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ABSTRACT  

This paper presents an approach to estimate future travel times on a freeway using flow and occupancy data 
from single loop detectors and historical travel time information.  The work uses linear regression with 
stepwise variable selection method and more advanced tree based methods.  The analysis considers 
forecasts ranging from a few minutes into the future up to an hour ahead.  Leave-a-day-out cross-validation 
was used to evaluate the prediction errors without under-estimation. The current traffic state proved to be a 
good predictor for the near future, up to 20 minutes, while historical data is more informative for longer-
range predictions. Tree based methods and linear regression both performed satisfactorily, showing slightly 
different qualitative behaviors for each condition examined in this analysis. Unlike preceding works that 
rely on simulation, this study uses real traffic data. Although the current implementation uses measured 
travel times from probe vehicles, the ultimate goal of this research is an autonomous system that relies 
strictly on detector data. In the course of presenting the prediction system, the paper examines how travel 
times change from day-to-day and develops several metrics to quantify these changes. The metrics can be 
used as input for travel time prediction, but they should be also beneficial for other applications such as 
calibrating traffic models and planning models. 

Keywords: loop detectors, travel time prediction, advanced traveler information systems (ATIS), regression, 
cross-validation.  
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INTRODUCTION 

As congestion increases on urban freeways, more and more journeys are impacted by delays. Unless a 
traveler routinely traverses a given route, the extent of possible delays are unknown before departing on a 
journey and the uncertainty must be addressed by allocating extra time for traveling. Advanced Traveler 
Information Systems (ATIS) attempt to reduce the uncertainty by providing the current state of the system 
and sometimes a prediction of future states. In this context, travel time is an important parameter to report 
to travelers. From the user’s perspective, accurate predictions (and an estimate of their precision) are more 
beneficial than the current travel time since conditions may change significantly before a traveler completes 
their journey.G

To this end, we study a travel time prediction methodology using flow and occupancy data from single 
loop detectors and historical travel time information. By restricting the detector data to flow and 
occupancy, the methodology should be applicable to most automated traffic surveillance systems. The raw 
data for this study come from the I-880 database (1), which includes detector data and probe vehicle travel 
times. In practice, the probe data could be replaced with estimated travel times from the detector data (e.g., 
(2-3)). In contrast, preceding works tend to rely on simulation (e.g., (4-9)) or automatic vehicle 
identification (e.g., (10-11)) The former may capture biases intrinsic to the given traffic simulator, while 
the latter requires a large investment in new detector infrastructure.  

Using the I-880 database, we present a methodology for generating and evaluating travel time 
prediction models. Such models are likely to be site-specific, so the paper should be viewed as a tool for 
generating prediction models suitable for a specific site rather than for developing a universal model 
applicable to all roadways. Although the I-880 database used in this study is relatively small, it is the most 
detailed set of real traffic data currently available. This fact allows for detailed analysis and verification in 
the examples presented herein.  

Under the current setup, the problem can be abstracted as one of fitting the response variable (probe 
vehicle travel time) on the explanatory variables (detector measurements, probe departure time, etc.) in 
various ways and thus, can be considered a regression problem. In this work, linear regression with 
stepwise variable selection and advanced methods such as the tree based method and neural networks are 
investigated.  

Traditionally, a database would be divided into separate training and testing subsets to evaluate these 
methods since the prediction error will be underestimated if the two subsets intersect. Unfortunately, the 
small database employed in this study does not allow for such a simple division. To make efficient use of 
the sample while avoiding the intersection problem, we employ cross-validation (CV), i.e., repeatedly 
taking a different subset of the data as a training set and using the remaining observations as a test set. We 
will use a form of cross-validation to correctly estimate the prediction error.  

Overview 

The first section discusses the data and notation used throughout this paper. The next section provides 
empirical and exploratory analysis of the data, highlighting implications for travel time prediction. Then, 
the regression methods are studied in detail. Finally, the paper closes with conclusions and future 
directions. 

DATA AND NOTATION 

The I-880 Database 

The I-880 database includes loop data and probe vehicle travel times over a 10 km (6.2 mi) segment of 
freeway, south of Oakland, California. There are approximately 19 loop detector stations in each direction 
(northbound and southbound) and up to five probe vehicles circling the 20 km round trip on a given day. 
The probe vehicle drivers were instructed to stay in the middle lane (third lane out from the median). The I-
880 study used dual loop speed traps to measure flow, occupancy and velocity. The data were collected 
during the morning and evening peak periods.  

This work uses data from the middle lane in each direction over 20 weekdays (all weekdays between 
February 22 and March 19, 1993). The loop data are aggregated in 30-second samples and the velocity 
measurements are not used, thus, replicating the data that would be available from single loops. Treating 
each direction and each shift (5:00- 10:00 AM and 2:00-7:00 PM) independently, there are four distinct 
samples or scenarios (South/AM, South/PM, North/AM and North/PM) each day. Because there are 
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significant differences between the various scenarios, they will be treated as independent populations in the 
subsequent analysis.  

Loop Data Processing 

Although the I-880 database is a rich source of information, it does not have data from every detector 
station for every day. Missing data at one station are estimated by interpolating data from adjacent stations. 
The distance between successive stations is irregular and to prevent the part of the segment with more 
densely located loops from being over-represented as predictor covariates, this work interpolates the 
original detector data to 10 equidistant points along the freeway. Henceforth, the discussion treats these 
virtual detectors as if they were real and they will simply be referred to as detector stations. One could also 
consider travel time prediction from these virtual stations as fitting travel time to a function of the true 
detector data.  

Finally, because 30-second detector samples are inherently noisy, the analysis uses a simple low pass 
filter to eliminate transients. Specifically, for flow and occupancy time series at each detector, we apply:  
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to get filtered series tz  from the original series ty . The exponential weights ia ’s for the filter were 

selected for convenience and no attempt was made to optimize the filter for the given application.  
After filtering, a given sample reflects traffic conditions over the previous 2.5 minutes. With 600 

samples per shift, the net result of this processing is a pair of 10 by 600 matrices for each scenario, 
corresponding to flow and occupancy, respectively. 

Notation 

As noted above, there are ten detector stations, or loops, in this study. These stations are indexed by 
x =1,…,10  (we will assume that a smaller index is upstream of a larger one, without loss of generality.) 
and each scenario spans 600 time points, indexed by t =1,…,600. Occupancy and flow at time t  and 

location x  on day d  will be denoted as ),( txod  and ),( txfd  respectively. So, for a given scenario and 

day d , the data can be summarized as vector time series of occupancy )}({ tdo  and flow )}({ tdf  

evolving over time t , where )),10(),...,,1(()( totot ddd =o  and )),10(),...,,1(()( tftft ddd =f . The 

data are observed over 20 days, 20,...,2,1=d , yielding three-dimensional arrays of size 20 by 10 by 600, 

)},({ txod  and )},({ txfd . 

The travel time between station x  and 1+x  for a probe vehicle that departs from the upstream loop 

x  at time s  on day d  in a given direction is denoted ),( sxdτ . For each scenario, successive probe 

vehicle runs are indexed by i . For a given probe vehicle run, )(sdτ denotes the total travel time over all 10 

detector stations, with the corresponding departure time s  and day d .  
 

EMPIRICAL AND EXPLORATORY DATA ANALYSIS  

With the three dimensional arrays of flow and occupancy, dimension reduction and visual representation of 
traffic state are important tasks in preliminary analysis of the data. To this end, the following subsections 
examine the I-880 data using empirical and exploratory data analysis, introducing three measures of 
freeway traffic status for a given day in the form of a field, a series, and a scalar.  

Occupancy and Flow Field for a Given Day  

The time-space field of occupancy ),( txod  conveys all of the available loop occupancy information for 

day d . See Figure 1 for contour plots of occupancy field for an entire day, selected at random from each of 
the four scenarios. As can be seen from the plots, the fields vary widely for the different scenarios.  
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Variability over different days in the same scenario is also quite large. To summarize such day-to-day 
variability, we propose the field of historical median, ),(~ txo , and the field of historical MAD (Median 

Absolute Deviation), ),(~ txσ , as measures for ‘location’ and ‘scale,’ respectively. For generic sample 

values nyi ,...,1= , MAD is defined as 6745./|)(|)( jjiii ymedymedyMAD −= . The median and 

MAD are robust measures of center and dispersion of a distribution, respectively. These measures are 
insensitive to outliers, unlike mean and standard deviation (SD).  

Formally, ),(~ txo  and ),(~ txσ  are denoted  

 },...,1:),({),(~ Ddtxomedtxo d ==  (2) 

 },...,1:),({),(~ DdtxoMADtx d ==σ . (3) 

Figures 2 and 3 show plots of these two fields for each of four scenarios. Among other features, recurrent 
congestion can be easily identified from Figure 2. Consider the northbound AM traffic, the figure clearly 
shows recurring congestion at station 2 around time sample 400 (8 AM); and again in the northbound PM 
traffic at station 7 around time sample 300 (4:30 PM). Note that the freeway segment is exhibiting different 
characteristics during different time periods. Looking at Figure 2 and 3 side by side, we can also observe 
that day-to-day variation of occupancy is small when the average occupancy (over days) is light and 
conversely. Although we considered the occupancy field for simplicity, the flow field, the velocity field if 
available, or the field of any function of flow and occupancy can be analyzed similarly.  

Evolution of Probe Vehicle Travel Time  

Though the occupancy field gives much information about the traffic condition for a day, a more 
informative aspect of the data for travel time prediction would be the daily pattern of observed travel times. 
We will define one such measure based on the probe vehicle travel times and examine time-of-day 
dependency of this parameter.  

For a day d , we have a set of probe vehicle travel times },...,),({ )(,1, dRddd ssss =τ  where 

)(,...,1,, dRis id =  are the departure times of each probe vehicle run on day d . We linearly join )(sdτ ’s 

which are adjacent in time to get a regularly spaced time series for each day. We denote the interpolated 

travel times as the travel time evolution for the day d  and write it as },...,1),(ˆ{ Tttd =τ . These series are 

plotted in Figure 4 for each scenario.  

As a summary of these series, we calculate the historical median )(ˆ)(~ tmedt ddττ =  and the historical 

1st and 3rd quartiles, )(1 tQ  and )(3 tQ , of },...,1),(ˆ{ Ddtd =τ . In Figure 4, )(~ tτ , )(1 tQ  and )(3 tQ  

are plotted as solid lines. The length of the vertical lines joining )(1 tQ  and )(3 tQ , forming the shaded 

area is the interquartile range (IQR; the difference between )(1 tQ  and )(3 tQ ), which serves as a measure 

of day-to-day variation of the evolution.  
The plot in Figure 4 for South/AM shows that few days have unusually heavy traffic throughout this 

scenario. Although not as apparent in the other scenarios, clearly there are a few days in each scenario that 
show a significant level of congestion during a large portion of the time shift (1 to 2 hours). We will refer 

to these outlying days (as well as days with outlying occupancy fields) as unusual days. Because )(tdτ is 

bounded by the minimum free flow travel time, the unusual days typically reflect unusually bad days, 
which can be observed from Figure 4. In other words, the distribution of travel time is skewed towards 
larger values. 

Related to this property is the observation that the evolution of travel times on a given day is relatively 
smooth, implying dependence between successive probe vehicle travel times within a particular day. This 
property will be discussed more in the next section. 

Finally, note that Figure 4 clearly shows the difference between the various scenarios, e.g., the PM 
travel exhibits greater variability than the AM. The directional and temporal differences suggest that 
location and time-of-day factors cannot be excluded.  
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Unusualness Measure  

As shown above, most days are similar in terms of the travel time evolution, but the outliers can be 
significantly different. Further, probe vehicle travel time evolution appears auto-correlated within each day, 
meaning congestion is dispersed over time and space, rather then being localized in one or both 
dimensions. It will be useful for prediction if we can tell early in a day whether it will be an ‘unusual’ day 
or not. To measure how bad the traffic is compared to the ‘average’, we propose an unusualness measure 

dU  for a day d ,  
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where ),(/),(),( txotxftx ddd =ξ and },...,1),,({),(
~

Ddtxmedtx d =ξ=ξ . For this study, there 

are 10=Xn  loops and 600=Tn  time samples.  

Figure 5 shows the plots of dU  for 20 weekdays for each scenario. We can visually pick days when 

dU  is substantially larger than the other days, e.g., the 4th day of South/PM or the 8th day of South/AM. 

Clearly, the “day of the week” is not sufficient to quantify these relationships. We expect dU  can provide 

additional explanatory power.  

It is plausible that the days with large dU  in Figure 5 are likely to have )(ˆ tdτ  outside the 

)()( 31 tQtQ −  band for most of the day in Figure 4. This hypothesis is confirmed in Figure 6, where the 

travel time evolutions corresponding to days with relatively large dU  are shown with bold lines. Although 

the relationship is not perfect (especially for North/PM), this unusualness measure appears to detect the 
unusual travel time evolutions well. In view of this observation, it makes sense to classify some days as 
usual ones and assume they have similar traffic flow patterns, while treating other days as outliers based on 

the value of dU .  

This work developed an unusualness measure using data for the entire day for illustration, but the 
approach is not useful for prediction. In practice, the analysis would be modified to use all data up to the 
most recent measurements to have a predictive unusualness measure. It is plausible that incorporating such 
a parameter in a travel time prediction, which is equivalent to modeling the travel time as a mixture of 
‘normal days’ and ‘bad days’, will increase predictive power. For outliers or unusual days, historical 
information is not likely to be useful, while current condition can be informative. For ‘usual’ days, both 
historical and current information could be of some value. We simply note this idea but we do not include 
this analysis in our regression predictors, which will be introduced in the next section.  

Another possibility is to use different ),( txdξ  fields. The field we used, 

),(/),(),( txotxftx ddd =ξ , has the property that ltxvtx dd
ˆ/),(),( ≈ξ , where v =‘true velocity for 

the given sample’ and l̂ =‘assumed average vehicle length’ which is held constant over all samples. 

Though this feature is reasonable, there are other possibilities such as ),(/),( txftxo dd  or even 

),( txdτ .  

REGRESSION 

The goal of this section is to predict travel time τ  (sec) a fixed amount of time, ∆ (min), in the future 
using available information. We will call ∆  prediction headway or lag. For each scenario, this work fits 
the response variable, τ , to the following covariates: departure data, ),( ws  where s  is the departure time 

and w  is the day of the week; and loop data, ),( fo  at time ∆−s .  
Note the different nature of the loop covariate and departure covariate. The former can be thought of as 

current information, representing what is happening right now, while the latter can be though of as 
historical information, representing what has happened at this time of the day and this day of the week in 
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the past. Presumably additional information, such as incidents or weather conditions, would improve the fit; 
but with only 20 days in this initial study, the decision was made to exclude these covariates for risk of 
over-fitting the data.  

Regression Methods 

Each scenario in the I-880 database has about 300 observations of )(sdτ  for 20,...,1=d  and 

s = td,1,..., td, R(d ) for given d . We will identify )(sdτ  by a single index i  to write them as 

nii ,...,1, =τ , where n  is total number of probe vehicle runs for all 20 days. Departure time, day and day 

of the week corresponding to iτ  are identified as is , id , and iw . We then define )( ∆−= idi soo and 

)( ∆−= idi sff . Thus, ),,,( iiiii wsX fo=  and iτ  become the covariate vector and the response 

variable, respectively.  

We will treat these vectors niX ii ,...,1),,( =τ  as a training sample (an independent sample from an 

identical distribution) from a population for which we wish to construct a rule for predicting τ from 

),,,( wsfo . As noted in the previous section, the sample is not a genuine training sample since there are 
dependencies within each day of the week, which are only partially eliminated by knowledge of the 
departure time. However, with this assumption we can apply linear, nonlinear or nonparametric regression 
to construct predictors.  

Thus, the model is  

 ,)( iii Xg ε+=τ    ,,...,1 ni =  (5) 

where 0)|( =ii XE ε  for all i  and g  is some function. Our aim is to find a function or ‘predictor’ ĝ  

that can be calculated from the sample and is close to g . As a method to construct a predictor ĝ , linear 
regression and tree methods are considered.  

Linear regression is a standard model where g  is assumed to be a linear function of covariates. Since 

using all variables in iX  will lead to over-fitting, the stepwise method is used for variable selection (see 

(12) for description of linear regression and stepwise methods). Tree methods include many varieties, and 
we consider the one provided by S-plus (version 4.3). In the tree method, the model is fitted using binary 
recursive partitioning whereby the data are successively split along coordinate axes of the predictor 
variables. The split is done so that at any node the response variable is maximally distinguished in the left 
and the right branches. The splitting continues until data are too sparse for each node and then the tree is 
pruned using cross-validation. Terminal nodes are called leaves, while the initial node is called the root (for 
details, see (13)).  

In addition to the tree method and linear regression model, neural networks (feed-forward neural 
networks as in (13)) with various numbers of hidden layers were tested. The neural networks did not 
perform as well as the other two methods in any situation, and so the results are omitted. However, one 
should note that neural nets are highly tunable and further adjustments may provide better results. More 
refined use of neural networks or other computer intensive prediction or learning methods such as support 
vector machines could be tried. One may well also try modern methods for improving a given prediction 
scheme such as Boosting, ARCing, etc.. These prediction schemes give highly non-linear (and non-
structural) predictors and are known to give better prediction than traditional methods under some 
conditions. Since it is not our aim in this paper to find the best predictor for general situations we leave the 
application of these sophisticated methods to future studies.  

Measure for Prediction Error and Cross-Validation  

The prediction error is usually measured by Mean Squared Prediction Error (MSPE), defined as  

 ),(sec))(ˆ( 22XgEMSPE −= τ  (6) 

where the expectation is taken with respect to both the distribution of the training set used to construct ĝ  

and that of the test set ),( τX , which are independent with each other. Since MSPE (or other measures of 
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prediction errors) cannot be calculated from the sample, it needs to be estimated. In estimating MSPE, a 
naive ‘plug-in’ estimate  

 ∑
=

− −τ=
n

i
ii

inplug Xg
n

MSPE
1

2))(ˆ(
1

 (7) 

is overly optimistic, since it uses the same data set both for training and for testing. A partial remedy is to 
use the leave-one-out cross-validation MSPE estimate defined by  
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where (i)ĝ is a predictor constructed using all the data except the i ’th observation. The cross-validation 

scheme we employ here is slightly more complex, which is done as follows. We leave a day out, construct 
a predictor using the remaining 19 days, and predict the travel times for the day we left out. It is repeated 
for each of 20 days and average of the squared empirical prediction errors can now be calculated. This 
method might be called ‘leave a day out’ cross-validation and formally, the estimate of prediction error can 
be written as  

 ∑
=
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n

i
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CV Xg
n
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where )(
~

ig  is a predictor constructed using ),( jjX τ ’s for all j ’s belonging to different days from the 

day i  belongs to. Leave a day out cross-validation makes our estimate of prediction error more realistic 
since it partially takes into account the effect of the dependence between travel times on the same day that 
in fact makes our data not a genuine training sample.  

As a relative measure of error, the cross-validation estimate of Mean Absolute Percentage Prediction 
Errors (MAPPE) defined by  

 )(100
)(~1

1

)( percent
Xg

n
MAPPE

n

i i

iiiCV ×
τ

−τ
= ∑

=

 (10) 

will be used. 

Results  

The cross-validation estimates of root-MSPE and MAPPE for various prediction headway ∆ =5, 10, 20, 
30, 60 (min) are summarized in Table 1 and Figure 7 for both tree and linear regression predictors. The 
root-MSPE values are given in seconds and should be considered relative to the median travel times, which 
are respectively 358, 397, 405 and 446 (sec) for South/AM, South/PM, North/AM and North/PM. The “No 
Loop Info” entry corresponds to a predictor that does not use the current loop information ),( fo , but 

instead, relies strictly on the historical information ),( ws . These estimates serve as a baseline against 
which we can ask- “how much do we gain by using the current loop information?”  

The tree method does not perform better than linear regression, both in terms of MSPE and MAPPE. 
Except for a few occasions, its errors are consistently larger than those of linear regression. Still, the 
differences are slight and their behavior differs from scenario to scenario and for different ∆ ’s, so neither 
of the two predictors is a clear winner. Performance of the individual method may differ from freeway to 
freeway and it would be more reasonable to use the method that performs best for a given situation rather 
than try to find a single regression method that performs well for all situations. In our situation, for 
example, it is perfectly reasonable to use tree method for ∆ =0 while using regression for ∆ =30 min for 
South/AM.  

Still there are some patterns common to many situations, the most important of which are the benefits 
of current information in contrast to only using the baseline historical data. For all four scenarios, the root-
MSPE for 0=∆  is 30%-40% smaller than the root-MSPE for the predictor that only relies on historical 
information. Likewise, the MAPPEs are reduced by about 30-40% as well. Even if we allow for the fact 
that estimates of prediction errors contain errors themselves, we can still consider 20=∆  (min) as 
maximum lags that give similar prediction error as lag 0 prediction for all scenarios. Thus, making use of 
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the current loop information is desirable for prediction of travel time up to about 20 min in the future, 
which is consistent with Dynamic Trip Assignment research (4-10).  

The stepwise method we employed usually chooses 8 to 10 variables out of 22 input explanatory 
variables. For shorter prediction headway up to ∆ =20 min, current loop information are chosen as 
significant variables at early stages. Especially, occupancies at those stations where traffic conditions vary 

significantly, i.e., stations with high variability in }600,...,1,20,...,1),,({ == tdtxod  are chosen first 

(see Figure 2 and 3). In contrast, historical information, particularly the departure time, is chosen as most 
significant for longer prediction headway. The tree method shows similar behavior, i.e. similar sets of 
variables appear as nodes closer to the tree root. 

Again, there is a lot of variation from one scenario to the next. For example, the PM travel time 
predictions are significantly worse than the AM in each direction in terms of both MSPE and MAPPE.  

CONCLUSIONS  

Travel time prediction is an important task for ATIS and ATMS; however, the ability to predict future 
traffic conditions is non-trivial. To facilitate the analysis, this paper has introduced a number of metrics to 
characterize the spatial-temporal variations along the roadway: the scalar “unusualness” measure; the 
vector travel time evolution; and the two-dimensional occupancy field. As one would expect, these metrics 
are sensitive to location and time-of-day. Under some scenarios the metrics exhibited large day-to-day 
variations, while under other scenarios, they did not. The metrics also indicate a strong correlation between 
travel times during a given day.  

Exploiting these phenomena, we found that simple prediction methods (such as linear regression on the 
current flow and occupancy measurements, departure time and day of the week) are beneficial for short-
term travel time forecasts (up to 20 minutes), while historical data are better predictors for longer-range 
travel time predictions. Of course true travel time will not be observable under most situations; however, 
earlier works have shown that it can be estimated reliably from single loop detectors. Naturally, other 
relevant parameters should be included in the model when they are available, e.g., major events, incidents, 
or weather conditions.  

With these factors in mind, the models presented in the final section are clearly site-specific and they 
should be viewed as such. It was not our intent to produce a single prediction model for all roadways; 
rather, we have provided a set of tools to develop and evaluate models that capture the relevant phenomena 
local to any site under study. Some notable features of our strategy are the use of cross-validation for 
efficient data utilization and digital filtering to smooth out measurement transients. Perhaps more 
importantly, the rigorous statistical analysis and verification presented in this work could be used 
independently from our models, providing consistent measures of effectiveness from one study to another.  

Finally, note that the methodology presented in this work is relatively simple to implement, but as a 
result, the work is only applicable to short stretches of roadway (up to 15 km). Over longer distances, more 
complex models would be necessary to account for changing traffic conditions during a journey.  
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FIGURE 1. Contour plots of smoothed occupancy field for a random day from each of the four scenarios. The axes represent the time-
space plane and curves indicate contours of the occupancy levels 5, 15, 20 and 25. 
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FIGURE 2. Contour plots of smoothed median occupancy field for each scenario.  



Jaimyoung Kwon, Benjamin Coifman, Peter Bickel  Page 13 

 

 
 

FIGURE 3. Contour plots of smoothed MAD occupancy field for each scenario.  



Jaimyoung Kwon, Benjamin Coifman, Peter Bickel  Page 14 

 
 

 
FIGURE 4. Plots of probe vehicle travel time evolutions for 24 days for each scenario. Each dotted line corresponds to a single 

day’s evolution. The first and third quartile and median of these series are plotted in solid lines and vertical lines join the former two. 
Each point represents a single probe vehicle run over the freeway segment.  
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FIGURE 5. Plots of unusualness measure dU  for 20 days from each scenario. Day 1 corresponds to 2/22/1993 and day 20 to 

3/19/1993. Day 1, 6, 11, 16 are Mondays, 2, 7, 12, 17 are Tuesdays, etc. 
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FIGURE 6. The probe vehicle travel time evolutions for each scenario, drawn for 20 days for which loop data is also available. 

Evolutions corresponding to days with high dU  are drawn in thick solid lines.  
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FIGURE 7. Cross-validation estimates of prediction errors of linear regression and tree predictor for South/AM, South/PM, 

North/AM and North/PM, from left to right. Top plots are root-MSPE and bottoms are MAPPE. Black boxes correspond to linear 
regression and white boxes to tree method. Each headway index means: 1= 0min, 2= 5min, 3= 10min, 4=20min, 5=30min, 6=60min, 

7= “No Loop Entry”. Bottom plots are scaled across the row for readability. See Table 1 for their values.  
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TABLE 1. Cross-validation Estimates of Prediction Errors of the tree method and linear regression 
with stepwise variable selection method.  
 

  Tree Method Linear Regression 
Scenario Prediction 

Headway (min) MSPE  (Sec.) MAPPE (%) MSPE  (Sec.) MAPPE (%) 

0 57 6.9 75 8.2 
5 92 9.8 80 8.7 

10 91 9.7 91 9.9 
20 105 12.0 95 11.0 
30 111 13.0 87 11.5 
60 130 14.9 101 13.0 

South/AM 

No Loop Info 121 14.5 105 12.5 
0 138 12.5 125 11.6 
5 151 12.8 130 14.2 

10 156 16.0 147 15.6 
20 187 20.7 149 16.6 
30 195 23.2 160 18.9 
60 224 28.7 178 23.0 

South/PM 

No Loop Info 214 27.6 183 23.3 
0 97 8.3 68 7.7 
5 95 9.2 91 10.3 

10 104 11.0 89 10.5 
20 118 13.0 107 13.2 
30 118 13.4 116 14.9 
60 115 13.7 116 14.2 

North/AM 

No Loop Info 106 12.0 115 14.9 
0 106 11.8 89 9.5 
5 117 13.2 96 11.4 

10 127 16.4 102 12.9 
20 129 16.7 116 15.5 
30 149 19.5 121 17.0 
60 150 20.5 143 19.3 

North/PM 

No Loop Info 129 17.0 129 17.7 
 

 


