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The relative roles of temperature and day length in driving spring leaf unfolding are 22	
known for few species, limiting our ability to predict phenology under climate 23	
warming1,2. Using experimental data, we assess the importance of photoperiod as a leaf-24	
out regulator in 173 woody species from throughout the Northern Hemisphere, and we 25	
also infer the influence of winter duration, temperature seasonality, and inter-annual 26	
temperature variability. We combine results from climate- and light-controlled 27	
chambers with species’ native climate niches inferred from geo-referenced occurrences 28	
and range maps. Of the 173 species, only 35% relied on spring photoperiod as a leaf-out 29	
signal. Contrary to previous suggestions, these species come from lower latitudes, 30	
whereas species from high latitudes with long winters leafed out independent of 31	
photoperiod, supporting the idea that photoperiodism may slow or constrain poleward 32	
range expansion3. The strong effect of species’ geographic-climatic history on 33	
phenological strategies complicates the prediction of community-wide phenological 34	
change. 35	
 36	

Understanding the environmental triggers of leaf out and leaf senescence is essential 37	
for forecasting the effects of climate change on temperate zone forest ecosystems2,3,4. 38	
Correlation analyses suggest that warmer springs are causing earlier leaf emergence, leading 39	
to an extended growing season5,6 and increased carbon uptake7. A continuing linear response 40	
to spring warming, however, is not expected because stimuli, such as photoperiod1,8-10 and 41	
chilling11-13, additionally trigger dormancy release.  42	

Photoperiod limitation refers to the idea that plant sensitivity to day length protects 43	
leaves against frost damage by guiding budburst into a safe time period1. Experiments have 44	
shown that day length-sensitive species react to spring temperatures only once day length 45	
increases10. Because day length will not change under climate warming, photosensitive 46	
species may be less responsive to warmer temperatures1,9,14,15.  47	

Experiments addressing the relative importance of photoperiod versus temperature 48	
for dormancy release have been carried out in about 40 species8-12, and among them a few 49	
species, most strikingly Fagus sylvatica, exhibited strong photoperiodism8-10,12,16-19. Results 50	



are often equivocal, perhaps in part reflecting experimental difficulties in adequately 51	
modifying day length when working with trees9,11,12,20,21.  52	

Why species differ in their relative reliance on photoperiod and spring temperature as 53	
leaf-out signals is largely unknown. This prevents the development of mechanistic models for 54	
predicting spring phenology under climate warming. The need to understand spring 55	
phenology in its geographic-climatic context is highlighted by studies suggesting that 56	
phenological strategies in long-lived woody species have evolved as adaptations to the 57	
climate in a species’ native range22-25. A common garden study of 495 woody species from 58	
different climates showed that species native to warmer climates flush later than species 59	
native to colder areas, but did not investigate whether this was due to different species relying 60	
on temperature or photoperiod25. If photoperiod indeed provides a safeguard against leafing 61	
out too early1,9, photoperiodism should be especially important (i) in regions with 62	
unpredictable frost events, i.e., high inter-annual variability in spring temperatures (here 63	
called ‘high temperature variability’ hypothesis)26 and (ii) in regions with oceanic climates in 64	
which temperature is a less reliable signal because the change between winter and spring 65	
temperatures is less pronounced (‘oceanic climate’ hypothesis)1. A third hypothesis is that 66	
photoperiodism mirrors species’ latitudinal occurrence because day-length seasonality 67	
increases towards the poles, and day length thus provides an especially strong signal at higher 68	
latitudes (‘high latitude’ hypothesis)3. Of these predicted correlates of photoperiod as a spring 69	
leaf-out signal, only the ‘oceanic climate’ hypothesis has been tested12, with no significant 70	
relationship found. 71	

We set out to (i) investigate the relative effect of photoperiod on leaf-out timing in 72	
species from different winter temperature regimes (‘high latitude’ hypothesis), temperature 73	
seasonality regimes (‘oceanic climate’ hypothesis), and between-year spring temperature 74	
variability (‘high temperature variability’ hypothesis) [Fig. 1a], and to (ii) test if photoperiod-75	
sensitive species react less to spring temperatures than do photoperiod-insensitive species. We 76	
used 173 species (in 78 genera from 39 families) from the Northern Hemisphere grown in a 77	
mid-latitude (48°N) European Botanical Garden and modified the day length experienced by 78	
buds on twigs cut from these species at three different times and hence chilling levels (see 79	
Methods and Supplementary Fig. 1). To assign the species to their climate ranges, we queried 80	
geo-referenced occurrence data against climate grids for winter duration (Fig. 1b), 81	
temperature seasonality (T seasonality), and inter-annual spring temperature variability (T 82	
variability). In addition, each species was also assigned to its predominant Koeppen-Geiger 83	
climate type25. To achieve our second aim, we tested for correlations between species’ 84	
photoperiodism (as inferred from our experiments on leaf-out in twigs under different light 85	
regimes) and their leaf-out behaviour in situ (as inferred from multi-annual leaf-out 86	
observations on intact trees; Fig. 2). 87	

With low chilling (twig-collection in December), 61 (35%) of the 173 species leafed 88	
out later under short day conditions than under long days, while the remaining 112 species did 89	
not react differently regardless of short and long days. Increased chilling reduced species’ 90	
sensitivity to photoperiod: Under intermediate chilling conditions (twig-collection in 91	
February), 16 (9%) of the 173 species showed delayed budburst under short days. Under long 92	
chilling conditions (twig-collection in March), only 4 (2%) species, namely Fagus crenata, F. 93	
orientalis, F. sylvatica, and Carya cordiformis, leafed out later under short days. Based on the 94	
current results, constraints on the climate-warming-driven advance of leaf-out15 likely will be 95	
twofold in photosensitive species: (i) reduced winter chilling per se will cause plants to 96	
require more forcing in the spring and (ii) reduced chilling additionally will cause higher 97	
photoperiod requirements. The latter constraint will become more significant, as springs will 98	
arrive ever earlier (i.e., at ever shorter photoperiods) in the future. 99	

Where do the species that rely on photoperiodism as a leaf-out trigger come from? 100	
Our data reject all three suggested correlates of photoperiodism (i.e., the ‘high latitude’, ‘high 101	



temperature variability’, and ‘oceanic climate’ hypotheses) and instead reveal that it is the 102	
species from shorter winters (i.e., lower, not higher latitudes) that rely on photoperiodism (P 103	
< 0.05; Table 1; Fig. 1). Of the 173 species, the 22 that come from regions with long winters 104	
(> 7 months with an average temperature below 5°C), such as alpine and subarctic regions are 105	
photoperiod-insensitive, while the 14 species with high photoperiod requirements are 106	
restricted to regions with shorter winters (not exceeding six months with an average 107	
temperature below 5°C; Fig. 1). In a hierarchical Bayesian model that controlled for possible 108	
effects of shared evolutionary history and species’ growth height, winter duration remained 109	
negatively correlated with species’ photoperiodism (Fig. 1a). Analyses that used the 110	
Koeppen-Geiger climate classification yielded the same results as analyses that used the 111	
climate grids, namely that most photoperiod-sensitive species are native to warm climates 112	
with mild winters (Supplementary Fig. 2). 113	

Why is there a negative correlation between species’ reliance on day length as a leaf-114	
out signal and the winter duration in their native ranges? There are two possible mechanisms 115	
on how photoperiod perception in plants may interact with forcing requirements: (i) Either 116	
plants need to reach a fixed photoperiod threshold before they perceive forcing temperatures 117	
or (ii) forcing requirements gradually decrease with increasing photoperiod. The first 118	
mechanism would require that plants from regions with long winters have higher photoperiod 119	
thresholds because in these areas days are already long (>14-h) when minimum temperatures 120	
cross the freezing threshold (see also Way & Montgomerey21: Fig. 1). The second mechanism 121	
would require that the relative use of photoperiod as a budburst regulator decreases towards 122	
regions with long winters because days in spring become long before the risk of encountering 123	
freezing temperatures has passed. Experimental results from Fagus sylvatica show a gradual 124	
response to photoperiod independent of the latitudinal origin of the experimental plants: 125	
Forcing requirements decrease with increasing day length up to about 16-h, with further 126	
increase of daylight having little additional effect8,10. This supports the second mechanism. 127	
The second mechanism is also supported by F. sylvatica leafing out earlier at regions with 128	
long winter duration than photo-insensitive species and therefore operating at a smaller 129	
‘safety margin’ against late frosts27,28. The hypothesis that Northern woody species evolved 130	
photoperiod-independent leaf-out strategies because at high latitudes day length increase in 131	
spring occurs too early for frost to be safely avoided needs to be tested with further 132	
experiments addressing the physiological mechanisms of photoperiod perception in different 133	
taxonomic groups. 134	

That photosensitive species are restricted to regions with relatively short winters 135	
supports the idea that photoperiodism may slow or constrain poleward range expansion3. With 136	
a warming climate, however, the last day with night frost occurs ever earlier (in Germany, 137	
between 1955 – 2015, the last frost on average advanced by 2.6 days per decade; 138	
Supplementary Fig. 3), and photoperiod-sensitive species might do well at higher latitudes or 139	
elevations. 140	

The leaf-out dates showed that those species with high photoperiod requirements had 141	
lower between-year variance in leaf-out dates than species lacking photoperiodism. 142	
Accordingly, in photoperiod-sensitive species, accumulated thermal time until budburst 143	
showed greater variation among years than that of photoperiod-insensitive species (P < 0.01; 144	
Fig. 2). Leaf unfolding in species that rely on day length is thus less responsive to temperature 145	
increase, and in these species photoperiod will constrain phenological responses to climate 146	
warming, with possible consequences for carbon gain, the local survival of populations and 147	
community composition2,4. The extent to which species’ phenological strategies are 148	
influenced by their climatic histories highlights the need for a broader geographic sampling in 149	
global-change studies29.  150	

Our results do not support previous ideas about phenological strategies in temperate 151	
woody species (the ‘high temperature variability’ hypothesis; the ‘oceanic climate’ 152	



hypothesis; the ‘high latitude’ hypothesis1,3,26). In regions with long winters, trees appear to 153	
rely on cues other than day length, such as winter chilling and spring warming. By contrast, in 154	
regions with short winters, many species – mostly from lineages with a warm-temperate or 155	
subtropical background, e.g., Fagus30 – additionally rely on photoperiodism. Therefore, only 156	
in regions with shorter winters, photoperiod may be expected to constrain climate change-157	
driven shifts in the phenology of spring leaf unfolding.  158	

 159	
 160	
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Methods 255	
Twig cutting experiments 256	
We conducted twig-cutting experiments on 144 temperate woody species growing 257	
permanently outdoors without winter protection in the botanical garden of Munich to test for 258	
an effect of day length on dormancy release and subsequent leaf unfolding (see 259	
Supplementary Table 1 for species names). Twig cuttings have been shown to precisely 260	
mirror the phenology of donor trees because dormancy release is controlled at the bud level 261	
and not influenced by hormonal-signals from other parts of a tree, such as the stem or the 262	
roots10,31. In winter 2013/2014, c. 40 cm-long twigs were collected at three different 263	
dormancy stages (on 21 Dec, 10 Feb, and 21 Mar) for each species. After collection, we 264	
transferred the cut twigs to climate chambers and kept them under short (8 h) or long day (16 265	
h) conditions. Temperatures in the climate chambers were held at 14°C during the night and 266	
18°C during the day (see Supplementary Fig. 4 for a description of the temperature regime 267	
outside and in the climate chambers). Illuminance in the chambers was about 8 kLux (~100 268	
µmol s-1 m-2). Relative air humidity was held between 40% and 60%.  269	

Immediately after cutting, we disinfected the twigs with sodium hypochlorite 270	
solution (200 ppm active chlorine), re-cut them a second time, and then placed them in 0.5 l 271	
glass bottles filled with 0.4 l cool tap water enriched with the broad-spectrum antibiotics 272	
gentamicin sulfate (40 microg/l; Sigma–Aldrich, Germany)9,10. We used 60 replicate twigs 273	
per species (10 twigs per treatment, 3x2 full factorial experiment) and monitored bud 274	
development every second day. For each treatment, we recorded the leaf-out dates of the first 275	
eight twigs that leafed out. A twig was scored as having leafed out when three buds had their 276	
leaves pushed out all the way to the petiole. Flushing rate, i.e. the proportion of buds flushed 277	
over the total number of buds on the twigs, was not recorded. Treatment effects (long vs. 278	
short days at three different dormancy stages) on the response variable (accumulated degree 279	
days >0°C outside and in climate chamber from 21 Dec until leaf-out) were assessed in 280	
ANOVAs. We defined three categories to describe a species’ photoperiodism: none = No 281	
response to day length, low = sensitivity to day length during early dormancy, high = 282	
sensitivity to day length also during late dormancy. Species whose twigs when cut on 21 Dec 283	
(early dormancy stage) showed no statistical difference between 8-h and 16-h photoperiod 284	
treatments were categorized as having no photoperiod requirements. Species whose twigs 285	
when cut on 21 Dec leafed out significantly later when they were exposed to 8-h day length 286	
compared to 16 h days were categorized as having low photoperiod requirements. Species 287	
whose twigs when cut on 10 Feb (advanced dormancy stage) still leafed out later under short 288	
days (8 h) than under 16-h days were categorized as having high photoperiod requirements. 289	
When twigs were cut on 21 March, only three Fagus species and Carya cordiformis reacted 290	
differently to 8-h and 16-h photoperiods, and we categorized them as having high photoperiod 291	
requirements. In addition to the ANOVA assessment, a day length effect was only considered 292	
significant if the forcing requirements under 8-h day length were >50 degree days higher than 293	
under 16-h day length and if the additional forcing requirement was >10% larger than 294	
required under long days (see Supplementary Fig. 1 for species-specific treatment effects). 295	
Information on the photoperiod requirements of 29 additional species came from a previous 296	
study12 that used the same experimental approach to detect species’ photoperiod requirements, 297	
allowing us to apply the same definition of photoperiod categories to their data. This resulted 298	
in photoperiod data for a total of 173 woody species in 78 genera from 39 families. 299	
 300	
In-situ leaf-out observations 301	
For 154 of the 173 species with information on photoperiod requirements (previous section), 302	
we have four years of observations of leaf-out dates, viz. 2012–2015, available from the 303	
Munich botanical garden. The 2012 and 2013 data come from our earlier study25, and the 304	
same individuals were monitored again in 2014 and 2015. A species’ leaf-out date was 305	



defined as the day when three branches on a plant had leaves pushed out all the way to the 306	
petiole. Thermal requirements of species were calculated as the sum of growing-degree days 307	
from 1 January until day of leaf-out using a base temperature of 0°C. Species names are given 308	
in Appendix Table S1. To test if species with photoperiod requirements show lower variation 309	
in leaf-out and higher variation in thermal requirements among years than do photo-310	
insensitive species, we applied difference-of-means tests (Fig. 2). Because vectors were not 311	
normally distributed we conducted Kruskal–Wallis H tests with a post-hoc Kruskalmc 312	
analysis (multiple comparison after Kruskal–Wallis)32.  313	
 314	
Temporal occurrence of last frost events  315	
Weather data were downloaded from Deutscher Wetterdienst, Offenbach, Germany, via 316	
WebWerdis (https://werdis.dwd.de/werdis/ start_js_JSP.do) to gather information on the 317	
relative occurrence date and temporal shifts of the last frost (daily minimum temperature 318	
below 0°C). Information on the occurrence of the last frost from 1955 to 2015 for German 319	
locations differing in their winter duration is given in Supplementary Fig. 3. On average, 320	
across all stations, the last freezing event advanced by 2.6 days per decade. 321	
 322	
Species ranges and climate characteristics  323	
To obtain species’ native distribution ranges, we extracted georeferenced locations from the 324	
Global Biodiversity Information Facility (GBIF; http://www.gbif.org/), using the dismo R-325	
package33. Cleaning scripts in R were used to filter reliable locations and exclude species with 326	
unreliable records, using the following criteria: (i) only records from a species’ native 327	
continent were included; (ii) coordinate duplicates within a species were removed; (iii) 328	
records based on fossil material, germplasm, or literature were removed; (iv) records with a 329	
resolution >10 km were removed; and (v) only species with more than 30 georeferenced 330	
GBIF records within their native continent were included. After applying these filtering 331	
criteria, we were left with distribution data for 144 of the 173 species.  332	

We then derived species-specific climate ranges from querying georeferences against 333	
climate grids of three bioclimatic variables: T seasonality (BIO7; Temperature difference 334	
between warmest and coldest month), T variability (inter-annual spring T variability 335	
calculated as the standard deviation of March, April, and May average T from 1901 – 2013), 336	
and winter duration (defined as the numbers of months with an average T below 5°C). A grid 337	
file for the winter duration was based on global monthly weather data available at 338	
www.worldclim.org34, from which we calculated the number of months with an average 339	
temperature below 5°C for the global land surface (see Fig. 1b). T seasonality was based on 340	
gridded information (2.5-arc minute spatial resolution data) about the annual temperature 341	
range derived from the WorldClim dataset (bioclim7)34. T variability was calculated as the 342	
standard deviation of spring (March, April, and May) average temperatures from 1901 to 343	
2013 (see Supplementary Fig. 5). Data on monthly average temperatures during this period 344	
were available from the CRU database (5-arc minute spatial resolution data)35. For each 345	
bioclimatic variable we determined three species-specific measures: the upper and lower 346	
limits and the median which were obtained from the bioclimatic data covering a species range 347	
at the 0.95, 0.05, and 0.50 quantile, respectively.  348	

As an alternative approach that allowed us to infer the predominant climate of 171 of 349	
the 173 species, we used the Koeppen-Geiger system36. Information on species-specific 350	
Koeppen-Geiger climate types was available from our earlier study25 in which each species’ 351	
natural distribution was determined using information from range maps and range 352	
descriptions: http://linnaeus.nrm.se/flora/welcome.html and 353	
http://www.euforgen.org/distribution-maps/ for the European flora, 354	
http://plants.usda.gov/java/ and http://esp.cr.usgs.gov/data/little/ for North America, and 355	
http://www.efloras.org for Asia. As a proxy for a species’ native winter temperature regime, it 356	



was scored for the first Koeppen-Geiger letter (D-climate = coldest month average below -357	
3°C, C-climate = coldest month average above -3°C). For species’ summer temperature, the 358	
third Koeppen-Geiger letter was used (a-climate = warmest month average above 22°C with 359	
at least four months averaging above 10°C; b-climate = warmest month average below 22 °C 360	
but with at least four months averaging above 10 °C, c-climate = warmest month average 361	
below 22°C with three or fewer months with mean temperatures above 10 °C). The second 362	
letter in the Koeppen system refers to precipitation regime and was disregarded in the 363	
analyses. Species were scored for the predominant conditions in their native range; for 364	
example, a species occurring in 40% Cfa, 30% Dfa, and 30% Dfb climates would be scored as 365	
“D” and “a”.  366	
 367	
Data analysis 368	

The quantiles (0.05, 0.5, and 0.95) of each climate parameter (winter duration, T 369	
seasonality, and T variability) were highly correlated among each other (Pearson correlation, 370	
r > 0.5). To avoid multicollinearity in our models, we included only one quantile for each 371	
climate parameter. For each climate parameter, we kept the quantile that gave the best 372	
prediction of species-level variation in photoperiodism. We fitted univariate logistic 373	
regression models to our data and, for each climate parameter, kept the variable with the 374	
lower Akaike information criterion (AIC), i.e., we kept the 0.95 quantile of winter duration, 375	
0.95 quantile of T seasonality, and 0.5 quantile of T variability. We tested for 376	
multicollinearity among the retained predictor variables by using variance inflation factors 377	
(VIF). All VIF were smaller than 5, indicating sufficient independence of the predictor 378	
variables. ANOVA and ordinal logistic regression (OLR) were used to separately test for 379	
correlations among predictor variables and species-specific photoperiod sensitivity (see Table 380	
1, Fig. 1c, and Supplementary Fig. 6). To examine the relative contribution of each climate 381	
variable to explain species-specific photoperiod sensitivity, we applied multivariate OLR, 382	
random forest37,38, and hierarchical Bayesian models. The hierarchical Bayesian models 383	
allowed us to control for phylogenetic signals in our data (Supplementary Fig. 7) using the 384	
Bayesian phylogenetic regression method39 (next section). We analysed correlations between 385	
species’ native climates as inferred from the Koeppen-Geiger system36 and their photoperiod 386	
requirements by applying contingency analyses (Fisher’s test) and hierarchical Bayesian 387	
models (next section). 388	
 389	
Data analysis including the phylogenetic structure 390	
To account for possible effects of shared evolutionary history, we applied hierarchical 391	
Bayesian models. The phylogenetic signal in trait data was estimated using Pagel’s λ40, with 392	
the ‘phylosig’ function in the R package ‘phytools’ v0.2-141. The phylogenetic tree for our 393	
173 target species came from Panchen et al.42 and was assembled using the program 394	
Phylomatic43 (Supplementary Fig. 7). Its topology reflects the APG III phylogeny44, with a 395	
few changes based on the Angiosperm Phylogeny Website45. We manually added about 10 396	
missing species to the tree. Branch lengths of the PHYLOMATIC tree are adjusted to reflect 397	
divergence time estimates based on the fossil record46,47. Besides controlling for phylogenetic 398	
signal λ40 of traits, the hierarchical Bayesian approach allowed us to control for possible 399	
effects of growth height on species-level photoperiod requirements and climate ranges, by 400	
including species’ mature growth height as a fixed effect in the models. Mature growth height 401	
is a significant functional trait that is related to species’ growth phenology42 as well as climate 402	
ranges48. Slope parameters across traits are estimated simultaneously without concerns of 403	
multiple testing or P-value correction.  404	

To determine which climate parameter best explains species-level differentiation in 405	
photoperiodism, we treated species’ photoperiod requirements (ordinal data) as a dependent 406	
variable. Three climate variables (species-specific maximum winter duration, 0.95 quantile; 407	



max. T seasonality; 0.95 quantile; and median T variability, 0.5 quantile) and species’ mature 408	
growth height were used as predictor variables (Table 1 and Supplementary Fig. 8).  409	
Regression components are of the form: 410	
ordered logit(photoperiodi) = βmax winter duration x max winter durationi  411	
                                              + βmedian T variability x median T variabilityi 412	
                                              + βmax T seasonality x max T seasonalityi  413	
                                                                     + βgrowth height x growth heighti 414	

β refers to the estimated slopes of the respective variable. In an alternative model, we 415	
used species’ Koeppen winter and summer temperature types and mature growth height as 416	
predictor variables (Supplementary Fig. 9): 417	
ordered logit(photoperiodi) = βwinter temp x winter tempi  418	
                                              + βsummer temp x summer tempi 419	
                                              + βgrowth height x growth heighti 420	

 These models do not statistically account for phylogenetic structure by allowing 421	
correlations to vary according to the phylogenetic signal λ, because λ estimation is not 422	
possible for ordinal (or logistic) models. To nevertheless account for data non-independence 423	
due to shared evolutionary history of species (see Supplementary Fig. 7), we inserted genus 424	
and family random intercept effects in the model. To examine relative effect sizes of predictor 425	
variables, we standardized all variables by subtracting their mean and dividing by 2 SD before 426	
analysis49. The resulting posterior distributions are a direct statement of the influence of each 427	
parameter on species-level differentiation in photoperiod requirements. The effective 428	
posterior means (EPM) for the relationships between winter duration, temperature seasonality, 429	
and spring temperature variability and species-specific photoperiodism are shown in 430	
Supplementary Fig. 8, and the EPMs for relationships between Koeppen-Geiger climates and 431	
photoperiod requirements are shown in Supplementary Fig. 9. 432	

The hierarchical Bayesian model strongly preferred winter duration to T seasonality 433	
and T variability as an explanatory variable for species’ photoperiodism. Likewise, the model 434	
using the Koeppen system preferred the Koeppen winter climate to the summer climate as a 435	
predictor of species’ photoperiodism. To validate these results, instead of treating 436	
photoperiodism as dependent variable, we tested two other models. The first compared the 437	
distribution of covariates (max. winter duration, max. T seasonality, and median T variability) 438	
between the different photoperiod categories. Species’ values for max. winter duration, max. 439	
T seasonality, and median T variability can be treated as continuous characters, which 440	
allowed us to incorporate phylogenetic distance matrices to control for shared evolutionary 441	
history of species (Pagel’s λ values: max. winter duration = 0.40; max. temp. seasonality = 442	
0.39; median temp. variability = 0.26; see inset Fig. 1a). This model included three dependent 443	
variables that were normally distributed with mean µ, variance σ2, and correlation structure Σ 444	
(Fig. 1a): 445	
 max winter durationi ~ N(µmax winter duration i, σ2

max winter duration, Σ) 446	
 median T variabilityi ~ N(µmedian T variability i, σ2

median T variability, Σ)  447	
     max T seasonalityi ~ N(µmax T seasonality i, σ2

max T seasonality, Σ)  448	
Regression components are of the form:  449	
 μmax winter duration i = α1 + βwinter dur x photoperiodismi + β1 x mature growth heighti 450	
 μmedian T variability i  = α3 + βT variability x photoperiodismi + β2 x mature growth heighti    451	
    µmax T seasonality i = α2 + βT seasonality x photoperiodismi + β3 x mature growth heighti          452	
The other model, based on species’ Koeppen climate letters as outcome, included two binary 453	
dependent variables that capture whether species are native to regions with mild or cold 454	
winters (KW; Koeppen C or D climate) and warm or cold summers (KS; Koeppen a or b 455	
climate) [Supplementary Fig. 2]:  456	
     winter temp ~ Bernoulli(WTi) 457	
 summer temp ~ Bernoulli(STi) 458	



Regression components are of the form: 459	
 logit(WTi) = α1+ β1 x photoperiodismi + β3 x maximum growth heighti 460	
     logit(STi) = α2 + β2 x photoperiodismi + β4 x maximum growth heighti 461	

The term α refers to the intercept, β to the estimated slopes of the respective variable 462	
(photoperiodism and maximum growth height), and max winter duration, max temp 463	
seasonality, and median temp variability refer to species values of the respective climate 464	
parameters. The phylogenetic structure of the data was incorporated in the hierarchical 465	
Bayesian model using the Bayesian phylogenetic regression method of de Villemereuil et 466	
al.39, by converting the 173-species ultrametric phylogeny into a scaled (0–1) variance–467	
covariance matrix (Σ), with covariances defined by shared branch lengths of species pairs, 468	
from the root to their most recent ancestor50. We additionally allowed correlations to vary 469	
according to the phylogenetic signal (λ) of climate parameters, fitted as a multiple of the off-470	
diagonal values of Σ39. Values of λ near 1 fit a Brownian motion model of evolution, while 471	
values near zero indicate phylogenetic independence. The phylogenetic variance–covariance 472	
matrix was calculated using the ‘vcv.phylo’ function of the ape library51. The resulting 473	
posterior distributions are a direct statement of the influence of spring photoperiodism on 474	
species-level differentiation in climate characteristics (i.e., species’ max. winter duration, 475	
median temp. variability, and max. temp. seasonality). Effective posterior means for the 476	
respective relationships are shown in Fig. 1a.  477	

To parameterize our models we used the JAGS52 implementation of Markov chain 478	
Monte Carlo methods, in the R package R2JAGS53. We ran three parallel MCMC chains for 479	
20,000 iterations with a 5000-iteration burn-in and evaluated model convergence with the 480	
Gelman and Rubin54 statistic. Noninformative priors were specified for all parameter 481	
distributions, including normal priors for α and β coefficients (fixed effects; mean = 0; 482	
variance = 1000), uniform priors between 0 and 1 for λ coefficients, and gamma priors (rate = 483	
1; shape = 1) for the precision of random effects of phylogenetic autocorrelation, based on de 484	
Villemereuil et al.39. 485	

In table 1 we summarize the statistical results. All statistical analyses relied on R 486	
3.2.255. 487	
 488	
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Figure legends 561	
 562	
Figure 1 | Relationship between species’ spring photoperiodism and the maximum 563	
winter duration in their native ranges. a, Coefficient values (effective posterior means β 564	
and 95% credible intervals) for the effect of spring photoperiodism on species’ maximum 565	
winter duration, median T variability, and maximum T seasonality. Models control for 566	
phylogenetic autocorrelation and species’ maximum growth height. See Supplementary 567	
Methods for a detailed description of regression components. Values reflect standardized data 568	
and can be interpreted as relative effect sizes. The inset shows fitted values of phylogenetic 569	
signal (Pagel’s λ, mean and 95% CIs) for species’ maximum winter duration, median T 570	
variability, and maximum T seasonality (dependent variables), respectively. b, Winter 571	
duration calculated as the number of months with mean air temperature below 5°C. c, 572	
Proportion of species with a given level of photoperiod sensitivity as a function of maximum 573	
winter duration (0.95 quantile) in a species’ native range (ordinal logistic regression model; P 574	
< 0.01; table 1). Colours as in panel b. Envelopes around each line show 95% confidence 575	
intervals. Boxplots for species’ maximum winter duration when they were grouped according 576	
to photoperiod requirements are shown below the graph. Photoperiod requirements: None = 577	
No sensitivity; Low = Sensitivity to day length during early dormancy; High = Sensitivity to 578	
day length also in late dormancy (see Supplementary Fig. 1). 579	
 580	
Figure 2 | Photoperiod-dependent leaf-out strategies lead to low inter-annual variability 581	
in leaf-out dates (a) and high inter-annual variability in thermal time until budburst (b). 582	
For each species (n = 154) the SD in leaf-out dates and thermal requirements was calculated 583	
on the basis of leaf-out dates available from the Munich Botanical Garden from 2012 to 2015. 584	
We show the mean ± 95% confidence interval for each group. Thermal time was calculated as 585	
the sum of growing-degree days from 1 Jan until the day of leaf-out in the respective species 586	
using 0°C as base temperature. Asterisks above bars indicate which group differed 587	
significantly from the group of species with no photoperiod requirements (*P < 0.05, **P < 588	
0.01). 589	
 590	
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Table 1 | Global relationships between species’ photoperiod requirements and duration 611	
of winter, inter-annual spring temperature variability (T variability), and T seasonality 612	
in their native range for 144 temperate woody species. Five comparative measures were 613	
used: the F value from univariate ANOVA, Akaike weights from bivariate regressions using 614	
ordinal logistic regression (OLR) models, parameter estimates and 95% confidence intervals 615	
(CI) based on multivariate OLR models, mean decrease in accuracy values (MDA) from 616	
random forest analysis, and coefficient values [effective posterior means (EPM) and 95% CIs] 617	
from a hierarchical Bayesian (HB) model controlling for phylogenetic autocorrelation and 618	
species’ maximum growth height. For each single climatic parameter we initially considered 619	
the upper limit (0.95-quantile), median (0.5 quantile), and lower limit (0.05-quantile) across 620	
each species' range and kept the variable that yielded the lower Akaike information criterion 621	
(AIC) according to OLR models (i.e. we kept the 0.95 quantile for winter duration and T 622	
seasonality, and the 0.5 quantile for T variability). Sample size: No photoperiod requirements 623	
= 88 species; Low = 42 species; High = 14 species. *P < 0.05, **P < 0.01. 624	
 625	

 ANOVA OLR Multiv. OLR Random forest  HB model 

 F values WeightAIC Estimate ± CI MDA EPM ± CI 

Winter duration F(1, 142) = 9.5** 0.90** -0.47 ± 0.28** 33.7  -1.1 ± 0.5 

T variability F(1, 142) = 0.3 0.05  0.99 ± 1.17 22.9  -0.3 ± 0.5 

T seasonality F(1, 142) = 1.9 0.05  0.00 ± 0.01 20.8  -0.2 ± 0.5 

 626	
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