Indian J. Met. Geophys. (1972), 23, 1, 23-28

551.521.326:551.594.5

Day airglow emissions of 5577A and 6300 OI lines in Martian atmosphere

S. N. GHOSH

J. K. Institute of Applied Physics and Technology,

University of Allahabad

and

S. K. JAIN

Department of Physics Ewing Christian College, Allahabad (Received 27 July 1971)

ABSTRACT. In this paper emissions of 5577A and 6300 A lines of OI in Martian atmosphere have been investigated. It has been found that for the 5577A line there are two peaks at 90 and 120 km and its total intensity is about 3.5 kR. For the 6300A line, since the rate of quenching by CO_3 molecules is not known, its emission profile is obtained for two values of quenching coefficient, namely, 1×10^{-13} cm³ sec⁻¹ and 1×10^{-13} cm⁻³ sec⁻¹. It has been found to have a broad peak at 100-140 km. Its intensity has been found to be 3 and 1 kR for the two values of rate coefficient.

1. Introduction

As in the earth's atmosphere, solar radiations are expected to produce day airglow in the Martian atmosphere. The emissions of 5577A & 6300A line in the day airglow give information of metastable oxygen atoms which is important in many respects. For example, in the polar region, the sun remains below the horizon for several months and therefore cannot replenish excited oxygen atoms lost by radiative transitions or by mass movement of air. From the concentration of excited oxygen atoms the speed of this movement can be determined.

Emissions of 5577A and 6300A lines in the earth's atmosphere have been extensively studied (Wallace and McElroy 1966, Silverman and Bellew 1966, Zipf 1966, Shapiro 1969, Broadfoot and Kendall 1968, Dandekar 1969). In this paper these line emission in the day airglow of the Martian atmosphere are investigated.

2. Production of O(1S) atoms in the Martian atmosphere

O(¹S) atoms may be produced by the following reactions:

$$CO_2 + h\nu \rightarrow CO_4 + O (^1S)$$
 (1)

$$0 + 0 + 0 \xrightarrow{2} 0_2 + 0$$
 (1S) (2)

$$0 + 0 + N \stackrel{\sim}{\rightarrow} NO + O(^{1}S)$$
(3).

 $O + N + N \xrightarrow{n_3} N_2 + O(^4S)$ (4)

Wilkinson and Johnston (1950) studied the absorption spectra of CO₂ in the region 1440-1670A. They reported an absorption continuum with a maximum at 1495A. Watanabe et al. (1953) extended the region of observation (1050-1750A) by using helium and argon sources with a 1P21 photomultiplier tube coated with sodium salicylate. They observed three absorption continua with peaks at 1475, 1332 and 1121A. Another continuum was observed around 860 A which was attributed to the ionization of CO. (Sun and Weissler 1955). Vacuum monochromator used by them had a resolution of about 1A. The entire region was reinvestigated and the absorption coefficients were measured by Nakata et al. (1965) at a resolution of 0.2A, obtaining more quantitative K-value at band centres. The K-values obtained by Nakata et al. agree well with the earlier values given by Watanabe et al. (1953). From energy considerations, the three absorption continua have been interpreted as given in Table 1.

Thus $O(^{1}S)$ atoms are produced by photodissociation in the wavelength range 1175-1050A. The rate of production of these atoms is given by-

$$P_1 = \sum_{\nu} n \ (h\nu)_z \ \delta\nu, \ \mathrm{CO}_2 \tag{5}$$

TABLE 1

Absorption spectrum of CO2 in the region 1750-1050A

Wavelength range (A)	Wavelength for peak absorption (A)	Photodisso- ciated products
1750-1400	1475	$CO(^{1}\Sigma) + O(^{3}P)$
1480-1250	1332	$CO(^{1}\Sigma) + O(^{1}D)$
1175-1050	1121	$CO(^{1}\Sigma) + O(^{1}S)$

TABLE 2

Photon flux at the top of Martian atmosphere

Wavelength range (A)	Photon flux (Photons cm ⁻² sec ⁻¹	Wavelength range (A)	Photon flux (Photons cm ⁻² sec ⁻¹)
1750-1725	$2 \cdot 24 \times 10^{11}$	1260-1250	$2 \cdot 00 \times 10^{9}$
1725-1700	$1\cdot48\!\times\!10^{11}$	1250-1230	$3\cdot99 imes10^9$
1700-1675	$1\cdot48 imes10^{11}$	1230-1220	$2\cdot00 imes10^9$
1675-1650	$8 \cdot 86 \times 10^{10}$	1215.7	1.14×1011
1650-1625	8.86×1010	1206.5	$1\cdot82\!\times\!10^9$
1625-1600	$5 \cdot 48 \times 10^{10}$	1220-1200	$3\cdot12\times10^9$
1600-1575	$5 \cdot 48 \times 10^{10}$	1200-1180	$2 \cdot 32 \times 10^{9}$
1575-1550	$2\cdot 81 \times 10^{19}$	1175-5	1.05×10^8
1550-1525	$2\cdot 81 imes 10^{10}$	1180-1170	$4\cdot90 imes10^{ m s}$
1525-1500	1.54×10^{10}	1170-1158	$5\cdot 87\! imes\! 10^9$
1500-1475	$1\!\cdot\!54\!\times\!10^{10}$	1158-1130	$1\cdot37 imes10^9$
1475-1425	$1\cdot 56\times 10^{10}$	1130-1108	$1\cdot 02\! imes\! 10^9$
1425-1375	$7\!\cdot\!59\!\times\!10^9$	1108-1090	$8\cdot35 imes10^{8}$
1375-1350	$3\cdot80 imes10^9$	1085 • 7	$2\cdot 02\! imes\! 10^8$
1350-1325	$3\cdot80 imes10^9$	1090-1088 • 5	$5\cdot31\!\times\!10^7$
1325-1290	3-48×10 ⁹	$1088 \cdot 5 - \\1086 \cdot 5$	$7\!\cdot\!07\!\times\!10^7$
1290-1260	$2\!\cdot\!99\!\times\!10^9$	$1086 \cdot 5 - 1065$	$7\!\cdot\!62\!\times\!10^8$

where $n(h\nu)_z$ is the photon flux corresponding to a frequency ν at an altitude z and $\delta\nu$, CO_2 is the absorption cross-section for CO_2 at a frequency ν .

Photon fluxes at the top of the Martian atmosphere are derived from those for the earth's atmosphere obtained by Hinteregger *et al.* (1964) and are shown in Table 2.

Photon fluxes at various altitudes are then calculated assuming absorption cross-sections and concentrations obtained respectively by Nakata *et al.* (1965) and Donahue (1966). Calculated rate of production of $O(^{1}S)$ due to photo-dissociation of O_{2} is shown in Fig. 1.

Reaction: (2), (3) and (4) were studied by Young and Black (1966) and their rate coefficients are 1.5×10^{-34} cm⁶ sec⁻¹, 3×10^{-33} cm⁶ sec⁻¹ and 1×10^{-33} cm⁵ sec⁻¹ respectively. Since the nitrogen content of the Martian atmosphere is small (Barth *et al.* 1969), contributions of reactions (3) and (4) are negligible. It can be seen that K_1 n(O)³ is at least four orders less than the photo-dissociation rate and hence reaction (2) is neglected.

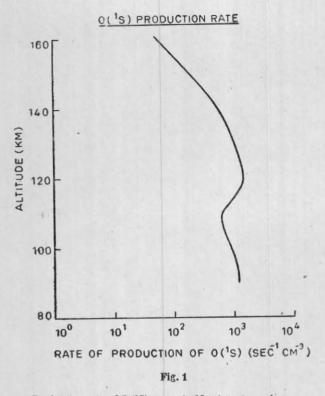
Now the rate of emission of the green lines is given by 'O'-

$$R_{5577} = \frac{Q O (^{1}S) A_{5577}}{A_{5577} + Kn(M)}$$
(6)

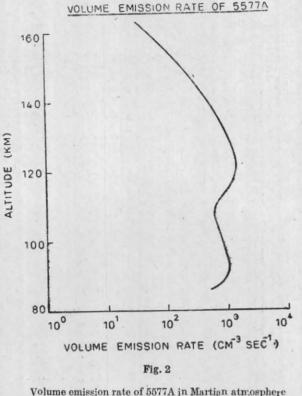
where $QO(^{1}S)$ is total rate of production of $O(^{1}S)$ atoms, A_{5577} is the transition probability, K is the quenching cross-section and n(M) is the concentration of the quenching species.

O (¹S) atoms are deactivated by CO₂, O₂ and O atoms. These deactivation reactions have been studied by Young and Black (1966). Quenching cross-sections for these species have been found to be $2 \cdot 5 \times 10^{-14}$, $1 \cdot 0 \times 10^{-13}$ and $1 \cdot 8 \times 10^{-13}$ cm³ molecule⁻¹ sec⁻¹ respectively. In the emitting layer (80.160 km), concentrations of O₂ and O atoms are small and hence the quenching of O(¹S) takes place mainly due to CO₂ molecules. O(¹S) may also be removed by resonant absorption of solar 1215.7A radiations (Walher 1965). It has been found that the probability of resonant deactivation of O(¹S) is negligible (7×10⁻⁴ sec⁻¹) compared to the probability of emission of 5577A. The rate of emission of 5577A is shown in Fig. 2.

3. Production of O(1D) atoms in the Martian atmosphere


 $O(^{1}D)$ atoms are produced by photodissociation of CO_2 in the wavelength range 1480-1250A (Table 1) as follows:—

$$CO_2 + h\nu (1489 > \lambda > 1250A) \rightarrow CO + O(^{1}D)(7)$$


As in the earth's atmosphere (Dalgarno and Walker 1964), these atoms may also be produced by photodissociation of O_2 in the wavelength range (1753 > λ > 1350A). Thus

$$\begin{array}{c} \mathcal{O}_2 + h\nu & (1750 > \lambda > 1350 \text{ A}) \\ \rightarrow \mathcal{O} & (^1\text{D}) + \mathcal{O}(^3\text{P}) \end{array} \tag{8}$$

DAY AIRGLOW EMISSIONS IN MARTIAN ATMOSPHERE

Production rate of O (1S) atoms in Martian atmosphere

Note that there are two peaks, one at 90 km and the other at 120 km

Young and Black (1966) showed that $O(^{1}D)$ atoms are produced by quenching of $O(^{1}S)$ by $O(^{3}P)$ as follows—

$$O(^{1}S) + O(^{3}P) \xrightarrow{k_{4}} O(^{1}D) + O(^{1}D)$$
(9)

Finally, these atoms are produced by the radiative transition—

$$O(^{1}S) \to O(^{1}D) + h\nu (5577 \text{ A})$$
 (10)

The rates of production of O(¹D) due to the above reactions are given by-

$$Q_7 = \text{PCO}_2 \ n \ (\text{CO}_2) \tag{11}$$

$$Q_{\rm s} = \mathrm{PO}_2 \, n \, (\mathrm{O}_2) \tag{12}$$

$$Q_{2} = k, n (O^{1}S) n (O^{3}P)$$
(13)

$$Q_{10} = A_{5577} n (0^{1} S)$$
(14)

where suffix refers to the particular reaction.

By substituting the values of various quantities, it can be seen that Q_8 and Q_9 are comparatively small and hence they can be neglected.

Rates of production are obtained from equations (11) and (14) and are shown in Fig. 3. From the

figure, it is seen that in the region 90 125 km $O(^{1}D)$ atoms are produced by photodissociation of CO_{2} molecules while in the region 120-160 km, they are also produced by the radiative transition.

It was proposed by Bates and Dalgarno (1959) that O (¹D) can be deactivated efficiently by O₂. From the analysis of auroral emissions from the earth's atmosphere, Wallace and Chamberlain (1959) concluded that its quenching cross-section lies between 1×10^{-10} and 5×10^{-12} cm³ sec⁻¹. Again, Dalgarno and Walker (1964) showed that in order to explain the red line intensity in the day airglow from the earth's atmosphere, the quenching cross-section should be 1×10^{-10} cm³ sec⁻¹. While considering distribution of O(¹D) in the ozonosphere, Hunt (1966) obtained on entirely different value, namely $(2 \cdot 5 \times 10^{-14} \text{ cm}^3 \text{ sec}^{-1})$.

In addition to the deactivation reactions, $O(^{1}D)$ is removed by reactions with CO (Clerc and Barat 1967) and CO₂ (Weissberger *et al.* 1967). For the first reaction, the rate coefficient

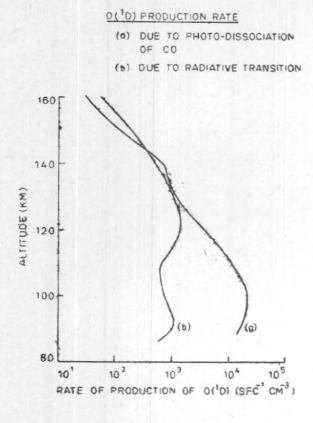
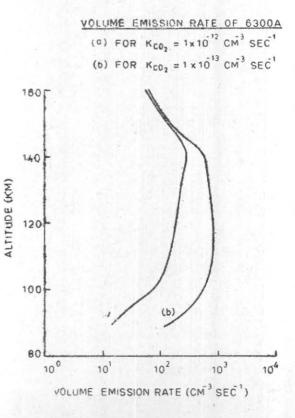



Fig. 3

Production rate of O(¹D) atoms in the Martian atmosphere

Ł

Fig. 4

Volume emission rate of 6300A in Martian atmosphere

26

DAY AIRGLOW EMISSIONS IN MARTIAN ATMOSPHERE

TABLE 3

Comparison of the characteristic features of $O(^{1}S)$ and $O(^{1}D)$ atoms in the terrestrial and Martian atmospheres

Terrestrial atmosphere		Martian atmosphere	
1. Production process	or—		
$O(^{1}S)$ (i) $O(^{3}P) + e \rightarrow O(^{1}S) + e$		$CO_2 + h\nu (1175 > \lambda > 1050A) \rightarrow CO + O(^{1}S)$	
(ii) O -	$-0 + 0 \rightarrow 0_2 + 0(^{1}S)$		
(<i>iii</i>) $\overset{+}{{ m O}_2}$ -	$+ e \rightarrow 0 + 0(^{1}S)$		
O(³ D) (i) $O_2 + h\nu (1750 > \lambda > 1350A) \rightarrow O(^3P) + O(^3P)$		(i) $CO_2 + h\nu$ (1480 > λ > 1250A) \rightarrow CO + O(¹ D)	
(ii) $O(^{3}P) + e \Rightarrow O(^{1}D) + e$		(ii) $O(^{1}S) \rightarrow O(^{1}D) + h\nu$ (5577A)	
(<i>iii</i>) \dot{O}_2^+	$+ e \Rightarrow 0 + O(^{1}D)$		
2. Quenching species for	_		
O(¹ S)	O2 and N2	CO ₂ , O ₂	
O(1D)	O2 and N2	CO ₂ , CO and O ₂	
3. Intensity of-			
5577A	1 kR	3.5 kR	
6300A	5 kR	1-3 kR	
4. Height of maximum	emission of-		
5577A	95 and 250 km	90 and 120 km	
6300A	220 km	100-140 km	
5. Intensity profile of			
5577A	There are two peaks and emission layer is wide (80-300 km)	There are two peaks and emission layer is wide (85r160 km)	
6300A	Emission layer is wide (100-300 km) and its peak is not well defined	Emission layer is wide (90-160 km) and its peak is not sharp	

is $3 \cdot 3 \times 10^{-12}$ cm³ molecule⁻¹ sec⁻¹ and for the second reaction no data is available.

The rate of emission of the oxygen red line is given by-

$$R_{6300} = \frac{Q O(^{1}D) A_{6300}}{A_{6300} + ko_{2}n(O_{2}) + k_{CO}n(CO) + k_{OO2}n(CO_{2})}$$
(15)

where k_x is the quenching rate due to the molecule x, $QO(^{1}D)$ is the total rate of production of $O(^{1}D)$ atmos and A_{6300} is the transition probability.

Rates of emission are obtained from equation (15) for following two sets of values of $k_{\rm CO_2}$ namely, 1×10^{-13} cm³ sec⁻¹ and 1×10^{-12} cm³ sec⁻¹.

Calculated emission rates are shown in Fig. 4. The height of maximum emission is about 100 km and its intensity is about 3 kR for the two values of the quenching coefficient.

Table 3 gives a comparison of the characteristic features of $O(^{1}S)$ and $O(^{1}D)$ atoms in the terrestrial and Martian atmospheres.

S. N. GHOSH AND S. K. JAIN

REFERENCES

Barth, C.A., Fastie, W.G., Hord, C.W., Pearse, B. Kelly, K. K., Stewart, A. I., Thomas, G. E., Anderson, G.P. and Raper, O.F.

Bates, D. R. and Dalgarno, A.

Broadfoot, A. L. and Kendall, K. R.

Chamberlain, J. W. and McElroy, M. B.

Clere, M. and Barat, F.

Dalgarno, A. and Walker, J. C. G.

Dandekar, B. S.

Hinteregger, H. E., Hall, L. A. and Schimidtke, G.

Hunt, B. G.

Nakata, P. S., Watanabe, K. and Matsunga, F. M. Shapiro, R.

Silverman, S. M. and Bellew, W.

Sun, H. and Weissler, G. L.

Walker, J. C. G.

Wallace, L. and McElroy, M. B.

Wallace, L. and Chamberlain, J. W.

Watenabe, K., Zelikoff, M. and Inn. E. C. Y.

Weissberger, E., Breekenridge, W. H. and Taube, H. Wilkinson, P. G. and Johnston, H. L. Young, R. A. and Black, G. Zipf, E. C. 1969 Science, 165, p. 1004.

1959 J. atmos. terr. Phys., 4, p. 112.

1968 J. geophys. Res., 73, p. 426.

1966 Science, 152, p. 21.

- 1967 J. chem. Phys., 46, p. 107.
- 1964 J. atmos. Sci., 21, p. 463.
- 1969 Space Sci., 17, p. 1609.
- 1964 Space Res. V., Proc. V. Inter Space Sci. Symp., Florence, May 8-20.
- 1966 J. atmos. Sci., 23, p. 88.

1965 Sci. Lt., Tokyo, 14, p. 54.

- 1969 Planet, Space Sci., 17, p. 1322.
- 1966 Anls. Geophys., 22, p. 457.
- 1955 J. chem. Phys., 28, p. 1625.
- 1965 J. atmos. Sci., 22, p: 361.
- 1966 Planet, Space Sci., 14, p. 677.
- 1959 Ibid., 2, p. 60.
- 1953 AFCRC Tech. Rep. No. 53-23 GRD, AFCRC, Cambridge (Mass).

x

- 1967 J. chem. Phys., 47, p. 1764.
- 1950 Ibid., 18, p. 190.
- 1966 Ibid., 44, p. 3741.
- 1966 J. geomagn. Geoelect. Kyoto, 18, p. 301.