary specialty, covering probability theory
knowledge, statistics knowledge, approximate theory knowledge, and complex algorithm
knowledge. It uses a computer as a tool and is committed to real-time simulation of human
learning. It divides the existing content into knowledge structures to effectively improve
learning efficiency. Machine learning is applied to forecasting in a similar way to time
series: (a) Using echo state network (ESN), convolutional neural network, limit learning
machine, and other algorithms, combined with load, historical price, and supply and
demand as inputs, it can build relevant prediction models [6–8]. For example, Hafeez et al.
Proposed a restricted Boltzmann machine (RBM) -based predictor module [9]; (b) Combin-
ing optimization algorithms with different machine learning algorithms to improve the
prediction accuracy of machine learning [10–13]; (c) The focus of the first two approaches is
on improving machine learning forecasting capabilities. Additionally, many experts focus
on the correlation analysis of factors, using methods such as principal component analysis
and maximum information coefficient to analyze the correlation of the factors related to
prior electricity price [14–16], Hafeez et al. Used modified cultural information (MMI)
to extract historical data features, and used a GWDO optimization algorithm combined
with factored conditional restricted Boltzmann machine (FCRBM) to construct day-ahead
load forecasting [17]. In terms of the way machine learning is used, more optimization is
currently done for the model itself [18,19]; therefore, in this paper, we add the screening of
historical data to these three ways to improve the reliability of the original data and achieve
the optimization of the machine learning model.

In addition, some experts also combine time series and machine learning algorithms
to form combined time series–machine learning models, which are combined in two ways:
(a) Using time series models to correct for the prediction errors of machine learning [20,21];
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(b) Decomposing the original data curve to form high-frequency data and low-frequency
data, with high-frequency data using machine learning models for prediction and low-
frequency data prediction using machine learning [22–24]. These two combined models
have the risk of increasing the prediction error because a certain amount of error is gener-
ated in the error correction process and in the data decomposition process, and this error
leads to an increase in the final prediction error [25,26].

In combination with the use of the three models mentioned above, the current ideas
for building electricity price-forecasting models include the following: One is to decompose
and reconstruct the original price series, that is, to decompose the original price series
by using many modal decomposition algorithms and wavelet models [27,28]. Then the
improved forecasting model is used to forecast different price decomposition sequences.
Finally, the forecasted values of several decomposition sequences are reconstructed to
form the final electricity price-forecasted values [29]. This method can decompose the
volatility to a certain extent, reduce the impact of price volatility on the learning ability of
the prediction model, and retain the original curve characteristics. However, this approach
often makes it difficult to take the relevant factors into account, and thus cannot fully
reflect the real-time changes in the market. Because the relevant factors can not completely
correspond to each decomposition curve, the predicted effect will be affected in the process
of model training. This kind of model still belongs to time series extrapolation. Another
model is to analyze the formation characteristics of electricity price, taking electricity price
and its related factors as the input of the model to improve the accuracy of the prediction
model. This kind of model can reflect the real-time change of electricity price on the market
and the relationship between different factors, and can reflect the structural change of
the market to some extent [30]. But this type of model is strict regarding the choice of
characteristic value, as the weak correlation with characteristic value will affect the forecast
effect in the model training process, causing the deviation to increase [31–33].

According to the above analysis, some key elements are missing from the current
studies on electricity price forecasting, namely:

(a) Many current studies ignore the useless information brought by the large amount of
electricity price data when screening data features, which not only causes a reduc-
tion in forecasting accuracy but also affects the operational efficiency of forecasting
models [34].

(b) The existing prediction models are generally based on a single sample set composed
of features, which leads to the extraction of too much data, resulting in poor prediction
accuracy [35,36].

In order to overcome the above shortcomings, this paper proposes a price forecasting
model for day-ahead spot market based on hybrid extreme learning machine technology.
Firstly, the formation mechanism of electricity price in the spot market is analyzed, the
relevant factors of electricity price prediction in the spot market are sorted out, and the
correlation degree of relevant factors of electricity price is verified by Spearman model.
Secondly, the Criteria Importance Though Intercriteria Correlation (CRITIC) model is im-
proved, the difference coefficient and Spearman model are used to improve the traditional
CRITIC, the comprehensive weights of relevant factors are obtained, and the weights are
assigned to the gray correlation (GRA) screen to obtain similar daily data, which can ensure
that the prediction model will not cause overfitting due to data differences. Third, the
Marine Predators Algorithm (MPA) is used to optimize the regularization coefficient and
hidden layer node parameters of the traditional Regularized extreme learning machine
(RELM) to obtain the best prediction model, and predict the predicted daily electricity
price according to the best prediction model. Fourth, in order to further verify the predic-
tion effect of the price prediction model based on the hybrid extreme learning machine
technology proposed in this paper, MPA-RELM, GA-ELM, GA-SVM, ELM, and SVM are
used as the reference for the prediction results. Additionally, according to the root mean
square error (RMSE), the mean absolute error (MAE), the mean square error (MSE), and the
residual sum of squares (SSE) act as a variety of prediction model output effect evaluation
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indicators. Through the case analysis of the actual data of the spot pilot in China, it is
shown that the model proposed in this paper improves the accuracy of the original data to a
certain extent, improves the generalization ability of the RELM model, and achieves greater
accuracy of prediction results. This research has certain guiding significance for forecasting
spot market price. The abbreviations and acronyms are in Abbreviations section.

The main contributions of this paper are as follows:

(1) Through the analysis of sample factor correlation degree and sample factor similarity,
a massive amount of data is cleaned up, the amount of data is reduced, the useful
information is fully used, the accuracy of the RELM model is improved, and the
calculation efficiency of the model is improved.

(2) Considering the characteristics of the RELM model, the MPA model is used for
optimization to reduce the probability of the prediction model falling into the local
optimal solution.

(3) A framework of electricity price forecasting based on similar days is proposed, which
realizes 96-point forecasting in a day instead of single-point forecasting

According to the idea of constructing the forecast model, the following chapters of
this paper are arranged as follows: the second chapter constructs the similar day screening
model, mainly from the aspects of the formation mechanism of electricity price, relevant
elements of electricity price and the construction of similar day screening model. The third
chapter will build the RELM electricity price forecasting model based on MPA optimization.
This part mainly introduces the RELM model and MPA model, combines the characteristics
of the two models, and describes the forecasting process of the forecasting model. In the
fourth chapter, a case study of the spot market in Shanxi Province of China will be carried
out to verify the effectiveness of the model proposed in this paper. The last chapter will
summarize the whole paper.

2. Extraction of Similar Days
2.1. Analysis on the Formation Mechanism of Electricity Price in Spot Market

The electricity price in the spot market is the result of many market factors. Since the
construction of the spot market in China is in the initial stage, the rules of spot market
operation in each pilot province are unique, which leads to differences in the operation
conditions of the spot market and the laws of electricity price in each province [37]. There-
fore, according to the similarities and differences between the construction of the European
electricity market and the Chinese electricity market, this paper, combined with the gen-
eral law of construction of spot markets in each province of China, proposes the steps of
electricity price formation in Chinese spot market.

Both the Chinese spot market and the European spot market clearing price follow
the principle of supply-demand balance, in which the supply side declares supply power
according to the monotonic non-decreasing principle and the demand side declares demand
power according to the monotonic non-increasing principle. The market equilibrium is
the point where the two curves intersect and the price is the same for supply and demand
schedules. This point determines the market clearing price and the corresponding quantity.
Accepted offers and bids fall at the left of the intersection of the two curves and all of them
are exchanged at the clearing price [38]. In addition, both the Chinese spot market and the
European spot market set a threshold for the maximum price of the spot market. Markets
have set thresholds for the maximum price of 1500 and 3000 Euros, respectively.

However, there are still many differences between the Chinese and European electricity
markets. First, the Chinese day-ahead spot market is declared from 9:00 a.m. to 9:30 a.m.,
and the day-ahead clearing results are released at 5:30 p.m. on the same day, while the
European day-ahead spot is from 8:00 p.m. to 12:00 p.m. Second, the European price
clearing model mainly considers the capacity constraint of the contact line in the price
area, but the Chinese spot market is a centralized and decentralized coexistence. Third,
China’s electricity market is a dual-track market where the plan and market coexist, and the
degree of marketization is lower than that of the European electricity market, so the plan
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will interfere with the price formation process, and the price will be abnormally spiked.
Fourth, both the European and Chinese power markets have a large number of new energy
transactions, but the Chinese power market has a policy of prioritizing the consumption of
new energy, and the new energy is only reported but not quoted, resulting in the Chinese
spot market price forming zero price with the new energy output. Fifth, the Chinese spot
market is cleared every 15 min, forming 96 prices a day, but the European clearing interval
is 1 h, with a total of 24 prices a day.

This paper summarizes the formation of the electricity price in the spot market as
follows [39–43]:

(1) The power grid dispatching center provides the trading center with the basic infor-
mation of the power system according to the operation status of the power system,
and the trading center releases the market public information to the market subjects
according to the trading sequence;

(2) According to market public information, the market subject discriminates the market
supply-demand ratio, thermal power output, and New energy output, and formulates
the trading strategy according to the market information;

(3) According to the corresponding transaction clearing rules, the trading center will
centrally match the transaction strategies of the sender and user sides to form a
pre-clearing price;

(4) The trading center sends the pre-clearing results to the power grid dispatching center
for security verification. The power grid checks the clearing results according to the
power system carrying capacity. If the verification is passed, the trading center forms
a formal clearing price. If the verification is not passed, the trading center needs to
re-match the transaction;

(5) The trading center will send the final market price to the trading subject.

From the formation process of electricity price (Figure 1), it can be seen that the trend
of electricity price is mainly affected by market public information, the output of different
power generation entities, demand loads, market entities’ trading strategies and power
system security. In the conventional electricity market, the supply and demand ratio of
the market is one of the important bases for market entities to formulate strategies. At the
same time, market entities will also formulate the latest trading strategies based on past
experience. Therefore, in the incomplete information market, the impact of market entity
strategies on electricity price-mapping can be done from market public information.

2.2. Identification of Electricity Price Forecasting Factors in Spot Market

According to the description in the previous section, the formation of spot market
electricity price is formed by the joint action of a variety of factors. This paper summarizes
the research on existing electricity price forecasting factors as follows: historical electric-
ity price, market demand, thermal power output, New energy output, provincial load
adjustment and market player strategy [44–46].

The history of electricity price tracks the electricity market before the result is divided
into the day-ahead spot price and real-time spot prices. Market demand includes the
market main body, the different time scales of market demand, market demand prediction
deviation in the province and the provincial requirements, etc., Thermal power output
includes the history and actual output of thermal power, scheduling, and modulation of
and participation in peak shaving, etc. [47,48]. New energy output includes the historical
output of New energy, forecast deviation of New energy output, and proportion of New
energy output in market demand, etc. Provincial load adjustment mainly includes medium
and long-term transaction power and inter-provincial spot transaction power [49,50]. The
specific factors related to electricity price forecast as follows: Table 1.
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Table 1. Electricity price forecast related factors.

Species Factors

History of electricity Day-ahead spot price, real-time spot price;

Demand load in the province Forecasting deviation of market demand load and
market load;

Thermal power output
Historical actual output of thermal power, thermal

power pre-dispatch output, thermal power participation
in peak adjustment output;

New energy output
Historical output of new energy, forecast deviation of

new energy output, proportion of new energy in
market demand;

Inter-provincial demand load Provincial adjustment of medium and long term trading
electricity, inter-provincial spot trading electricity;

According to the research status at home and abroad, and combined with the actual
market information release of spot pilot in China, this paper adopts Unified scheduling
load, Inter-provincial demand load, New energy output and thermal power output as the
core indicators of screening similar days of spot price forecast. In order to further confirm
the correlation of relevant factors selected in this paper, the current spot electricity price
of Shanxi province on 27 November 2021 is taken as an example (as shown in Figures 1
and 2), and introduces Spearman correlation for correlation analysis. Spearman correlation
coefficient can also be expressed as rank value. That is, Spearman correlation between two
variables can be expressed as Pearson correlation between the rank values of two variables.
Its main calculation formula is as follows:

rs = 1−
6∑ d2

i
n(n2 − 1)

(1)
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where di represents the rank difference between subjects, n represents the number of
observations, and rs represents the correlation between two subjects.
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Through the above Equation, we can get the correlations of Unified scheduling load,
Inter-provincial demand load, New energy output and Thermal power output: 0.8214,
0.5790, −0.7954, and 0.9655, respectively. It can be seen that thermal power space has the
strongest correlation to spot price, followed by the Unified scheduling load, and finally
Inter-provincial demand load. In the selection of similar days, the correlation coefficient is
taken as the relevant factor of weight.

2.3. Selection of Similar Days Based on Weighted Gray Relational Grade
2.3.1. Improvements to CRITIC

Criteria Importance Though Intercrieria Correlation (CRITIC) is an objective weighting
method, and its weight composition mainly comes from the contrast intensity and the
conflict of indexes. The comparative strength of the indicators indicates a value gap
between options under the same indicator, which is calculated as standard deviation [51].
Indicator conflict indicates the correlation between qualitative changes. The correlation
between indicators can be either positive or negative [52]. Traditional CRITIC uses standard
deviation as its conflict criterion, but each index used in this paper has great difference
and negative correlation, so single standard deviation can not reflect the difference [53].
Therefore, based on the basic principle of CRITIC, this paper uses the coefficient of variation
to replace the standard deviation to express the index contrast strength [54,55].

Cv(j) =
δ(j)
µ(j)

(2)

where Cv(i) represents the difference coefficient of the index’s ith electricity price-related
factor, δ(i) represents the standard deviation of the index’s ith electricity price-related
factor, and µ(i) represents the average of the index’s ith electricity price-related factor.
The information quantity of the factors related to the electricity price may be expressed
as follows:

Cj = Cv(j)
n

∑
i
(1− rij) (3)
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where Cj represents the amount of information contained in the factor j and rij represents
the correlation between the factor i and the factor j. The weight wj of the relevant factors of
the j electricity price may be expressed as follows:

wj = Cj
/ m

∑
j=1

Cj (4)

2.3.2. Weighted Gray Correlation

According to the above, the main factors related to the sifting of similar days are
provincial load, transmission load, new energy power, and thermal power output. There-
fore, build ξt = [u1

t , u2
t , u2

t , u2
t ] to represent the factors associated with day t. u1

t represents
the amount of electricity in a province. u2

t represents outgoing load, u3
t represents new

energy capacity, and u4
t represents thermal power capacity. First, all the factors related to

electricity price are normalized and non-dimensional. According to the above correlation
between new energy and electricity price has a negative correlation, so the minimization of
new energy is adopted. The grey correlation coefficient for the ith factor of electricity price
on day t and the ith factor on the forecast date shall be calculated as [56]:

χtk(ni) =
min

tk
min

ni
∆tk(ni) + µmax

tk
max

ni
∆tk(ni)

∆tk(ni) + µmax
tk

max
ni

∆tk(ni)
(5)

In Equation (5), ∆tk(ni) =
∣∣∣x′k0 (ni)− x

′k
t (ni)

∣∣∣ represents the difference between the value
of the ni element on the forecast day and the value of the ni element on the t day. min

tk
min

ni
∆tk(ni)

represents the minimum difference value for all elements, and max
tk

max
ni

∆tk(ni) represents the

maximum difference value for all elements. µ represents the resolution coefficient, which is
0.5. The correlation coefficients between different factors in different historical days can be
calculated by the above Equation. The weighted gray relational degrees of different historical
days and forecast days can be expressed as follows:

φt =
n

∑
t=1

wt(
1
m

m

∑
ni=1

χtk(ni)) (6)

In Equation (6), wt is the weight obtained by the Equations (1)–(4), and n is the total
number of factors related to the electricity price.

This paper constructs a similar day-screening model for electricity price forecasting
according to CRITIC-GRA, mainly to screen historical day information similar to the
forecast day, which can reduce the interference of relevant historical data on the forecast
model and also solve the problem of bias generated by the screening data set. The specific
process of the model is as follows:

(a) Select the relevant factors of electricity price forecast, and use Spearman correlation to
analyze the correlation of relevant factors;

(b) Determine the forecast date, use the improved CRITIC model to calculate the relevant
factors of the forecast date and the historical date, and obtain the comprehensive
weight between the relevant factors;

(c) Bring the weight of relevant factors obtained by CRITIC into the GRA model to obtain
the correlation coefficient between different factors on different historical days;

(d) The correlation coefficients of different historical days are sorted from large to small.
The market information similarity between the previous historical day and the forecast
day is the highest, and the electricity price similarity is the highest. On the contrary,
the electricity price similarity is also lower.

(e) The number of similar days can be selected according to the size of the similarity
interval of the whole historical day, and the previous similar days are preferred. If the
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market is relatively stable and the similarity concentration is high, it can also be further
determined according to the number of training arrays of the prediction model.

The CRITIC-GRA similar day-screening model constructed in this paper can bring
the influencing factors of electricity price into the electricity price forecasting model on the
basis of ensuring the authenticity of the original data. At the same time, the correlation
between factors is added to the screening of similar days in the form of weight, so as to
avoid the drawback that the factors affect the electricity price in equal proportion.

3. Construction of Electricity Price Forecasting Model
3.1. Regularized Extreme Learning Machine (RELM)

China’s electricity spot market construction is still in the initial stage, and there are
many uncertainties regarding the price of electricity on the spot market. The spot price
is characterized by strong volatility and nonlinearity, which increases the difficulty of
electricity price forecasting. Therefore, the price-forecasting model of spot market needs to
solve the nonlinear relation of electricity price to some extent. Regularized limit learning
machine is an improvement to the traditional limit learning machine. The regularization
coefficient is added to ELM, which can increase the generalization ability of ELM to some
extent [57]. In this paper, RELM is used to construct the spatial mapping relationship
between electricity price and related factors, which can improve the accuracy of electricity
price prediction and enhance the anti-interference of the model. The RELM network can be
represented as:

minF = min
δ

{
λ

2

∣∣∣∣∣∣∣∣ξ∣∣∣∣∣∣∣∣2 + 1
2

∣∣∣∣∣∣∣∣β∣∣∣∣∣∣∣∣2} (7)

where ξ = ∑ β jg(wj·Xj + bj)− tj is the sum of training errors, where ||ξ||2 and ||β||2 are

empirical and structural risks, respectively, and λ is the regularization coefficient. The
weights matrix can be obtained by processing the Lagrange Equation (8):

_
β = (HT H +

I
λ
)
−1

HTZ (8)

where I is the identity matrix, Z is the parameter matrix of the model training settlement
input, and H is the output matrix of the hidden layer.

In the prediction process, according to the results of previous training, the weight
matrix w and the hidden layer offset matrix b are generated randomly. Then the hidden

layer output weight matrix
_
β is calculated according to the ELM output function, forming

the RELM regression model as Equation (9):

f =
L

∑
i=1

_
β ig(wix + b) (9)

3.2. Marine Predator Algorithm (MPA)

Marine Predators Algorithm (MPA) is a new meta- heuristic optimization algorithm
proposed by Afshin Faramarzi and others in 2020. MPA optimization is divided into three
stages: the initialization stage, the optimization stage, and the FADs effect or eddy current
stage. The specific MPA optimization process can be described as follows [58]:

(1) Initialization phase. Set algorithm parameters to initialize the location of the prey
within the search scope. It can be described as:

X0 = Xmin + rand(Xmax − Xmin) (10)

In Equation (10), Xmax, Xmin denote the search space of the prey, and rand(·) is a
random number within (0, 1).
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(2) Optimization stage. The optimization phase is divided into early iteration, middle
iteration and late iteration. At the beginning of the iteration, the current iterations are
less than 1/3 of the maximum iterations. Predators are faster than prey, performing
globes and updating prey through Brown random.{

stepsicei = RB ⊗ (Elitei − RB ⊗ preyi)
preyi = preyi + P•RB ⊗ stepsicei

Iter < 1
3 max_Iter

(11)

In Equation (11), stepsice is the step size, RB is the Brownian walk random vector with
normal distribution, preyi is the prey matrix with the same dimension as the static matrix,
Elitei is the elitist matrix constructed by the top predator, ⊗ is a multiplicative operation
item by item, P equals 0.5, and R is a (0, 1) uniform random vector. N is the population size,
and Iter and max_Iter represent the current and maximum iterations.

In the middle of an iteration, the current iteration is less than 2/3 of the maximum.
The population is divided into two parts, in which the prey does the levy movement, being
responsible for the algorithm development in the search space. Predators do Brownian
motion, being responsible for the algorithm’s exploration in the search space, shifting
gradually from an exploration to a development strategy.

At the end of the iteration, the current iteration number is more than 2/3 of the
maximum iteration number, mainly to improve the local development, the predator is
slower than the prey speed, predator roaming based on levy.{

stepsicei = RL ⊗ (RL ⊗ Elitei − preyi)
preyi = Elitei + P•CF⊗ stepsicei

Iter > 2
3 max_Iter

(12)

In Equation (12), RL is the Levy distributed random vector, and CF = (1− Iter/max_Iter)
(2·Iter/max_Iter) is the adaptive parameter controlling predator movement compensation.

(3) FADs effect or eddy current. Fish aggregation devices (FADs) or vortex effects often
change the behavior of marine predators, which enables the MPA to overcome the
premature convergence problem and adjust the local extremum.

preyi =

{
preyi + CF[Xmin + RL ⊗ (Xmax − Xmin)]⊗U

preyi + [FADs(1− r) + r](preyr1 − preyr2)
r ≤ FADs
r > FADs

(13)

In Equation (13), FADs is the influence probability, takes 0.2, U is the binary vector, r
is the random number in (0, 1), r1, r2 is the random index of the prey matrix respectively.

3.3. MPA-RELM Model Construction

Through the explanation of RELM above, we know that the prediction precision of
RELM is greatly influenced by the regularization coefficient λ and the number of hidden
layer nodes L. Therefore, the RELM model is further optimized by MPA to obtain more
accurate regularization coefficient λ and hidden layer node number L. The root mean
square error (RMSE) of the training sample is selected as the fitness function of the MPA:

f itnessRMSE = (
1
n

n

∑
t=1

(
_
x t − xt))

1/2

(14)

In Equation (14),
_
x t represents the training prediction, xt represents the training

observation, and n represents the number of training samples.
The specific process of MPA-RELM-based spot price forecasting algorithm is as follows:

(1) Divide the similar day data selected by CRITIC-GRA above into training and testing
sets and normalize them;
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(2) Set parameters such as the maximum number of iterations and population size.
According to the Equations (1)–(10), the prey initialization position is set and the
current iteration number is 0 to calculate the management matrix.

(3) According to the three stages of the optimization process, continuously update the
location of prey, complete the elite update, calculate the fitness value, and update the
final position.

(4) In combination with the FADs effect, the Equations (1)–(13) are used to update the
prey so that the algorithm can iteratively jump out of the local optimal solution.

(5) Evaluate and update the elite matrix and determine the relationship between the
number of iterative operations and the maximum number of iterations. If the iterative
algorithm is equal to the maximum number of iterations, the best iterative elitist
matrix is output. Elitist matrix is the best key parameter of RELM, which is brought
into RELM model for prediction. The specific process structure is shown in Figure 3.
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3.4. Construction of a Day-Ahead Spot Market Price Prediction Model Based on Hybrid Extreme
Learning Machine Technology

In this section, the improved electricity price forecasting hybrid algorithm, denoted
as CRITIC-GRA-MPA-RELM, is developed and shown in Figure 4. Its main procedure is
summarized as follows:

(1) Data preprocessing

Aiming at the research on the formation mechanism of electricity price in the electricity
market, combined with domestic and foreign research on spot electricity price forecasting
models, collect and organize relevant data on electricity price forecasting.

(2) Identify the core factors of electricity price forecasting

Based on the formation factors of electricity price in the spot market, combined
with the actual operation information of spot pilots in various provinces in China, the
relevant factors of electricity price prediction are screened out, and the Spearman correlation
coefficient is used to calculate the influence degree of each factor on electricity price.
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(3) Build a similar day screening model

Similar day screening model consists of two parts: improved CRITIC and weighted
grey relational degree. First, the factor correlation obtained by the Spearman correlation
coefficient is replaced by the conflict index of the traditional CRITIC. Second, the difference
coefficient is replaced by the standard deviation to calculate the contrast strength index of
CRITIC. Third, the comprehensive weight of CRITIC is formed, and the gray relational
degree model is given weight. Fourth, the original dataset is screened according to the
improved CRITIC-GRA model to form a similar daily dataset.

(4) Select the optimal model to predict

First, the data of similar days are divided into training set and test set. Second, using
the training set data as the input of the model, the Marine Predator Algorithm (MPA) is
used to optimize the RELM to obtain the optimal regularization coefficient and hidden
layer nodes. Third, use the test set data as the optimal RELM model for prediction, and
finally get the prediction result.

(5) Model prediction result verification

In order to verify the validity of the model, according to the characteristics of the
RELM model selected in this paper, MPA-RELM, GA-ELM, GA-SVM, ELM, and SVM are
selected as the model prediction results reference, and SSE, MSE, RMSE, and MAE as
model evaluation metrics.

SSE =
m

∑
i=1

(yi − ŷi)
2 (15)

MSE =
1
m

m

∑
i=1

(yi − ŷi)
2 (16)

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)
2 (17)

MAE =
1
m

m

∑
i=1
|yi − ŷi| (18)

where yi denotes the real electricity price and ŷi denotes the forecast electricity price.

(6) Diebold–Mariano test

In order to better verify that the model proposed in this paper is superior to other
models, the Diebold–Mariano test is used to determine whether there are significant
differences between different prediction models. The DM test is a widely-used prediction
test method [59–62].

Let e1
i and e2

i be the residuals for the two forecasts, i.e.,

e1
i = ŷ1

i − yi, e2
i = ŷ2

i − yi (19)

and let di be defined as one of the following

di = (e1
i )

2 − (e2
i )

2
(20)

Find the mean and standard deviation of a series d

dmean =
1
m

m

∑
i

di (21)

γk =
1
m

m

∑
i=k+1

(di − dmean)(di−k − dmean) (22)

where γk is the autovariance at lag k.
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For h ≥ 1, define the Diebold–Mariano statistic as follows:

DM =
dmean√

[γ0 + 2
h−1
∑

k=1
γk]/n

∼ N (0, 1) (23)
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4. Case Analysis

Although foreign spot markets are more mature and have abundant data, there are
relatively few studies on electricity prices in the Chinese spot market, and since the Chinese
spot market is in its infancy, market players have a more urgent and practical need for
electricity price forecasting in the Chinese spot market. Therefore, this paper mainly selects
the 96 points-per-day data of the spot market in Shanxi Province from 1 October 2021 to 25
February 2022, and in order to better demonstrate the operation of the Shanxi spot market,
this paper intercepts one week of data for display (Figures 5 and 6).

Select MATLAB2019b as the simulation computing platform, the computer operating
system is Windows 11, the memory is 16G, and the hard disk is 1T.
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(a) Load data for Unified scheduling; (b) Inter-provincial demand load; (c) New energy output;
(d) Thermal power output.

4.1. Similar Day Filter

The model instance dataset is mainly composed of the day-ahead spot electricity price
data from 1 October 2021 to 25 February 2022, with a time granularity of 96 points-per-day.
Among them, the data from 1 October 2021 to 24 February 2022 is used as the training set,
and 25 February 2022 is used as the prediction day. The relevant factors on 25 February
2022 are shown in Figure 7. According to the similar daily screening model based on the
improved CRITIC-GRA constructed above, the 147 sets of training set data were further
extracted to obtain a more accurate training set, and the first 50 sets of training data sets
were screened out according to the data requirements of RELM. The result is as follows:
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Figure 7. 25 February 2022 Relevant factors.

In the process of screening similar days in this paper, the following conclusions can
be drawn: First, thermal power output has the greatest impact on electricity price, so the
similarity in this paper is affected by the similarity of thermal power output to a certain
extent. Secondly, according to the similarity of various factors every day, it can be seen
that the inter-provincial dispatch load on most days has a high similarity, indicating that
the demand in the Shanxi spot market is basically stable, but the New energy has great
uncertainty and is negatively correlated with spot electricity prices, which is in line with
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Shanxi province’s rule of preferential consumption of New energy. The sorting results of
similar days are shown in Figure 8.

Sustainability 2022, 14, x FOR PEER REVIEW 18 of 27 
 

 

 
Figure 8. Sorting of similar day. 

In this paper, the similarity of historical days is calculated, and the similarity interval 
of historical days is (0.627006, 0.878184). In this paper, the first 50 groups of similar days 
are selected for the following reasons: firstly, the historical days ahead of similar days are 
more related to the predicted daily electricity price. Secondly, the more obvious the 
similarity difference, the more stable the market operation, the stronger the correlation of 
factors, and the smaller the interference to the prediction model. Thirdly, 50 groups of 
historical data can prevent too much or too little data from affecting the training efficiency. 

According to Table 2, the following conclusions can be further obtained: firstly, 
thermal power output has the greatest impact on electricity price, so the similarity in this 
paper is affected by thermal power output similarity to a certain extent. Secondly, 
according to the similarity of each factor every day, it can be seen that the provincial 
dispatching load on most days has a high similarity, indicating that the demand of the 
Shanxi spot market is basically stable, but the New energy has great uncertainty and is 
negatively correlated with the spot electricity price, which is in line with the rule that the 
Shanxi spot market gives priority to the consumption of New energy. Tables 3–7 further 
analyze the characteristics of data on similar days and historical days, indicating that 
similar days are more in line with the need to reduce data errors. 

Table 2. Similarity and ranking of similar days. 

Time Similarity Ranking Time Similarity Ranking 
24 February 2022 0.878184 1 29 November 2021 0.773253 26 
11 December 2021 0.846866 2 14 January 2022 0.770666 27 
23 February 2022 0.839821 3 7 February 2022 0.766438 28 

1 October 2021 0.835788 4 28 December 2021 0.766079 29 
13 February 2022 0.824152 5 16 November 2021 0.765566 30 
19 January 2022 0.80802 6 5 December 2021 0.763201 31 

7 November 2021 0.807764 7 18 October 2021 0.763031 32 
17 October 2021 0.805276 8 14 October 2021 0.76284 33 
30 October 2021 0.802232 9 4 February 2022 0.758902 34 

22 February 2022 0.798048 10 9 February 2022 0.756474 35 
11 February 2022 0.79689 11 10 January 2022 0.755527 36 

2 October 2021 0.796766 12 14 February 2022 0.755209 37 
29 October 2021 0.794495 13 25 October 2021 0.754894 38 

25 December 2021 0.792829 14 12 January 2022 0.753398 39 
20 October 2021 0.792804 15 19 November 2021 0.750492 40 

0 5 10 15 20 25 30 35 40 45 50
similar day

0

0.2

0.4

0.6

0.8

1
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In this paper, the similarity of historical days is calculated, and the similarity interval
of historical days is (0.627006, 0.878184). In this paper, the first 50 groups of similar days are
selected for the following reasons: firstly, the historical days ahead of similar days are more
related to the predicted daily electricity price. Secondly, the more obvious the similarity
difference, the more stable the market operation, the stronger the correlation of factors, and
the smaller the interference to the prediction model. Thirdly, 50 groups of historical data
can prevent too much or too little data from affecting the training efficiency.

According to Table 2, the following conclusions can be further obtained: firstly, thermal
power output has the greatest impact on electricity price, so the similarity in this paper is
affected by thermal power output similarity to a certain extent. Secondly, according to the
similarity of each factor every day, it can be seen that the provincial dispatching load on
most days has a high similarity, indicating that the demand of the Shanxi spot market is
basically stable, but the New energy has great uncertainty and is negatively correlated with
the spot electricity price, which is in line with the rule that the Shanxi spot market gives
priority to the consumption of New energy. Tables 3–7 further analyze the characteristics of
data on similar days and historical days, indicating that similar days are more in line with
the need to reduce data errors.

Table 2. Similarity and ranking of similar days.

Time Similarity Ranking Time Similarity Ranking

24 February 2022 0.878184 1 29 November 2021 0.773253 26
11 December 2021 0.846866 2 14 January 2022 0.770666 27
23 February 2022 0.839821 3 7 February 2022 0.766438 28
1 October 2021 0.835788 4 28 December 2021 0.766079 29

13 February 2022 0.824152 5 16 November 2021 0.765566 30
19 January 2022 0.80802 6 5 December 2021 0.763201 31

7 November 2021 0.807764 7 18 October 2021 0.763031 32
17 October 2021 0.805276 8 14 October 2021 0.76284 33
30 October 2021 0.802232 9 4 February 2022 0.758902 34
22 February 2022 0.798048 10 9 February 2022 0.756474 35
11 February 2022 0.79689 11 10 January 2022 0.755527 36
2 October 2021 0.796766 12 14 February 2022 0.755209 37

29 October 2021 0.794495 13 25 October 2021 0.754894 38
25 December 2021 0.792829 14 12 January 2022 0.753398 39
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Table 2. Cont.

Time Similarity Ranking Time Similarity Ranking

20 October 2021 0.792804 15 19 November 2021 0.750492 40
2 November 2021 0.792363 16 3 February 2022 0.749896 41
19 February 2022 0.7845 17 24 October 2021 0.747245 42
13 December 2021 0.784356 18 7 December 2021 0.745932 43
20 February 2022 0.782755 19 9 October 2021 0.74574 44

2 January 2022 0.778299 20 24 January 2022 0.745663 45
10 February 2022 0.778109 21 16 January 2022 0.745158 46
21 February 2022 0.776506 22 7 January 2022 0.745041 47

15 November 2021 0.776366 23 24 December 2021 0.744753 48
8 November 2021 0.774248 24 12 December 2021 0.744734 49
15 February 2022 0.773299 25 2 February 2022 0.742596 50

Table 3. Statistical values of electricity price.

Dataset
Statistic Values

Mean Standard Deviations Median Minimun Maxmun

All 520.15 446.08 383.57 0 1500
Similar day 539.99 1062.04 398.00 0 1500
Forecast day 242.44 154.00 315.00 0 399

Table 4. Statistical values of Unified scheduling.

Dataset
Statistic Values

Mean Standard Deviations Median Minimun Maxmun

all 27,996.96 2520.96 27,771.85 21,663.2 34,370.6
Similar day 27,885.57 2512.60 27,672.05 21,663.2 34,370.6
Forecast day 29,556.41 2093.83 28,904.55 26,613.5 34,014.7

Table 5. Statistical values of Inter-provincial demand load.

Dataset
Statistic Values

Mean Standard Deviations Median Minimun Maxmun

All 5561.96 1506.58 5687.00 2370 9358
Similar day 5510.22 1519.37 5511.00 2370 9358
Forecast day 6286.35 1085.50 6779.50 4816 7571

Table 6. Statistical values of New energy output.

Dataset
Statistic Values

Mean Standard Deviations Median Minimun Maxmun

All 6250.60 4564.19 4918.57 607.35 21,412.28
Similar day 5902.42 1519.37 4498.11 607.35 21,412.28
Forecast day 11,125.14 3961.87 10,709.60 5652.25 18,490.39

Table 7. Statistical values of Thermal power output.

Dataset
Statistic Values

Mean Standard Deviations Median Minimun Maxmun

All 27,308.31 5567.70 27,748.21 7725.24 39,587.33
Similar day 27,493.36 5576.35 27,868.57 7725.24 39,587.33
Forecast day 24,717.62 4764.13 25,339.33 15,153.6 31,065.95
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4.2. Day-Ahead Spot Market Price Forecast Based on a Hybrid Extreme Learning
Machine Technique

According to the analysis in the previous section, this paper uses 50 groups of similar
daily data as the training set, and the prediction day on February 25 as the test set to
train the CRITIC-GRA-MPA-RELM model. Among them, the basic parameters of the MPA
model are set to the maximum number of iterations of 1000, the search group is set to 50,
the FADs is set to 0.3, the value range of the parameter γ of the RELM model is (2−10, 2−9,
. . . , 29, 210), the initial value of the parameter L is 10, and each time it increases by 10, with
a maximum increase of 20. At the same time, in order to verify the effectiveness of the
model proposed in this paper, MPA-RELM, GA-ELM, GA-SVM, ELM, and SVM models are
used as references. The prediction effect of CRITIC-GRA-MPA-RELM is shown in Figure 9.
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It can be seen in Figure 9 that the electricity price predicted by the model proposed in
this paper is basically the same as the actual electricity price curve trend, which can reflect
the price trend of the real market to a certain extent, and has a good fitting effect. It can
be seen that the model proposed in this paper has a good reflection on the peak electricity
price and the trough electricity price.

In order to better verify the effectiveness of the CRITIC-GRA-MPA-RELM model, we
further conducted a comparative analysis of multiple models, in which ELM and SVM were
trained with 50 randomly selected groups of data, without similar day screening, using
MPA-RELM and similar daily data. It is verified that the optimization algorithm proposed
in this paper can improve the prediction accuracy better than the traditional optimization
algorithm. GA-ELM and GA-SVM are used to verify the prediction difference between the
traditional optimization model and RELM. The specific optimization results follow.

In order to better show the prediction effect of the six models, this paper selects the
error indicators SSE, MSE, MAE, and RMSE. The result shows that all the error indicators
of the spot market price prediction model constructed in this paper are the lowest, and are
better than other models. After screening similar days, the data was further optimized, so
that the SSE of the MPA-RELM model was improved by 0.0636, the MSE was improved by
0.0007, the MAE was improved by 0.0154, and the RMSE was improved by 0.0007.

In order to further verify that the prediction model constructed in this paper has more
accurate prediction performance, DM test was used to test the significance of the prediction
results of MPA-RELM, GA-ELM, GA-SVM, ELM, and SVM, and the p-values of different
models are shown in the following table.



Sustainability 2022, 14, 7767 19 of 24

According to the prediction effect and prediction deviation of different models in
Figures 10–12, it shows that the CRITIC-GRA-MAP-RELM model proposed in this paper
has strong applicability to the forecast of day-ahead spot electricity prices, and according
to the error analysis in Table 8 and the significance analysis in Table 9, the fitting effect and
error of the forecast model are as follows: CRITIC-GRA-MPA-RELM > MPA-RELM > GA-
ELM > GA-SVM > ELM > SVM. From the deviation trend and distribution characteristics
of each prediction model, the following conclusions can be further drawn:

(1) The prediction error of the ELM model is lower than that of the SVM model, indicating
that ELM is more adaptable than SVM for electricity price forecasting. From the
forecast trend, it can be seen that the electricity price predicted by SVM is generally
higher than that of ELM, and the electricity price trend of SVM during the evening
peak is opposite to that of ELM, indicating that the SVM forecast curve is more volatile.
The basic RELM model used in this paper is a model further optimized on the basis
of ELM, which shows that the model proposed in this paper has a certain model
foundation and is more suitable for electricity price forecasting than other machine
learning algorithms.

(2) The error of MPA-RELM is lower than that of GA-ELM, indicating that using MPA
to optimize RELM can improve the accuracy of machine learning more than the GA
model to optimize ELM. The electricity price prediction curve from MPA-RELM is
basically the same as that of GA-ELM. The electricity price curve predicted by the
MPA-RELM model still has a large deviation, but MPA-RELM reduces the deviation
of each time point, especially in the evening peak, meaning MPA-RELM is closer to
the real electricity price.

(3) CRITIC-GRA-MPA-RELM has the highest prediction accuracy, and MPA-RELM is
second only to the model proposed in this paper, indicating that further screening of
historical data, obtaining historical daily data similar to the market on the forecast
day, which can better adapt to the volatility of electricity prices in the spot market,
can improve the prediction accuracy of the MPA-RELM model and prevent the model
from overfitting.

Through the comparative analysis of the above models, it can be seen that the CRITIC-
GRA-MPA-RELM model proposed in this paper is more suitable for spot market electricity
price forecasting, and can better reflect the trend of spot market electricity price fluctuations,
especially peaks and troughs. It can make up for the shortcomings of RELM and ELM to a
certain extent.
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Table 8. Results of various error indicators of different prediction models.

CRITIC-GRA-
MPA-RELM

MPA-
RELM GA-ELM GA-SVM ELM SVM

residual sum of squares (SSE) 0.1257 0.1893 0.2504 0.2536 0.2789 0.4145
mean squared error (MSE) 0.0013 0.0020 0.0026 0.0026 0.0029 0.0043
mean absolute error (MAE) 0.0165 0.0328 0.0411 0.0436 0.0449 0.0533

root mean square error (RMSE) 0.0013 0.0020 0.0026 0.0026 0.0029 0.0043

Table 9. p-values for the Diebold and Mariano test.

p MPA-RELM GA-ELM GA-SVM ELM SVM

CRITIC-GRA-MPA-RELM 0.04 0.02 <0.01 <0.01 <0.01

From Figure 13, the error trends of different prediction models can be obtained: firstly,
the prediction accuracy of different models is different, but the prediction errors of the six
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models are all larger in the evening peak, and none of the six models currently predict
outliers at 10:45 and 22:30, indicating that the forecast of the day-ahead electricity price not
only needs to consider the public information of the electricity market, but also needs to
consider the main body’s quotation decision plan. Secondly, according to the historical
electricity price trend, the morning peak period is relatively stable, the prediction results
of the six models are relatively stable, and all have relatively calibrated prediction results.
Among the six models, the prediction results of five models are relatively concentrated.
The model proposed in this paper is closer to the real history information, indicating that
when forecasting the day-ahead spot electricity price, it is necessary to focus on selecting a
historical day that is closer to the forecast date.
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5. Conclusions

Based on the analysis of the formation mechanism of electricity price in the spot
market, this paper constructs the CRITIC-GRA-MPA-RELM model, verifies the model
through the spot price before the day of Shanxi spot pilot, and verifies the progressiveness
of this model through five models, including MPA-RELM, GA-ELM, GA-SVM, ELM, and
SVM. According to the prediction results, the following conclusions are obtained:

(1) Through the CRITIC-GRA model to screen the original data, the original data structure
can be optimized to ensure the accuracy of the input data of the prediction model.

(2) Through the comparison of several prediction models, it shows that the MPA algo-
rithm has better optimization speed and global search ability than the GA algorithm
under the same conditions, and can improve the generalization ability of RELM.

(3) Combined with the relevant data of Shanxi spot pilot, it is verified that CRITIC-GRA-
MPA-RELM can deal with peak and trough electricity prices, and the avoided single
model can only deal with the problem of low volatility.

(4) The forecasting error of the forecasting model proposed in this paper is concentrated in
the electricity price spike period, which shows that, when forecasting electricity price,
we should not only consider the market public information, but also pay attention to
the means of planning.

In the future, on the basis of screening similar days, the probability distribution of
electricity price at each time point should be considered to improve the accuracy of the
confidence interval of electricity price forecasting. At the same time, according to the peak
price and the trough price, the forecast is divided into two levels to ensure the accuracy of
the peak price and the trough price forecast, and the non-market-oriented information is
used as the correction means of the price forecast.
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Abbreviations

MPA marine predator algorithm
RELM regularized extreme learning machine
ELM extreme learning machine
SVM support vector machines
GA Genetic Algorithm
RMSE root mean square error
MAE mean absolute error
MSE mean square error
SSE residual sum of squares
CRITIC criteria importance though intercriteria correlation
GRA grey relational
FADs fish aggregation device
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