Effect of Various Oxides on Crystallization of Lithium Silicate Glasses

Chul Min Kim, Hyung Bong Lim, Youg Su Kim*, Se Hoon Kim*, Kyung Sik Oh*, and Cheol Young Kim[†]

Department of Materials Science and Engineering, Inha University, Incheon 402-751, Korea *Hass, Corp., Gangneung 210-340, Korea (Received May 12, 2011; Accepted June 10, 2011)

다양한 산화물들이 리튬규산염 유리의 결정화에 미치는 영향

김철민 · 임형봉 · 김용수* · 김세훈* · 오경식* · 김철영[†]

인하대학교 신소재공학부 *(주) 하스 (2011년 5월 12일 접수 ; 2011년 6월 10일 승인)

ABSTRACT

Glass-ceramics based on lithium disilicate($Li_2Si_2O_5$) are prepared by heat-treatment of glasses in a system of SiO_2 - Li_2O - K_2O - Al_2O_3 with different compositions. The crystallization heat-treatment was conducted at the temperature range of $700\sim900^{\circ}C$ and samples were analyzed by XRD and SEM. Mechanical properties were determined by a Vicker's hardness and 4 point bending strength. When SiO_2/Li_2O ratio increased, cristobalite and tridymite crystals showed more predominate than lithium disilicate crystals. Increase in Al_2O_3 contents in the glass suppressed crystallzation of lithium disilicate crystals. Increase in ZnO, B_2O_3 contents in the glass decreased crystallization temperature of lithium disilicate crystals, and increased mechanical properties because of the reduction of the lithium disilicate crystal size.

Key words: Glass-ceramics, Crystallization, Artificial tooth, Lithium disilicate, Lithium metasilicate

1.서 <u>론</u>

심미 세라믹 수복재료 개발자들은 임상에서도 장기적으로 변색이 없고, 파절 및 파편이 없는 우수한 물성을 지닌 소재를 개발하기 위해 노력하고 있다. 이런 측면에서 심미성이 뛰어난 세라믹 재료에 강도를 증진시키기 위하여유리침투 복합체, CAD/CAM 지르코니아, 결정화 유리 등다양한 연구가 진행 중이다.¹⁻³⁾

1985년 Sadoun은 상호 침투 복합재료 제조방법을 이용하여 인공치관을 만드는 방법인 In-ceram 방식을 개발하였다. 이것은 알루미나 또는 지르코니아 다공체 사이로 유리를 침투시키는 방식이다. 근래 들어 도재의 3배에 해당하는 강도 효과를 얻고 있지만, 투과율이 낮아 심미적인기능이 떨어지는 단점이 있다.²⁾

1990년 초에 Mormann에 의해 고안된 CEREC system은 최초로 고강도고인성인 지르코니아를 computer-aided design/computer-aided manufacturing (CAD/CAM)으로 가공하여 코핑을 제작한 방식이다. 지르코니아는 도재보다 10배 강한

은 지르코니^c n/ Apel 등 † 복재료인

[†]Corresponding author : Cheol Young Kim

E-mail: cheolkim@inha.ac.kr

Tel: +82-32-860-7525 Fax: +82-32-862-0129

물성과 반투명한 색상을 띄고 있다. 그러나 이 역시 투과도가 낮아 단일 일체형 크라운으로 사용 할 수 없고, 실제 사용에서는 지르코니아 코핑 위에 도재를 올려 크라운을 제작하기 때문에 파절여부는 도재의 물성(굴곡강도: 80 MPa이하)에 달려있다.³⁾

1990년 초 Ivoclar vivadent (Schaan, Liechtenstein)사에서 결정화를 조절하여 백류석(KAlSi $_2O_6$) 결정화 유리를 개발하였다. 이 결정화 유리는 강도가 낮아 구치부나 브릿지로의 사용은 어렵다. 이에 같은 회사에서 1998년 lithium disilicate ($\text{Li}_2\text{Si}_2O_5$) 결정화 유리를 개발하였다. 이 결정화 유리는 lithium disilicate 결정이 $60\sim70\%$ 형성되어 있고 나머지는 유리질로 되어있어 전제적으로 매우 투명한 성질을 나타낸다. 또한, 동시에 바늘모양의 lithium disilicate 결정이 서로 얽혀져 있어 비교적 높은 강도를 갖고 있기 때문에지르코니아와 달리 단일 크라운제작이 가능하다. 4)

Apel 등이 lithium disilicate 결정화 유리와 또 다른 수복재료인 Dicor, Leucite 결정을 포함하는 결정화유리, 플루오르아파타이트를 포함하는 결정화유리 등에 관해 연구하였으며^{5,6)} Sorensen 등이 이들 재료에 대한 임상실험을 수행하였다.⁷⁻⁹⁾ 유리 조성에서는 Clausbruch 등이 핵형성을 유발하는 결정화제로 알려진 ZrO₂, TiO₂와 P₂O₅에 대

해 연구하였다. $^{10\cdot14)}$ 하지만 결정을 이루고 있는 SiO_2 와 Li_2O 의 함량 및 그 외 유리조성에 관한 연구는 많이 이루어 지지 않고 있다.

이에 본 연구에서는 리튬규산염계 유리 조성에 SiO_2 와 Li_2O 의 비와 그 외 첨가되는 산화물의 양을 조절하여 유리를 제조하고 열처리하여 결정화 하였다. 결정화 유리는 X-선 회절분석 및 4점 굽힘강도 비커스경도, 미세구조 등을 관찰하여 결정화 현상과 그 물성을 비교 고찰하였다.

2. 실험 방법

2.1. 결정화유리 시편 제작

본 연구에서는 Table 1과 같은 유리를 선택하였다. 먼저 lithium disilicate 결정을 이루고 있는 SiO_2 와 Li_2O 의 비에 따른 결정화 현상을 알아보기 위해 K_2O , Al_2O_3 를 고정시키고 유리조성중의 SiO_2 와 Li_2O 의 비를 2.5, 5, 7.5, 10으로

Table 1. Glass Batch Compositions

(a) S/L Serie	es				(mol%)
	S/L = 2.5	S/L =	5	S/L = 7.5	S/L = 10
K ₂ O	3.0	3.0		3.0	3.0
Al_2O_3	1.0	1.0		1.0	1.0
Li ₂ O	27.4	16		11.3	8.8
${ m SiO_2}$	68.6	80		84.7	87.2
SiO_2/Li_2O	2.5	5		7.5	10
(b) Oxides S	eries				(mol%)
	0A	1A	3A	5A	7A
K ₂ O	3.0	3.0	3.0	3.0	3.0
Al_2O_3	0.0	1.0	3.0	5.0	7.0
Li ₂ O	27.7	27.4	26.9	26.3	25.7
SiO_2	69.3	68.6	67.1	65.7	64.3
	1Z	3Z		5Z	7Z
K_2O	3.0	3.0		3.0	3.0
Al_2O_3	1.0	1.0		1.0	1.0
Li ₂ O	27.1	26.6		26.0	25.4
SiO_2	67.9	66.4		65.0	63.6
ZnO	1.0	3.0		5.0	7.0
	1B	3B		5B	7B
K_2O	3.0	3.0		3.0	3.0
Al_2O_3	1.0	1.0		1.0	1.0
Li_2O	27.1	26.6		26.0	25.4
SiO_2	67.9	66.4		65.0	63.6
B ₂ O ₃	1.0	3.0		5.0	7.0

Each Composition + Nucleation Agent : P_2O_5 (2 g)

조절한 뒤 핵형성제로 P_2O_5 를 2 g씩 첨가하였다. 그리고 유리의 결정화에 미치는 산화물의 영향을 알아보기 위하여 SiO_2 와 Li_2O 의 비는 2.5로 고정시킨 뒤 Al_2O_3 의 첨가량을 0몰%에서 7몰%까지 증가시켰다. 그리고 ZnO, B_2O_3 의 첨가량을 0몰%에서 7몰%까지 증가시켜 유리를 제조하였다.

유리를 제조하기 위한 원료로는 일급시약인 SiO₂, Li₂CO₃, Al₂O₃, K₂CO₃, ZnO, B₂O₃, Li₃PO₄를 사용하였다. Table 1의 조성을 각각 유리 기준 100 g으로 칭량하여 1시간 동안 자 이로 블렌더로 잘 혼합하고 백금 도가니에 넣어 각각의 유 리 조성에 맞는 용융 온도(1500°C~1650°C)에서 전기로를 이 용하여 용융하였다. 각 유리의 용융 온도에서 1시간 동안 용 융한 후 흑연 판 위에서 급냉한 후 파쇄하여 유리분말을 얻었다. 유리의 균질성을 증진시키기 위해서 이 유리분말 을 다시 1시간 동안 같은 온도에서 2차 용융을 실시하였 다. 2차 용융이 끝난 유리는 흑연 몰드에 부어 $10 \times 10 \times$ 100 mm의 크기의 유리 막대로 성형하였으며 내부 응력 을 제거하기 위해 500°C에서 서냉시켰다. 그 후 다이아몬 드 절단기를 이용하여 각각의 유리시편을 10×10×2 mm 의 크기로 절단하여 시편을 제작하였다. 제작된 시편은 결정화 열처리를 위해 전기튜브로 내에서 결정성장을 위 해 5°C/분의 속도로 승온시켜 700°C~900°C 온도범위 내 에서 열처리 하였다.

2.2. X-선 회절 및 미세구조 분석

각 조성유리의 열처리 온도에 따른 결정생성 여부를 알아보기 위해 X-선 회절분석기(Rigaku DMAX 2500)를 이용하여 생성된 결정상을 알아보았다. 측정조건은 가속전압 40~kV, 20의 범위는 $10\sim80^{\circ}$ 로 하였다. 미세 조직을 관찰하기 위해 다이아몬드 현탁액($0.25~\mu$ m)으로 경면 연마를 한후 $30~vol\%~H_2SO_4$ 와 3~vol%~HF를 섞은 용액에서 에칭을하여 시편을 준비하였다. 각 시편 표면의 미세구조를 분석하기 위해 주사 전자현미경(JEOL JSM-5500)으로 분석을실시하였다. 이때 시편은 Pt로 <math>180초간 코팅하였으며 가속전압을 15~kV로 하였다.

2.3. 4점 굽힘강도 측정

강도는 각 결정화유리의 시편을 KSL 1591의 4점 굽힘 강도 시험 방법¹⁵⁾에 따라 두께 3.0±0.1 mm, 너비 4.0±0.1 mm 가 되도록 다이아몬드 절단기로 절단하고 각 표면을 연마사포와 다이아몬드 현탁액(0.25 μm)으로 연마를 하여 준비하고 동적/정적 만능시험기(Instron, 5569)를 이용하여 각시편의 강도를 측정하였다. 시험편의 하중 점에 크로스헤드속도는 0.5 mm/min으로 하중을 가하고 시험편이 파괴될때까지의 최대 하중을 측정한 후 다음 식에 의해 4점 굽힘 강도를 측정하였다.

$$\sigma_f = 3Fa/bd^2 \tag{1}$$

여기서.

σ_f: 4점 굽힘 강도(MPa), F:시험편이 파괴되었을 때의 최대 하중(N), a:지지구 모멘트 암의 길이 (10 mm), b:시 험편의 폭(4 mm), d:시험편의 높이(3 mm)이다.

2.4. 비커스경도 측정

각 결정화유리의 비커스 경도는 표면을 연마사포와 다이아몬드 현탁액(0.25 µm)으로 경면연마한 뒤 Akashi AVK-CO제 비커스 경도계를 이용하였다. KSL 1603 비커스경도시험방법¹⁶⁾에 따라 5kgf(49.035N)의 하중으로 15초 동안유지하여 다음 식을 사용하여 측정하였다.

$$HV = 0.001854 \times \frac{F}{d^2}$$
 (2)

여기서.

HV: 비커스경도 (GPa), F: 시험하중(N), d: 비커스 압흔의 두 대각선의 산술평균(mm)이다.

3 결과 및 고찰

3.1. 리튬규산염 유리의 결정화에 미치는 SiO₂/Li₂O 비의 영향

Table 1(a)에 나타낸 것처럼 리튬규산염계 유리에서 K_2O 의 함량을 3몰%, Al_2O_3 를 1몰%로 고정시키고 SiO_2 와 Li_2O 의 비를 2.5, 5, 7.5, 10으로 변화시키며 유리를 준비하였다. 준비한 유리는 700° C, 800° C, 900° C에서 각각 1시 간동안 열처리하여 그에 대한 X-선 회절분석한 결과를 Fig. 1에 나타내었다.

X-선 회절분석 결과 SiO_2 와 Li_2O 의 비가 2.5로 낮을 때는 700° C에서 lithium metasilicate와 cristobalite, lithium disilicate가 생성이 되고 열처리 온도가 800° C로 증가하면 lithium metasilicate와 cristobalite가 감소하는 대신 lithium disilicate가 생성이 되며 900° C에서는 lithium disilicate 결정만 생성된 것을 볼 수 있다. SiO_2 와 Li_2O 의 비를 5, 7.5로 증가시키면 700° C에서는 lithium metasilicate와 cristobalite가 생성되고 800° C에서는 lithium metasilicate 대신 lithium disilicate가

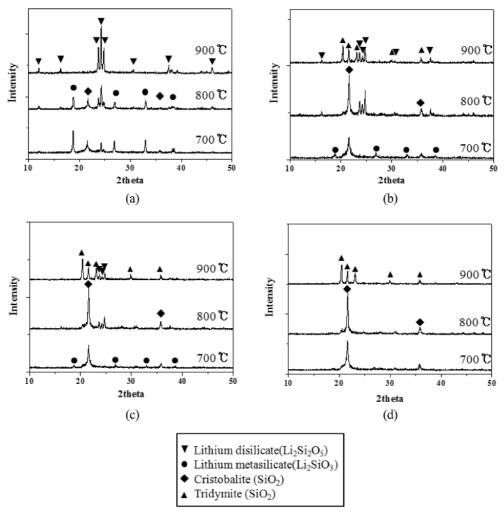
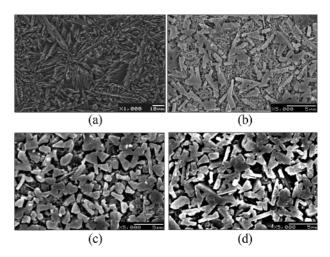


Fig. 1. X-ray diffraction patterns of glass-ceramics with various of SiO_2/Li_2O ratio in glasses after heat-treatment for 1 h. (a) $SiO_2/Li_2O = 2.5$, (b) $SiO_2/Li_2O = 5$, (c) $SiO_2/Li_2O = 7.5$, and (d) $SiO_2/Li_2O = 10$.

cristobalite와 생성되며 900°C에서는 lithium disilicate와 tridymite가 생성되었다. 한편 SiO₂와 Li₂O의 비를 10으로 더욱 증가시키면 700, 800°C에서는 cristobalite가 900°C에서는 tridymite가 생성이 되고 lithium metasilicate와 lithium disilicate는 생성되지 않았다.

위와 같이 리튬규산염 유리를 결정화하면 온도와 조성에 따라 주 결정상으로 $\mathrm{Li_2OP}$ $\mathrm{SiO_2P}$ 1:1로 결합한 lithium metasilicate와 $\mathrm{Li_2OP}$ $\mathrm{SiO_2P}$ 1:2로 결합한 lithium disilicate 결정과 $\mathrm{SiO_2P}$ 동질이상체인 tridymite, cristobalite 등이 생성된다. 이러한 결정들의 생성은 유리 내 존재하는 $\mathrm{SiO_2P}$ $\mathrm{Li_2OP}$ 결합하여 생성되기 때문에 $\mathrm{SiO_2P}$ $\mathrm{Li_2OP}$ 비에 따라 각기 다른 결정상이 생성된다.

Höland 등의 결과에서도 역시 SiO_2 와 Li_2O 의 비를 2.4로 열처리하여 결정화 하였을 때 $700\sim850^{\circ}C$ 사이에서 cristobalite가 생성되었다. Paralle SiO_2 와 Li_2O 의 비를 4.5로 $850^{\circ}C$ 에서 열처리 하였을 때 lithium disilicate와 tridymite가 생성된다고 보고하였다. Paralle 기리나 lithium metasilicate 및 lithium disilicate 결정의 생성 과정중 유리에 핵 형성제가 포함되지 않았을 경우에는 표면결정화가 일어난다. 이러한 표면결정화는 P_2O_5 를 첨가하여 벌크결정화를 유도 할 수 있다. Clausbruch는 P_2O_5 의 첨가량이 0.5몰% 이하일 때 표면결정화(surface crystallization)가 일어나며 그 이상일 때 벌크결정화(bulk crystallization)가 일어난다고 보고하였다. Paralle 역시 P_2O_5 첨가시 리튬규산염유리의 결정화는 다음 과정을 통해 이루어진다고 하였다. Paralle 연구인 기급 기념적다고 하였다.

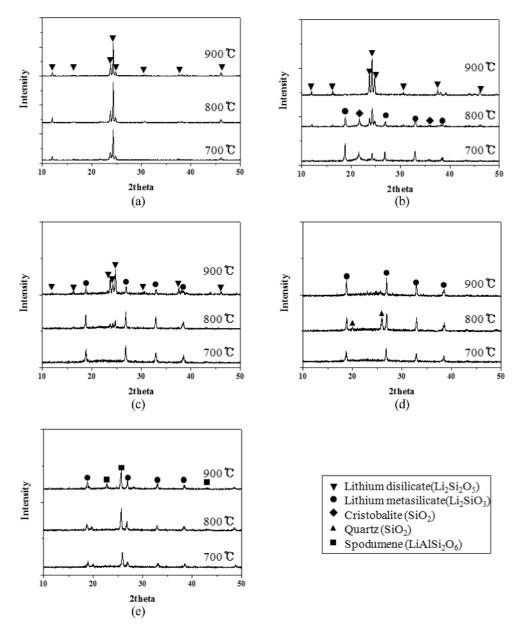

$$P_2O_5$$
 (glass) + $3Li_2O = 2Li_3PO_4$ (crystal)

 $\text{Li}_2\text{O} \text{ (glass)} + \text{SiO}_2 \text{ (glass)} = \text{Li}_2\text{SiO}_4 \text{ (crystal)}$

$$Li_2SiO_3$$
 (crystal) + SiO_2 (glass) = $Li_2Si_2O_5$ (crystal)

먼저 유리속의 P_2O_5 가 Li_2O 와 결합하여 매우 작은 크기의 Li_3PO_4 결정을 생성하고 이 결정을 핵으로 삼아 lithium metasilicate 및 lithium disilicate 결정이 비균질 핵생성 (heterogeneous nucleation)을 통해 생성된다. 본 실험의 유리조성에서도 P_2O_5 가 참가되어 비균질 핵생성을 통한 벌크결정화가 일어났으며 lithium metasilicate 결정이 온도가증가하면 lithium disilicate 결정으로 상전이가 일어났다. 다만 SiO_2 와 Li_2O 의 비가 증가할수록 lithium disilicate 및 lithium metasilicate 결정생성은도가 감소하면서 결정생성이감소하고 SiO_2 의 동질이상체인 tridymite와 crystobalite의 생성이 증가하였다.

한편 결정화유리의 미세조직을 비교하기 위해 900° C에서 열처리한 시편을 주사전자현미경으로 표면을 관찰하여 Fig. 2에 나타내었다. SiO_2 와 Li_2 O의 비가 2.5일 때는 주사전자현미경으로 보이는 결정이 X선 회절분석 결과와 비


Fig. 2. SEM morphology of glass-ceramics with various of SiO_2/Li_2O ratio in glasses after heat-treatment at $900^{\circ}C$ for 1 h. (a) $SiO_2/Li_2O = 2.5$, (b) $SiO_2/Li_2O = 5$, (c) $SiO_2/Li_2O = 7.5$, and (d) $SiO_2/Li_2O = 10$.

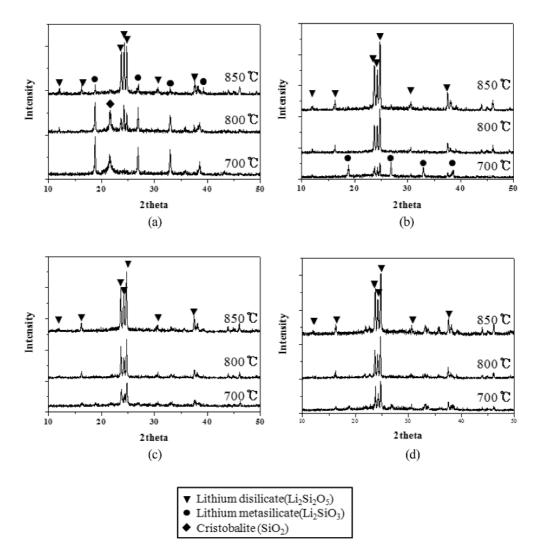
교하여 lithium disilicate 결정임을 알 수 있고 비가 7.5, 10일 때의 결정은 X-선 회절분석 결과와 비교하여 tridymite로 보인다. 앞의 두 경우와 비교하여 비가 5.0일 때는 가느다란 침상모양의 lithium disilicate 결정과 tridymite 결정이 혼합해 생성되었음을 알 수 있다.

3.2. 리튬규산염 유리의 결정화에 미치는 Al₂O₃ 함량의 영향

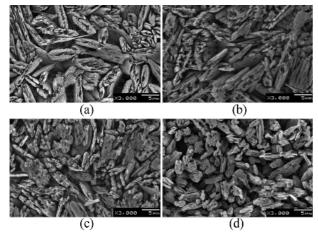
유리 내 Al₂O₃ 함량이 결정화에 미치는 영향을 알아보기 위해 SiO₂와 Li₂O의 비를 2.5, K₂O의 함량을 3몰%로 고 정하고 Al₂O₃의 함량을 0~7몰%까지 변화시키며 유리를 제조하였다. 제조한 유리는 전과 동일하게 700°C, 800°C, 900°C에서 1시간 동안 열처리 한 후각 결정화 유리의 X-선 회절분석 결과를 Fig. 3에 나타내었다. Al₂O₃가 없는 0A유 리에서는 전 온도 구간에서 lithium disilicate가 생성되었 다. 하지만 Al₂O₃를 1몰% 첨가하게 되면 700°C와 800°C 에서는 lithium metasilicate와 cristobalite가 900°C에서는 lithium disilicate 결정이 생성되었다. Al₂O₃의 함량을 3몰% 첨가하면 lithium disilicate 결정생성이 감소하고 lithium metasilicate가 남아있었다. Al₂O₃를 5몰% 첨가가면 700~900°C 에서 lithium metasilicate가 생성되고 800°C에서 quartz가 생성되었다. Al₂O₃를 7몰% 첨가하게 되면 결정에 Al₂O₃가 포함된 Spodumene(LiAlSi₂O₆) 결정이 lithium metasilicate 와 함께 생성되었다.

 Al_2O_3 가 없는 유리에서는 유리의 점도가 낮아 낮은 온도에서도 SiO_2 가 많은 lithium disilicate 결정이 쉽게 생성되지만 Al_2O_3 의 양이 증가할수록 유리의 점도가 높아져서 낮은 열처리 온도에서는 lithium metasilicate 결정이 얻어지고 높은 온도에서 열처리할 때 비로서 lithium disilicate 결정이 생성되는 것으로 생각된다.

Fig. 3. X-ray diffraction patterns of glass-ceramics with various of Al₂O₃ contents in glasses after heat-treatment for 1 h. (a) 0A, (b) 1A, (c) 3A, (d) 5A, and (e) 7A.


3.3. 리튬규산염 유리의 결정화에 미치는 ZnO와 B₂O₃의 영향

 SiO_2 와 Li_2O 의 비를 2.5로 하고 Al_2O_3 는 1몰%, K_2O 는 3몰%로 고정시킨 후 ZnO의 양을 $1\sim7$ 몰%로 변화시켜 유리를 제조하였다. 제조된 유리는 700° C, 800° C, 850° C에서 1시간 열처리하여 X선 회절분석 및 SEM으로 표면을 관찰하여 Fig. 4와 Fig. 5에 나타내었다.


ZnO가 1몰% 첨가한 1Z유리를 700°C, 800°C로 열처리하였을 때는 ZnO가 첨가되지 않았던 유리와 유사한 결과를 보였으며 850°C에서 열처리하였을 때는 lithium metasilicate와 cristobalite가 아직 lithium disilicate로 변하지 못하고 남아 있었다. 그리고 ZnO의 첨가량을 3몰%로 증가하면 cristobalite

결정은 사라지고 700°C에서는 lithium metasilicate와 약간의 lithium disilicate가 보이고 열처리 온도를 800°C 이상으로 올렸을 때는 lithium disilicate 결정상만이 관찰되었다. ZnO의 참가량을 5몰% 이상 참가하면 낮은 온도에서도 lithium metasilicate 결정은 거의 없고 lithium disilicate 결정만이 생성되어 lithium disilicate 결정의 생성온도가 점차 낮아짐을 알 수 있다. 그리고 ZnO가 3% 이상 포함된 유리를 열처리 할 때 SiO₂ 결정상은 관찰되지 않았다.

ZnO의 함량에 따른 미세구조를 비교하여 보면 ZnO의 함량이 증가할수록 lithium disilicate 결정의 크기가 감소하 는 것을 볼 수 있다. 이는 ZnO의 첨가가 유리의 점도를

Fig. 4. X-ray diffraction patterns of glass-ceramics with various of ZnO contents in glasses after heat-treatment for 1 h. (a) 1Z, (b) 3Z, (c) 5Z, and (d) 7Z.

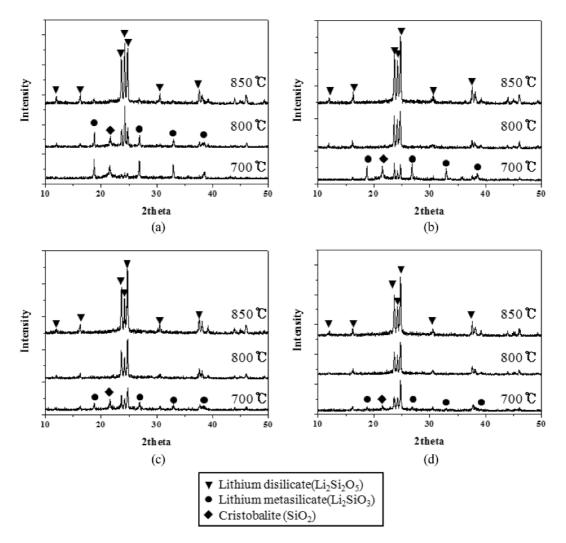
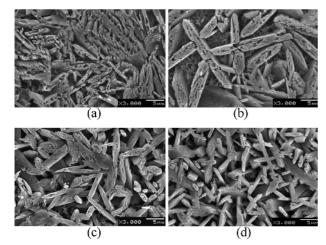


Fig. 5. SEM morphology of glass-ceramics with various ZnO contents in glasses after heat treated at 850°C for 1 h. (a) 1Z, (b) 3Z, (c) 5Z, and (d) 7.


감소시켜 lithium disilicate 결정의 생성온도가 낮아지는 한 편 핵 생성온도에서 많은 수의 핵이 생성되어 결정의 크기가 작아지는 것으로 생각된다.

 B_2O_3 는 유리 내에서 형성체로서 존재하며 유리에 첨가되면 점도가 낮아지게 된다. 따라서 B_2O_3 를 리튬규산염계유리에 첨가하였을때 유리의 결정화를 살펴보기 위해서 SiO_2/Li_2O 를 2.5로 하고 Al_2O_3 , K_2O 의 양을 각각 1몰%와 3몰%로 고정시킨 후 B_2O_3 의 양을 1~7몰%로 변화시켜 유리를 제조하였다. 제조된 유리는 700° C, 800° C, 850° C에서 1시간 열처리하여 X선 회절분석 및 SEM으로 표면을 관찰하여 Fig. 6, Fig. 7에 나타내었다.

X선 회절분석결과 B_2O_3 역시 앞서 실험했던 ZnO와 유사하게 B_2O_3 첨가량이 증가할수록 점도가 감소하여 lithium disilicate 결정생성온도는 감소하였고 미세구조역시 lithium disilicate 결정의 크기가 작아졌다.

Fig. 6. X-ray diffraction patterns of glass-ceramics with various of B₂O₃ contents in glasses after heat-treatment for 1 h. (a) 1B, (b) 3B, (c) 5B, and (d) 7B.

Fig. 7. SEM morphology of glass-ceramics with various B₂O₃ contents in glass after heat-treatment at 850°C for 1 h. (a) 1B, (b) 3B, (c) 5B, and (d) 7B.

3.4. 리튬규산염 결정화유리의 기계적 특성

앞서 실험한 ZnO와 B_2O_3 가 포함된 유리를 $850^{\circ}C$ 에서 1시간 동안 열처리하여 결정화유리를 제조하였다. 결정화유리 표면을 연마하여 비커스경도를 측정하고 4점 굽힘강도 시험 방법에 따라 4점 굽힘강도를 측정하여 Table 2에 나타내었다.

 $Z_{n}O$ 와 $B_{2}O_{3}$ 의 첨가량이 1몰%일 때의 비커스경도 값이 각각 4.64~GPa, 4.11~GPa이였으며 $Z_{n}O$ 와 $B_{2}O_{3}$ 의 첨가량을 7몰%까지 증가하면 비커스경도 값이 각각 5.34~GPa, 4.67~GPa까지 증가하였으며 $B_{2}O_{3}$ 보다는 $Z_{n}O$ 의 경도가 더 큰 값을 나타내었다. 4점 굽힘강도 역시 $Z_{n}O$ 의 첨가량이 1몰%일 때 114.9~MPa이었던 값이 7몰% 첨가하였을때 181.6~MPa까지 증가하였고 $B_{2}O_{3}$ 는 첨가량이 1몰%일 때 99.7~MPa이었던 4점 굽힘강도 값이 5몰% 첨가하면 103.7~MPa로 약간 증가하였다. $B_{2}O_{3}$ 의 경우 4점 굽힘강도 값이 3위 증가 하지

Table 2. Vickers Hardr	ess and	4	Point	Bending	Strength	of
Various Glass-	ceramics					

Sam	ples	Vickers hardness (GPa)	4 point bending strength (MPa)		
	1Z	4.64	114.9		
ZnO	3Z	4.75	139.2		
	5Z	4.99	152.3		
	7Z	5.34	181.6		
	1B	4.11	99.7		
B_2O_3	3B	4.27	94.9		
	5B	4.08	103.7		
	7B	4.67	-		

않았지만 ZnO를 첨가했을 때는 4점 굽힘강도 값이 약 1.6배 증진되었다. 7B유리는 850°C에서 열처리 시 변형이 심하여 시편을 만들 수 없었다.

이 같은 산화물의 첨가에 따른 비커스경도와 4점 굽힘 강도 값의 증가는 재료의 미세구조와 관련지어 설명할 수 있다. Fig. 5과 Fig. 7을 보면 산화물의 첨가량이 증가 할수록 결정의 크기가 감소하는 것을 볼 수 있다. Apel 등은 크랙의 전파과정에서 크랙은 강도가 높은 lithium disilicate 결정을 지나지 못하고 결정 주위의 잔존 유리질을 통해 전파되고 절단면이 증가하므로 기계적 성질이 증진된다고 하였다. 이 이렇게 작은 결정들이 서로 연결되어 생성되어 산화물의 첨가량이 증가할 때 강도 값이 증가하는 것으로 보인다. 그리고 B_2O_3 를 첨가했을 때 Z_1O_2 를 참가했을 때 보다 4점 굽힘강도 값이 낮은 것은 결정생성후 유리상에 유리구조를 약하게 하는 B_2O_3 가 많이 남아있기 때문으로 생각한다.

4. 결론

다양한 조성을 갖는 SiO_2 - Li_2O - K_2O - Al_2O_3 계 유리를 열처리하여 얻은 결정화유리 연구 결과 다음과 같은 결론을 도출하였다.

- 1. 리튬규산염계 유리의 결정화에 따른 결정상은 ${
 m SiO_2}$ 와 ${
 m Li_2O}$ 의 비에 따라 변하며 lithium disilicate 결정은 그 비가 2.5 일때 가장 잘 생성되었다.
- 2. 리튬규산염계 유리의 결정화는 점도에 따라 변하며 Al_2O_3 는 점도를 증가시켜 lithium disilicate 결정생성을 막고 ZnO, B_2O_3 는 점도를 감소시켜 lithium disilicate 결정생성 온도가 낮아진다.
- 3. 리튬규산염계 결정화유리는 ZnO, B_2O_3 가 첨가되어 작은 결정이 생겼을 때 높은 기계적 특성을 나타내 었으며 ZnO 첨가시 B_2O_3 가 첨가된 경우보다 높은 기계적 성질을 보였다.

Acknowledgment

본 연구는 지식경제부와 한국산업기술진흥원의 지역산 업기술개발사업으로 수행된 연구결과입니다.

REFERENCES

- 1. D.-Y. Kim, Y.-S. Lee, and W.-H. Park, "Comparative Study of Fracture Strength Depending on the Thickness of Some all Ceramic Cores(*in Korean*)," *J. Kor. Acad. Prosthodont.*, **42** [1] 49-57 (2004).
- 2. B. T. Sung, "Processing of Glass-infiltrated Alumina Core Ceramic (in Korean)," pp. 3~26, Chonbuk Univ., Jeonju, 2002.
- 3. M.-S. Choi, Y.-S. Kim, K.-W. Suh, and J.-J. Ryu, "Effect of Surface Treatmet on the Shear Bond Strength of a Zirconia Core to Veneering Ceramic(in Korean)," *J. Kor. Acad. Prosthodont.*, 47 199-205 (2009).
- 4. W. Höland, M. Schweiger, M. Frank, and V. Rheinberger, "A Comparison of the Microstructure and Properties of the IPS Empress® Glass-ceramics," *J. Biomed. Mater. Res.* (Appl. Biomater.), 53 [4] 297-303 (2000).
- E. Apel, J. Deubener, A. Bernard, M. Höland, R. Müller, H. Kappert, V. Rheinberger, and W. Höland, "Phenomena and Mechanisms of Crack Propagation in Glass-ceramics," *J. Mech. Behav. Biomed. Mater.*, 1 313-25 (2008).
- T. Nakamura, T. Ohyama, A. Imanishi, T. Nakamura, and S. Ishigaki, "Fracture Resistance of Pressable Glass-ceramic Fixed Partial Dentures," *J. Oral Rehabil.*, 29 951-55 (2002).
- J. A. Sorensen, M. Cruz, W. T. Mito, O. Raffeiner, H. R. Meredith, and H. P. Foser, "A Clinical Investigation on Three-unit Fixed Partial Dentures Fabricated with a Lithium Disilicate Glassceramic," *Pract. Peridont. Aesthet. Dent.*, 11 [1] 95-106 (1999).
- Heather J. Conrad, W.-J. Seong, and Igor J. Pesun, "Current Ceramic Materials and Systems with Clinical Recommendations: A Systematic Review," *J. Prosthet. Dent.*, 98 389-404 (2007).
- D. J. Fasbinder, J. B. Dennison, D. Heys, and G Neiva, "A Clinical Evaluation of Chairside Lithium Disilicate CAD/CAM Crowns: A Two-year Report," *J. Am. Dent. Assoc.*, 141 10-14 (2010).
- J.-O. Jung, "Effect of TiO₂ on the Crystallization and Micro-Structure of Pressable Lithium Disilicate Glass-ceramics in the SiO₂-Li₂O-K₂O-ZnO-ZrO₂-P₂O₅ System (in Korean)," pp. 10-20, Ph. D. Thesis, *Chonbuk Univ.*, Jeonju, 2003.
- E. Apel, C. van't Hoen, V. Rheinberger, and W. Höland "Influence of ZrO₂ on the Crystallization and Properties of Lithium Disilicate Glass-ceramics Derived from a Multi-component System," J. Eur. Ceram. Soc., 27 1571-77 (2007).
- S. V. Clausbruch, M. Schweiger, W. Höland, and V. Rheinberger, "The Effect of P₂O₅ on the Crystallization and Microstructure of Glass Ceramics in the SiO₂-Li₂O-K₂O-Zr₂O-P₂O₅ System," *J. Non-Cryst. Solids*, 263 & 264 388-94 (2000).
- X. Zheng, G Wen, L. Song, and X. X. Huang, "Effects of P₂O₅ and Heat Treatment on Crystallization and Microstructure in Lithium Disilicate Glass Ceramics," Acta. Mater., 56 9-58 (2008).
- 14. F. Wang, J. Gao, H. Wang, and J.-H. Chen, "Flexural Strength and Translucent Characteristics of Lithium Disilicate Glass-

- ceramics with Different P_2O_5 Content," *Materials & Design*, **31** [7] 3270-74 (2010).
- 15. Fine Ceramics(Advanced Ceramics, Advanced Technical Ceramics)-Test Method for Flexural Strength of Monolithic Ceramics at Room Temperature, Korean Industrial Standards, KS L 1591, Korean Agency for Technology and Standards, 2008.
- 16. Fine Ceramics(Advanced Ceramics, Advanced Technical Ceramics)- Test Method for Hardness of Monolithic Ceramics at
- Room Temperature, Korean Industrial Standards, KS L 1603, Korean Agency for Technology and Standards, 2008.
- 17. W. Höland, E. Apel, Ch. van't Hoen, and V. Rheinberger, "Studies of Crystal Phase Formations in High-strength Lithium Disilicate Glass-ceramics," *J. Non-Cryst. Solids*, **352** 4041-50 (2006).
- 18. G. Beall, "Glass-ceramics Containing Lithium Disilicate and Tridymite," U.S. Patent, 5,744,208 (1998).