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Day and Night-Time Dehazing by Local Airlight

Estimation
Cosmin Ancuti , Member, IEEE, Codruta O. Ancuti , Member, IEEE,

Christophe De Vleeschouwer , Member, IEEE, and Alan C. Bovik

Abstract— We introduce an effective fusion-based technique
to enhance both day-time and night-time hazy scenes. When
inverting the Koschmieder light transmission model, and by
contrast with the common implementation of the popular dark-
channel [1], we estimate the airlight on image patches and not on
the entire image. Local airlight estimation is adopted because,
under night-time conditions, the lighting generally arises from
multiple localized artificial sources, and is thus intrinsically non-
uniform. Selecting the sizes of the patches is, however, non-trivial.
Small patches are desirable to achieve fine spatial adaptation to
the atmospheric light, but large patches help improve the airlight
estimation accuracy by increasing the possibility of capturing
pixels with airlight appearance (due to severe haze). For this
reason, multiple patch sizes are considered to generate several
images, that are then merged together. The discrete Laplacian of
the original image is provided as an additional input to the fusion
process to reduce the glowing effect and to emphasize the finest
image details. Similarly, for day-time scenes we apply the same
principle but use a larger patch size. For each input, a set of
weight maps are derived so as to assign higher weights to regions
of high contrast, high saliency and small saturation. Finally the
derived inputs and the normalized weight maps are blended in
a multi-scale fashion using a Laplacian pyramid decomposition.
Extensive experimental results demonstrate the effectiveness of
our approach as compared with recent techniques, both in terms
of computational efficiency and the quality of the outputs.

Index Terms— Local airlight, haze, dehazing, night-time,
fusion.

I. INTRODUCTION

O
UTDOOR images often suffer from poor visibility intro-

duced by weather conditions, such as haze or fog. Haze

is a common atmospheric phenomena produced by small

floating particles that absorb and scatter the light from its
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Fig. 1. Night-time scene capture is a challenging task under difficult weather
conditions and recent single-image dehazing techniques [2]–[5] suffer from
important limitations when applied to such images.

propagation direction. Due to attenuation and scattering, hazy

scenes are characterized by poor contrast of distant objects,

color shifting, and additional noise. Outdoor applications such

as video surveillance and automatic driving assistance require

good restoration of such distorted images.

The process of removing haze effects from images (dehaz-

ing) is an ill-posed problem. First attempts tackled it by

using additional information such as rough depth [6] of

the scene or multiple images [7]. More recently, several

techniques [1]–[3], [8]–[16], have introduced solutions that do

not require any additional information than the single input

hazy image. While the effectiveness of these techniques has

been extensively demonstrated on daylight hazy scenes, they

suffer from important limitations on night-time hazy scenes.

Obviously, the problem of dehazing of night-time scenes

is more challenging. This is mainly due to the multiple light

sources that cause a strongly non-uniform illumination of the

scene. As a result, the night-time dehazing problem has been

addressed only by a limited number of researchers [17]–[19],

who introduced methods specific to night-time conditions.

As may be seen in Fig. 1 and also in the experimental section,

state-of-the-art dehazing techniques designed in general for
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day-time dehazing perform poorly for the task of night-time

dehazing.

In this paper, we introduce an effective fusion-based tech-

nique to enhance the visibility of hazy scenes both in day or

night conditions. The technique presented here builds on our

preliminary version, which was specific to night dehazing [20].

In this extended version we generalize our solution to work

effectively both on day and night-time hazy scenes. To the best

of our knowledge, this is the first algorithm that demonstrates

competitive results simultaneously on the most representative

day-time and night-time dehazing datasets.

Therefore, we introduce a novel and general way to compute

the airlight component required to invert the Koschmieder’s

light transmission model [21]. Specifically, to account for

non-uniform illumination, we propose to compute this value

locally, on patches of varying sizes. This is especially relevant

in night-time conditions, when the lighting results from mul-

tiple artificial sources, and is thus intrinsically non-uniform.

In practice, the same approach as the one recommended by

the dark channel prior is adopted to estimate the airlight on

each patch, based on the color of most hazy pixels, identified

as brightest ones [1]. A critical issue, however, lies in the

patch size selection. Small patches are desirable to achieve

fine spatial adaptation, but small patches might also lead to

inaccurate airlight estimates due to the unavailability of pixels

affected by strong haze when the patch becomes too small. For

this reason, we deploy multiple patch sizes, each generating a

single input to a subsequent multi-scale fusion process.

Our fusion approach is accomplished in three main steps.

First, based on our local airlight estimation method using

different patch sizes, we derive the first two inputs of the

fusion approach. To reduce the glowing effect and emphasize

the finest details of the scene, the third input is defined to

be the Laplacian of the original image. In the second step,

the important features of these derived inputs are filtered

based on several quality weight maps (local contrast, saturation

and saliency). Finally the derived inputs and the normalized

weight maps are blended in a multi-scale fashion, using a

Laplacian pyramid decomposition of the inputs and a Gaussian

pyramid of the normalized weights. In addition to being

effective in night-time conditions, our approach appears to

naturally generalize to day-time scenes, by increasing the size

of the patches in response to increased contrast and a wider

distribution of color in the original image.

The experimental section validates our technique on a

diverse set of day-time and night-time hazy scenes. It demon-

strates the value of our approach as compared to recent

techniques, both in terms of computational efficiency, and

enhanced image quality.

II. BACKGROUND THEORY AND RELATED WORK

A. Observation Model

As in previous dehazing methods [1], [8], [16], [22]–[24]

light propagation is expressed by Koschmieder’s model [21],

which has been shown to provide a reasonable approximation

of atmospheric effects on light reaching the camera.

In short, it states that the light intensity I at each image

coordinate x is the result of two main additive components -

direct transmission D(x) and airlight A(x) :

I(x) = D(x) + A(x) = J (x) T (x) + A∞ [1 − T (x)] (1)

where J (x) is the scene radiance or haze-free pixel color,

T (x) is the transmitivity along the cone of vision, and A∞

is the atmospheric intensity, resulting from the environmental

illumination.

The airlight A(x) is the main cause of color shifting and

is expressed as:

A(x) = A∞ [1 − T (x)] (2)

The transmission T (x) represents the amount of light that has

been transmitted between observed surface and the camera.

Assuming a homogeneous medium, T (x) is approximated:

T (x) = e−β d(x) (3)

where β is the medium attenuation coefficient due to scat-

tering, and d(x) represents the distance between the camera

and the physical point associated with pixel coordinate x .

Practically, the dehazing problem consists in estimating the

latent image J only from the hazy input image I. It is a

mathematically ill-posed problem, since, in addition to J , the

transmission T and the atmospheric intensity A∞ are also

unknown.

B. Related Work

As previously discussed, most dehazing methods have

focused on day-time scenes. Early dehazing techniques employ

additional information. For instance [25], [26], [7] consider an

atmospheric scattering model to derive geometric constraints

on scene color changes caused by varying atmospheric condi-

tions. They then exploit those constraints to recover the true

scene colors from multiple images taken under different, but

unknown, weather conditions.

Other strategies use information about the 3D scene geome-

try. Narasimhan and Nayer [7] employ an approximated depth-

map specified interactively by the users while the more recent

Deep Photo [6] system uses existing georeferenced digital

terrain and urban models to restore such spoiled images.

Polarization methods [27], [28], take advantage of the fact

that the path radiance (airlight) is partially polarized. They

typically process multiple images of the same scene acquired

with different states of a mounted polarizer [29], [30]. The

difference between different polarized inputs enables the esti-

mation of the haze light component. In general, all these

dehazing strategies that employ additional information are

usually impractical to deploy.

Therefore, a number of studies have attempted to restore

hazy scenes using only the information from a single hazy

input image. Various single image-based strategies [1], [8]–

[10], [16], [22]–[24], [31], [32] have been introduced in the

recent years. A first category among these is represented by

those methods that restore visibility without employing any

physical model. Tan [9] introduces a method that maximizes

the local contrast while constraining the image intensity to be
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smaller than the global atmospheric light value. The contrast-

based enhancing approach of Tarel and Hautière [10] is a

computationally effective technique, but requires the depth-

map to be smooth except along edges. In [13], hazy regions are

filtered by a simple per-pixel operation to estimate the airlight

and the transmission map. Ancuti and Ancuti [3] introduced a

simple but effective multi-scale fusion strategy that combines

multiple images derived from the original input, with the aim

of recovering the visibility of each region of the scene in

at least one of the multiple images. This strategy has been

recently extended by Choi et al. [33]. Those methods make use

of measurable deviations from statistical regularities observed

in natural foggy and fog-free images, to predict a local fog

density index for the entire image. This fog density index

is then used to improve the contrast in the images. More

recently several methods [34]–[36] employed Retinex theory

to enhance hazy images.

A second category includes physically-based techniques.

The method introduced by Fattal [8] interprets the image

through a formation model that accounts for surface shading

in addition to the scene transmission, and assumes that image

shading and scene transmission are locally uncorrelated. The

technique of Nishino et al. [11], [31], is a Bayesian proba-

bilistic method that models the image with a factorial Markov

random field, in which the scene albedo and depth are two

statistically independent latent layers that are estimated jointly.

He et al. [1] introduce a simple but powerful Dark Channel

Prior (DCP) (the work has been extended in [37]). DCP makes

it possible to roughly estimate the depth map of outdoor hazy

scenes. To obtain a refined transmission map, the values of

the estimate are extrapolated into the unknown regions, by

a relatively computationally expensive matting strategy [38].

This prior is quite robust. As a consequence, many recent

dehazing approaches [16], [22]–[24], [32], [39]–[41] have

been built on the DCP. Meng et al. [22] introduce a patch-

wise transmission estimation method derived by combining

the DCP with a boundary constraint map. Tang et al. [16]

demonstrate that, within their learning framework, the DCP

is the most informative feature while other features contribute

complementary information. Li et al. [41] employ DCP and

other depth cues from stereo matching to yield superior results

than conventional stereo or dehazing algorithms. A different

way of local airlight estimation has been employed by Berman

et al. [5], but only for day-time dehazing. However, as can be

seen in Fig 1, the method of Berman et al. [5] performs poorly

on night time dehazing. In recent years, neural networks have

been trained to dehaze images [4], [42]–[47] by leveraging on

the recent dehazing datasets [33], [48]–[50]. Their usage is,

however restricted in general to day-time cases, as represented

by the training set.

More recently, several techniques have been introduced to

dehaze images captured in night-time conditions. Pei and

Lee [17] estimate the airlight and the haze thickness by

applying a color transfer function, before applying the dark

channel prior [1], refined iteratively by bilateral filtering as a

post-processing step. The method of Zhang et al. [18] esti-

mates non-uniform incident illumination and performs color

correction before using the dark channel prior. Santra and

Chanda [51] have proposed to extend the color-line prior

introduced in [2] to deal both with day and night-time. Zhang

et al. [52] introduce a prior that is specific to night-time.

The paper builds on a night-time hazy imaging model, which

includes a local ambient illumination item. Then, it introduces

a simple image prior, called the maximum reflectance prior,

called the estimate the varying ambient illumination. In short,

the prior assumes that, during night-time, the local maximum

intensities of the color channels are mainly contributed by

the ambient illumination. Li et al. [19] employ an optical

light transmission model augmented with an atmospheric point

spread function to model the glowing effect. A spatially

varying atmospheric light map is also used to estimate the

transmission map, based on the dark channel prior. We show

in our experimental section (Fig. 8 and 9) that, whilst being

among the best prior art methods, this method results in images

that are too dark when the lightning is very poor.

By contrast, we introduce a dehazing technique that is able

to improve visibility in both day and night-time hazy scenes.

Our method is a fusion-based approach, deploying a well-

studied branch of computational imaging that has found many

useful applications, such as interactive photomontage [53],

image editing [54], image compositing [55], HDR imag-

ing [56], [57] and underwater imaging [58]. The main idea is

to combine several images into a single one, retaining only

the most significant parts of each image. In the dehazing

context, multi-scale fusion was first considered only for day-

time [3] and in the presence of a near-infrared (NIR) image

of the same scene [59]. Compared with [3], our proposed

approach, whose preliminary version was introduced in [20],

derives different input images based on a local estimation of

the airlight component. Moreover, as will be demonstrated

in the experimental results, our technique is more robust

than [3], which appears to offer limited performance in night-

time conditions (please see Fig 1).

III. LOCAL AIRLIGHT ESTIMATION

Section III-A briefly presents the Dark Channel Prior (DCP)

while section III-B introduces two original contributions.

A. Transmission Estimation

In Koschmieder’s model, the transmission map T (x) is

directly related to the distance between the observer and the

considered surface (see Eq. 3).

Following [1], and adopting the well-known dark channel

prior (DCP), T (x) can however be computed without resorting

to depth estimation. The DCP assumes that natural objects

have a weak reflectance in one of the color channels (the direct

radiance is small, or dark, in at least one of the R, G, B color

channels [60]), while the atmospheric intensity conveys all

colors (the haze looks grey or white, i.e. all components in A∞

are significant). Hence, assuming that A∞ is known (we dis-

cuss estimation of it later), then T (x) can be directly estimated

from the weakest color (relative to atmospheric color) over a

neighborhood of x . Formally, the DCP assumption states that,

in most image patches, at least one color channel has some
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Fig. 2. Importance of local airlight estimation in night-time scenes. Designed for day-time dehazing, the well-known dark channel [37] has important
limitations on night scenes because it assumes a spatially constant airlight. As may be observed in the last column, our patch-based local estimate (also not
refined) of the airlight is more appropriate for night-time hazy scenes. In particular, color and details that are close to light sources are better enhanced.

pixels whose intensity are close to zero. It can be written as:

min
y∈�(x)

(

min
c∈r,g,b

J
c/A∞

c

)

= 0 (4)

with Ac
∞ denoting the component of the atmospheric light

associated with color c, and �(x) represents a local patch

centered at x . Under this assumption, the transmission can be

estimated as:

T (x) = 1 − min
y∈�(x)

(

min
c∈r,g,b

I
c/A∞

c

)

(5)

B. Atmospheric Intensity Estimation

Early methods used to estimate the atmospheric intensity as

the pixel color vector corresponding to the highest intensity

in the image [9]. This choice was motivated by the white

appearance of haze in day-time scenes. Such approach could

fail, typically when a white object is selected instead of a

hazy pixel. To circumvent this problem, the authors of [1]

proposed to estimate the atmospheric intensity using the most

haze-opaque pixels. These are defined as the ones having the

brightest dark channel, i.e as the ones maximizing:

IDC(x) = min
y∈�(x)

( min
c∈r,g,b

Ic(y)) (6)

where r, g, b denote the R,G,B color channels.

This estimator works well on day-time scenes, but suf-

fers from two weaknesses when applied to night scenes

(see Fig. 2). First, it estimates the atmospheric intensity

globally over the entire picture, whereas night scenes are

characterized by localized and spatially non-uniform artificial

illumination. Second, by maximizing the minimum over the

set of color channels, it promotes those locations taking large

values in all channels. It thus implicitly assumes that the

atmospheric intensity is reasonably white, which is the case

in day-time scenes, but is not necessarily true for night-

scenes which are often characterized by strongly colored

lighting.

To address those two limitations, we propose (i) to estimate

the atmospheric intensity locally, within spatial neighborhoods

�(x) around each coordinate x , and (ii) to independently

compute each component of the atmospheric light. Formally,

we define the local atmospheric intensity of color c, Ac
L∞(x),

to be:

Ac
L∞(x) = max

y∈�(x)

[

min
z∈�(y)

(

I
c(z)

)

]

= max
y∈�(x)

[

I c
M I N (y)

]

(7)

To motivate this formulation, we again resort to the sim-

plified version of the Koschmieder’s optical model, in which

we approximate the scene radiance J c(y) by the product

ρc(y)·Ac
L∞(y), between the normalized reflectance coefficient

ρc(y) [61] (Chapter 25) and the local illumination Ac
L∞(y),

both values being associated to color c. Under this simplified

model, we have:

Ic(y) ≈ Ac
L∞(y) · ρc(y) · T (y) + Ac

L∞(y)[1 − T (y)] (8)

Since both ρc(y) and T (y) lie in [0, 1], this equation reveals

that Ic(y) underestimates the airlight Ac
L∞(y). However,

when ρc(y) tends to 1, or when T (y) tends to 0, we have

Ic(y) ≈ Ac
L∞(y). Interestingly, both ρc(y) → 1 or T (y) →

0 also induce an increase of Ic(y). Hence, assuming that

Ac
L∞(y) ≈ Ac

L∞(x) due to the spatial proximity between x

and y, maximizing Ic(y) over �(x) is equivalent to finding

the coordinate y in the neighborhood of x for which Ic(y)

best approximates Ac
L∞(x). In practice, in Equation 7, the

maximization applies to I c
M I N (y), the minimum of Ic over a

neighborhood of y. This is to only account for color intensities

that are sufficiently representative, in the sense that these

intensities (or larger ones) are observed in a sufficiently large

spatial area.

The size of the neighborhood �(x) considered by the max-

imization step results from a trade-off: a large size increases

the probability of including a location y where I c
M I N (y) ≈

Ac
L∞(y), but increases the risk that Ac

L∞(y) �= Ac
L∞(x), i.e.

does not allow for fine spatial adaptation. Our experiments

have revealed that a smaller � patch size is generally desired

in night-time conditions, as compared to day time. In practice,

we recommend for night-time scenes, that the patches � to

be twice the size of �, while for day-time scenes, the size of

patches � be four time larger than the size of �. The size of

� is typically set to 20 pixels.

Figure 3 compares the atmospheric intensity estimated by

global and local strategies. Local estimation appears to capture

the major changes arising from environmental illumination,

while the global approach does not. More importantly, the

bottom, rightmost pictures reveal the benefit of computing

each atmospheric intensity component independently, as com-

pared to searching for the location in �(x) maximizing the

minimum over the 3 color channels, as a straightforward

locally adaptive extension of [1] would do. We also observe

that the image reconstructed estimated by our local method
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Fig. 3. Local airlight estimation. A global estimate of the A∞ based on dark channel results in a white airlight (the brightest region of the dark channel is
depicted here by green rectangle). As a consequence, the dark channel might become very small (see blue rectangle in second image of bottom row), which
means 1 − T (x) ≈ 0 in Equation3 and no airlight influence in Equation 1. In contrast, our local airlight estimate on the same blue rectangle results in a
colored atmospheric light, which in turns results in a non-unity transmission and a non-zero atmospheric light influence. Please refer to Table I that lists the
concepts used in our local estimation of the A∞.

Fig. 4. Airlight estimation. The global version of our local airlight estimate Ac
L∞

, derived by maximizing miny∈�(x)

(

I
c(y)

)

over the entire image, appears
to be quite similar to the atmospheric intensity estimated by He et al. [1], from the brightest region of the dark channel (depicted by green rectangles). The red
rectangles show that, in daytime scenes, the two approaches equally reject the high image intensity locations that are not relevant regarding airlight estimation.
He et al. [1] method rejects them because the prior is dark in those regions, while our strategy rejects them because IM I N gets darker than the initial image in
those regions that are not subject to intense airlight illumination. Since IM I N does not make any implicit assumption about the whiteness of the atmospheric
illumination, it is more general than [1], especially in presence of artificial colored lighting.

of the atmospheric intensity is of better appearance (both in

color and details) than those resulting from local estimation

obtained based on joint processing of the color channels.

Finally, it is worth noting that, when �(x) is defined to cover

the entire image, our method reduces to a global estimator.

Interestingly, in this case, Fig. 4 reveals that the global estimate

of Ac
L∞ derived by maximizing miny∈�(x) (Ic(y)) over the

entire image is quite similar to the one proposed in [1] for day-

time scenes. Hence, our proposed estimator may be regarded

as a night-friendly generalization of the concepts introduced

in [1].

IV. FUSION PROCESS

While the above described airlight local estimation proce-

dure significantly improves the image enhancement process,

important artifacts still arise at and around patch transitions,

where color shifting and glowing defects are visible. Moreover,

as detailed below, the choice of the patch size appears to
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Fig. 5. Overview of our approach. Multi-scale fusion of the Laplacian with images dehazed from distinct airlights, estimated on spatial neighborhoods of
different sizes and the corresponding normalized weight maps.

TABLE I

PARAMETERS AND CONCEPTS USED IN OUR LOCAL

AIRLIGHT ESTIMATION

be delicate, potentially leading to poor quality of the output

images owing to non-uniformity of the airlight in night-time

scenes. To circumvent this problem, we propose to adopt a

multi-scale fusion approach to merge the images obtained

with different patch-sizes, thereby allowing for effective and

seamless enhancement of hazy night-time images.

A. Inputs

Our fusion technique is a single image approach„ meaning

that it first generates multiple inputs from the original hazy

image. To do this, we consider the strategy described in

Section III, but use multiple patch size to locally estimate the

airlight values. In short, we consider multiple patch sizes for

the following reasons. The larger the patch, the more likely

it will include a pixel having (close to) zero transmission,

resulting in accurate airlight estimation. However, a large patch

size also reduces the accuracy of spatial adjustment of the

airlight, which is penalizing in the case of multiple and distinct

light sources spread over the scene.

In practice, we derive two images. The first input is

computed using a small patch size (e.g. 20 × 20 for an

image of size 800 × 600), thereby preventing estimation of

the airlight from multiple light sources. However the resulting

input is characterized by an important loss of global contrast

and chroma. We solve this limitation by computing a second

input using larger patches (e.g. 80 × 80 for an image of

size 800 ×600). This derived input considerably improves the

global contrast. For completeness, we make three observations

about the generation of the two inputs. First, in practice,

transitions between neighboring patches are smoothed using a

simple gaussian filter. Second, as a consequence of Equation7,

when more than one light source is included in the region of

interest, the airlight is estimated according to a winner-take-all

strategy.

Third, regarding the size of the patch, we observe that it

should typically increase proportionally with the resolution

of the image. This is because the impact of the patch size

is primarily related to the fraction of the scene covered by

the patch (a patch is considered to be small if it is likely to

include a single light source, while it is considered to be large

when it has a high probability of including pixels having zero

transmission and, consequently, with observed color equal to

airlight).

As shown in Fig. 5, glowing effects are still visible in the

derived inputs. To reduce such undesired effects, we derive a

third input which is the discrete Laplacian of the original

image. This input makes it possible to enhance the finest

details that are transferred to the fused output.

In practice, the Laplacian is approximated by a difference

of Gaussians. Specifically, we subtract from the initial image a

blurred version of the image obtained using a Gaussian filter,

with default standard deviation equal to two.

B. Weight Maps

Inspired by our previous fusion-based dehazing

approach [3], we derive three weight maps to ensure

that regions of high contrast or of high saliency will receive

greater emphasis in the fusion process.

Local contrast weight is computed by applying a Laplacian

filter to the luminance of each processed image. This indicator
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Fig. 6. Our experiments reveal that using a small patch size (e.g. 20 × 20 on an image of size 800 × 600) gives the capability of adjusting the airlight
estimation to the local light source(s). However, by compensating local illumination, such a small patch also results in an important loss of global contrast
and chroma. This limitation is solved by using a larger patch (e.g. 80 × 80 for an image of size 800 × 600), which considerably improves the global contrast
by maintaining a consistent airlight estimate over the entire scene. Our work proposes to improve the performance by using both of patch size alternatives,
by merging the two images reconstructed from a small and a large patch size.

estimates the amount of local variation, and has been used in

applications such as tone mapping [57]. It assigns high values

to edges and texture variations.

Saturation weight map is computed as the standard devi-

ation across channels at each coordinate. This factor is

motivated by the fact that humans generally prefer images

characterized by a high level of saturation.

Saliency weight map is computed as a difference between

a Gaussian smoothed version of the input and its mean value,

similarly to Achanta et al. [62]. This factor highlights the

most conspicuous regions of an image compared with their

surroundings.

C. Multi-Scale Fusion

The main goal of the fusion process is to produce an image

that smoothly blends the inputs while preserving the input

features highlighted by the weight maps.

The simplest way (known as naive fusion, or NF) is to

directly combine the inputs and weight maps as RN F (x) =
∑

k W̄
k(x)Ik(x) with Ik being the kth input and W̄ k denoting

the normalized weight maps. The weight maps are normalized

pixel-wise, i.e. on a pixel-per-pixel basis, by dividing the

weight of each pixel in each map by the sum of the weights

of the same pixel over all maps.

In practice, however, this naive fusion strategy has been

shown to cause annoying halo artifacts, mostly at locations

with strong transitions in the weight maps. Such unpleasing

artifacts can be overcame by using a multi-scale Laplacian

decomposition [63].

As done for other single-image dehazing approaches [3],

[33], in this multiscale approach, each input Ik is decomposed

into a Laplacian pyramid while the normalized weight maps

W̄k are decomposed using a Gaussian pyramid. Using the

same number of levels, the Gaussian and Laplacian pyramids,

are independently fused at each level:

Rl(x) =
∑

k

Gl

{

W̄
k(x)

}

Ll {Ik(x)} (9)

where l represents the number of the pyramid levels, L {I}

denotes the Laplacian of the input I, and G
{

W̄
}

is the

Gaussian-smoothed normalized weight map W̄.

The fused result R is processed by summing the contribu-

tions from all the computed levels of the pyramid:

R(x) =
∑

l

Rl(x) ↑d (10)

where ↑d is the upsampling operator with factor d = 2l−1.

V. RESULTS AND DISCUSSION

A. Day-Time Dehazing Evaluaion

In our comprehensive evaluation we first consider day-time

hazy scenes. In order to perform qualitative and quantitative

evaluation we test our approach on the recent O-HAZE dehaz-

ing dataset [50]. O-HAZE is a realistic datasets that consists

of 45 outdoor haze-free images and their corresponding hazy

version, captured in the presence of real haze, generated by

professional haze machines. Fig. 7 shows several image pairs

randomly selected from the O-HAZE dataset. We compare

these with the specialized day-time dehazing techniques of

He et al. [1], Meng et al. [22], Cai et al. [4], Ren et al. [42],

Berman et al. [5] and P M S − Net [64]. Among them

Cai et al. [4], Ren et al. [42] and P M S−Net [64] are learning-

based techniques. Additionally, we compare with the night-

time dehazing techniques of Li et al. [19], Ancuti et al. [20]

and Zhang et al. [52].

On closer inspection, when comparing the dehazed images

with the ground truth ones (shown in the last column), it may

be observed that the DCP-based techniques of He et al. [1] and

Meng et al. [22] decently restore the image structure, but intro-

duce unpleasing color shifting, mostly in the lighter/whiter

regions, where the dark channel prior generally fails. The

technique of Berman et al. [5] is less prone to such artifacts,

and leads to images with sharp edges, mostly due to its strategy

to locally estimate the airlight and the transmission. Regarding

the learning-based approaches, we observe that the methods

of Ren et al. [42] and P M S − Net [64] generate visually

more compelling results than the deep learning approach of

Cai et al. [4]. As expected, the specialized night-time dehazing

approaches of Li et al. [19] and Zhang et al. [52] shown

important limitations both in recovering the structures but

also the color tones. By contrast, our technique handles color
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Fig. 7. Comparative results. The first row shows the hazy images and the last row shows the ground truth. The other rows from left to right show the
results of He et al. [1], Meng et al. [22], Li et al. [19], Cai et al. [4], Ancuti et al. [20], Ren et al. [42], Zhang et al. [52], Berman et al. [5], P MS − Net [64]
and our results using the day-time setting.

differently than other methods, leading to higher contrast and

more intense colors. It also appears to improve the initial

version of our method, presented in [20] and devoted to night-

time, by avoiding yellow/red color shifts.

Quantitatively, Table II and III consider three well-known

metrics: PSNR, SSIM [66] and CIEDE2000 [67], [68].

Higher values indicate better quality for PSNR and SSIM,

while CIEDE2000 computes the color difference between two

images and generates values in the range [0,100], with smaller

values indicating better color preservation. Table II presents

the quantitative evaluation metrics for the image pairs shown

in Fig. 7, while Table III provides the average values computed

over the entire O-HAZE dataset (45 set of images).Beyond

the techniques shown in Fig. 7, Table III considers as well the

recent CNN-based dehazing technique P P DN [43], which

was the winner of the CVPR NTIRE 2018 dehazing chal-

lenge [65]. As observed qualitatively, the group of methods

including He et al. [1], Meng et al. [22], Cai et al. [4],

Berman et al. [5] but also the night time dehazing techniques

of Li et al. [19] and Zhang et al. [52] cannot compete with our

approach as well as with CNN-based techniques, both in terms

of structure and color restoration. Our day-time dehazing solu-

tion, together with the learning approaches of Ren et al. [42],

P P DN [43] and P M S − Net [64] appear to be the most

accurate for O-HAZE quantitative evaluation. Our approach

has the advantage of having a lower complexity compared with

CNN-based solutions. While we can rely on the metrics and

pictures provided in [43] and [64] to evaluate how CNN-based
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TABLE II
QUANTITATIVE EVALUATION. WE COMPUTE THE SSIM, PSNR AND CIEDE2000 INDICES BETWEEN THE GROUND TRUTH IMAGES AND THE

DEHAZED IMAGES PRODUCED BY THE EVALUATED TECHNIQUES FOR SEVERAL SETS OF IMAGES OF THE O-HAZE DATASET.

THE HAZY IMAGES, GROUND TRUTH AND THE RESULTS ARE SHOWN IN FIG.7.

TABLE III

QUANTITATIVE EVALUATION OF ALL THE 45 SET OF IMAGES OF THE O-HAZE DATASET. THIS TABLE PRESENTS THE AVERAGE VALUES OF THE SSIM,
PSNR AND CIEDE2000 INDEXES, OVER THE ENTIRE DATASET. BEYOND THE TECHNIQUES SHOWN IN FIG. 7, WE ALSO COMPARED AGAINST

THE WINNER OF THE CVPR NTIRE 2018 DEHAZING CHALLENGE [65], [69]

Fig. 8. Comparative results for night-time hazy scenes. We compare with the day-time dehazing techniques of He et al. [1], Meng et al. [22] but also
with the specialized night-time dehazing methods of Zhang et al. [18] and Li et al. [19].

methods deal with the O-Haze dataset, the code for those

CNN-based methods is not available and could not be tested

on night-time images. However, we might reasonably expect

that models trained on day-time images do not generalize well

to night-time scenes (see for example the issues raised when

transferring models between domains [70]). By contrast, our

method has the advantage of also being competitive also for

night-time dehazing, as shown in the following.

B. Night-Time Dehazing Evaluation

We also tested our approach on the dataset introduced

in [19] that contains various quality and formats of images

taken of night-time scenes. We compared our method with the

recent night-time dehazing techniques of Zhang et al. [18],

Li et al. [19] and Zhang et al. [52] and also with the day-

time dehazing methods of Ancuti and Ancuti [3], Fattal [2],

He et al. [1], Meng et al. [22] and Berman et al. [5] . For all

results we used the original code provided by the authors on

their webpages.

Figures 1, 8 and 9 demonstrate the limitations of the day-

time dehazing techniques of Ancuti [3], Fattal [2], He et al. [1],

Meng et al. [22] and Berman et al. [5] when applied to night-

time hazy images. In general these techniques are not able

to restore color well, and only slightly remove the haze for

such scenes. Figures 8 and 9 directly compare our approach

with the recent specialized techniques of Li et al. [19] and
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Fig. 9. Comparative results for night-time hazy scenes. We compare with the day-time dehazing techniques of Meng et al. [22] and Berman et al. [5]
but also with the specialized night-time dehazing methods of Li et al. [19] and Zhang et al. [52] .

TABLE IV

EVALUATION OF THE RESULTS IN FIG. 10 BASED ON THE PSNR VALUES

COMPUTED AS AN AVERAGE ON RGB COMPONENTS FOR EACH OF THE

6 COLORS OF THE REFERENCE PALETTE

Fig. 10. Comparative results on the image with color checker provided

by Zhang et al. [18]. The night-time hazy image with color palette (top-
left) is enhanced by several dehazing techniques. See Table IV for the PSNR
values.

Zhang et al. [18]. The method of Li et al. [19] tends to darken

the original image and to over-amplify colors in some regions.

Whilst much better than day-time methods, the strategy of

Zhang et al. [52] sometimes appears to generate less contrasted

images than our approach (see in particular the dark scenes

presented in the second and fourth lines of Fig. 9).

Moreover, our approach has the advantage of simplicity and

computational efficiency. Our unoptimized Matlab implemen-

tation processes an 800 × 600 image in less than 4 seconds.

The method of Li et al. [19] computes results on a similar

image in more than 30 seconds, while the method of Zhang

et al. [18] requires a similar computation as He et al. [1]

(approx. 20 seconds per image).

We also performed a quantitative evaluation using the

pair of images provided by Zhang et al. [18]. The left

side of the top row of Fig. 10 shows the reference color

palette and the night-time hazy image containing this palette.

We processed this input image using several different dehazing

techniques [2], [3], [18], [19] and computed the PSNR values

for each of the 6 colors (shown in Table IV). As can be seen,

our approach generally performs better in terms of PSNR as

compared with the other techniques.

VI. CONCLUSIONS

In this paper we introduce an effective technique to enhance

both day-time and night-time hazy scenes. Our method

removes the haze by inverting the simplified Koschmieder’s

light transmission model. Therefore it has to estimate the

airlight. In contrast to most previous works, we estimate

the airlight on local patches (and not on the whole image),

since under night-time conditions, the lighting generally arises

from multiple artificial sources, and is thus intrinsically non-

uniform. To circumvent the patch-size selection issue, we pro-

pose to fusion multiple instances of inverted images, obtained

with distinct patch sizes. An additional input, computed

by a Laplace operator, is provided to the fusion process to

reduce the glowing effects and emphasize the finest image

details. During fusion, the derived inputs are blended in a
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multi-scale fashion using a Laplacian pyramid decomposition.

The experimental results demonstrate the superiority of our

approach compared with the recent techniques both for day

and night time hazy scenes.
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