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ABSTRACT

We introduce DPSS Approximate lazY filtEriNg of foregroUnds (DAYENU), a linear, spectral filter for H I intensity mapping that

achieves the desirable foreground mitigation and error minimization properties of inverse co-variance weighting with minimal

modelling of the underlying data. Beyond 21-cm power-spectrum estimation, our filter is suitable for any analysis where high

dynamic-range removal of spectrally smooth foregrounds in irregularly (or regularly) sampled data is required, something

required by many other intensity mapping techniques. Our filtering matrix is diagonalized by Discrete Prolate Spheroidal

Sequences which are an optimal basis to model band-limited foregrounds in 21-cm intensity mapping experiments in the sense

that they maximally concentrate power within a finite region of Fourier space. We show that DAYENU enables the access of

large-scale line-of-sight modes that are inaccessible to tapered discrete Fourier transform estimators. Since these modes have

the largest SNRs, DAYENU significantly increases the sensitivity of 21-cm analyses over tapered Fourier transforms. Slight

modifications allow us to use DAYENU as a linear replacement for iterative delay CLEANing (DAYENUREST). We refer readers to

the Code section at the end of this paper for links to examples and code.

Key words: methods: data analysis – techniques: interferometric – techniques: spectroscopic – dark ages, reionization, first

stars – large-scale structure of the Universe.

1 IN T RO D U C T I O N

Buried under vastly brighter foregrounds, redshifted 21-cm emission

from H I at redshifts z � 6 remains an elusive treasure trove

of information on how the first stars and galaxies heated and

subsequently ionized the Universe. Experiments seeking to observe

spatial 21-cm fluctuations are attempting a first detection with the

power-spectrum statistic, P(k) defined through

(2π )3δD(k − k′)P (k) = 〈T̃b(k)T̃b

∗
(k′)〉 − 〈T̃b(k)〉〈T̃b

∗
(k′)〉, (1)

⋆ E-mail: aaronew@berkeley.edu

†National Science Foundational Astronomy and Astrophysics Postdoctoral

Fellow.

where δD is the Dirac delta function, T(k) is the co-moving spatial

Fourier transform of the cosmological brightness temperature field

T̃b(k) =
∫

d3reik·rTb(r), (2)

and 〈·〉 denotes an ensemble average. Gaussian random fields are

completely described by the power spectrum. The power spectrum is

also a convenient statistic for non-Gaussian fields since we can take

advantage of the fact that cosmological quantities approximately

obey statistical homogeneity and isotropy; allowing us to build

sensitivity by averaging in spherical Fourier bins.

Another convenient feature 21-cm and other intensity mapping ex-

periments is that foregrounds; which are expected to be intrinsically

spectrally smooth, only occupy small wavenumbers along the line of

sight (LoS, small k�) while 21 cm and other spectral lines that trace

cosmological structures have substantial fine-scale spectral features
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(Di Matteo, Ciardi & Miniati 2004; Datta, Bowman & Carilli 2010;

Parsons et al. 2012b). Thus, the native Fourier space of the power

spectrum is well-suited for performing foreground separation.

While single-dish experiments such as GBT have been used to

detect the 21-cm power spectrum at low redshifts (Chang et al.

2010; Masui et al. 2013; Switzer et al. 2013; Anderson et al.

2018), many have been turning to interferometers for obtaining the

necessary high sensitivities for detecting 21 cm at higher redshifts.

Interferometric experiments seeking to detect 21-cm fluctuations

include CHIME (Bandura et al. 2014), Tianlai (Chen 2015), Ooty

(Subrahmanya, Manoharan & Chengalur 2017), HIRAX (Newburgh

et al. 2016), the MWA (Tingay et al. 2013), LOFAR (van Haarlem

et al. 2013), the LWA (Ellingson et al. 2009), and HERA (DeBoer

et al. 2017). Interferometric data sets consist of cross-correlations

(visibilities) measured by pairs of antennas (baselines) at various

spectral frequencies. Since line-emission at different distance along

the LoS (r�) is redshifted to different observed frequencies, one

can map observed frequencies to co-moving distance ν ∝
∼

x‖. For a

given visibility, the Fourier dual of frequency is the delay, τ between

signals arriving at each antenna. Thus τ ≈ 2πY−1k�, where Y is

a constant. We refer the readers to Morales & Hewitt (2004) and

Parsons et al. (2012a) for the full expression. Smooth structures,

such as foregrounds, reside at delays smaller then light traveltime

between the two antennas, τH; a phenomena known as the ‘wedge’

(Datta et al. 2010; Morales et al. 2012; Vedantham, Udaya Shankar

& Subrahmanyan 2012; Parsons et al. 2012b; Pober et al. 2013). The

fine-scale 21-cm fluctuations reside at all delays. A natural analysis

choice that has been adopted by most Cosmic Dawn fluctuations

experiments is to estimate power spectra by applying a discrete

Fourier transform (DFT) either on raw interferometric visibilities

(Parsons et al. 2012b, 2014; Ali et al. 2015) or on gridded u–v data

and/or images (Chapman et al. 2012; Dillon, Liu & Tegmark 2013;

Dillon et al. 2015; Jacobs et al. 2016; Trott et al. 2016; Barry et al.

2019) and then squaring. In taking an unpadded DFT along a single

axis (we consider the r� axis for example) one replaces the integral

in equation (2) with a discrete sum over Nd sampled data points.

∫
dr‖e

−ikn
‖ r‖ → �r‖

Nd−1∑

m=0

e
−inkn

‖ �r‖ , (3)

where �r� is the interval between LoS samples and km
‖ is the

nth discrete wavenumber, kn
‖ = 2πn(Nd�r‖)−1, n ∈ {0, . . . , Nd −

1}. Since foregrounds are confined to the wedge, these techniques

can contain/avoid foregrounds by throwing away/downweighting

visibility DFT modes with τ � τH.

Two realities complicate DFT techniques, both of which are

related to incomplete sampling. First, data are sampled over a finite

bandwidth with a sharp cut-off at the band edges. Secondly, flagging

(excising) of radio frequency interference (RFI) introduces gaps

in frequency sampling with additional sharp edges. The DFTs of

incompletely sampled foregrounds have (spectral) sidelobes that

often greatly exceed the expected amplitude of the 21-cm signal.

A number of approaches have been adopted to overcome incom-

plete data coverage. Most address the problem of finite bandwidth

by multiplying data by a tapering function that goes to zero at

the band-edges (Thyagarajan et al. 2016; Kolopanis et al. 2019).

These multiplicative tapering or apodization filters smoothly filter the

components of the signal at the band edges that is affected by sharp

finite sampling features. While this leads to signal loss, bringing the

foregrounds gradually to zero near the band edges compactifies their

footprint in the DFT basis. A number of techniques also exist to deal

with flagged channels. Per-baseline delay CLEANing1 (Parsons et al.

2012b) iteratively peels and fits foregrounds on each baseline with

a limited number of smooth discrete Fourier modes, interpolating

over the channel gaps. Rather than interpolating with DFT modes,

FASTICA (Chapman et al. 2012) fits smooth independent components

at each LoS in a data cube, and subtracts them before performing the

DFT into bandpower space. εPPSILON (Barry et al. 2019), similar

CLEAN, interpolates over channel gaps with a DFT eigenbasis via the

Lomb–Scargle method (Lomb 1976; Scargle 1982). Unlike CLEAN,

it also attempts to interpolate the 21-cm signal by fitting all DFT

modes rather than modes within a low delay window.

Any power-spectrum method involves linear filtering, transform-

ing into a power bandpower basis, squaring, and then normalizing

squared band-powers with a linear operator can be described in

the quadratic estimator (QE) formalism, including several of the

already mentioned techniques. For example, while FASTICA itera-

tively determines a foreground subtraction matrix from the data, the

application of this subtraction matrix to data can be cast as a QE.

Tegmark (1997) showed that the optimal (information preserving and

minimizing error bars) quadratic estimator (OQE) for the component

of a Gaussian signal x, that is completely described by discrete

bandpowers, pα is given by a QE where (1) the linear filter is

the inverse of the data covariance C
−1

, (2) the transforming and

squaring step is performed by the derivative of the total covariance

with respect to each αth bandpower C,α , and (3) the normalization

matrix is equal to the inverse of the diagonal of the Fisher information

matrix Diag(F)−1.

While this recipe is straightforward, several issues complicate its

implementation. Perhaps most glaring is the fact that C not actually

known to much precision. The low-level component from the 21-cm

signal itself is completely unknown while our ability to characterize

our instrument (Pober et al. 2012; Neben et al. 2015, 2016; Jacobs

et al. 2017; Fagnoni et al. 2019) and low-frequency foregrounds

(Jacobs et al. 2011; Carroll et al. 2016; Line et al. 2017; Zheng et al.

2017; Eastwood et al. 2018) is currently limited to the ∼1 per cent

level.

This has led to attempts at estimating C directly from data (Ali et al.

2015; Dillon et al. 2015) and/or modelling it given our understanding

of the foregrounds and instrument (Dillon et al. 2013; Shaw et al.

2014; Trott et al. 2016). Recent investigations have found that

data-driven approaches run a high risk of unintentional signal loss

(attenuation of the 21-cm signal) (Switzer et al. 2015; Patil et al.

2016; Cheng et al. 2018) which, if not corrected, led to highly biased

results. Along the same vein, it is unclear how well model driven

covariances must accurately represent the underlying data in order to

be effective and whether inaccurate model co-variances face similar

signal loss issues associated data derived co-variances.

Liu & Shaw (2019) point out that attenuation of cosmological

modes does not necessarily constitute signal loss as long as we char-

acterize and correct this attenuation downstream. Indeed, standard

normalization choices in the literature are explicitly calculated to

undo filtering biases. However, great care must be exercised. The

assumptions under-girding normalization formulas are (as we shall

see) easily violated.

Normalization matrices are also chosen to ‘demix’ the smearing

between various bandpowers that arise from the non-identity transfer

function of our experiment and data-reduction choices. Effective

foreground filters introduce signal loss to foregrounds but not the 21-

1This method applies the CLEAN algorithm used in radio astronomy imaging

(Högbom 1974) to one spectral dimension.
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A simple foreground filter 5197

cm signal. Since filtering can introduce 21-cm signal loss, it is useful

to determine whether and when one can abandon filtering altogether

and mitigate all foreground leakage at the demixing normalization

step after bandpowers have been formed.

This paper is part one of a two part series. In it, we demonstrate

the existence of a simple, fast, and effective foreground filter that is

capable of imparting large amounts of good signal loss on arbitrarily

sampled spectrally smooth foregrounds. We examine the properties

of this filter compare its performance to the traditional approach

of band-power estimation with a windowed DFT. In paper two, we

will carefully examine the requirements for successfully demixing

and reversing signal loss in the normalization step along with the

consequences of violating these requirements.

Our filter is based on a simple, analytical model for C which

captures the essential features of foregrounds: that they are over-

whelming bright compared to the signal, that they occupy a con-

tinuum of delays up to some maximum, and that we measure them

at a finite number of band-limited frequencies. The computation

of this covariance matrix can be performed very quickly, using

simple closed-form expressions while its analytical simplicity also

allows us to study the origins of its efficacy. Because our filter

is diagonalized, under certain circumstances, by Discrete Prolate

Spheroidal Sequences (DPSS; Slepian 1978), we call our method

DPSS Approximate lazY filtEriNg of foregroUnds (DAYENU).2 While

we discuss DAYENU in the context of foreground filtering and power-

spectrum estimation for 21-cm cosmology, DAYENU can be applied

to intensity mapping with other lines (e.g. C II, CO, Ly α) where

foreground are distinguished from cosmological fluctuations on the

basis of spectral smoothness.

Our paper is organized as follows. In Section 2, we review

the mathematical formalism for QEs. In Section 3, we introduce

our simplified inverse covariance weighting scheme, studying its

performance on idealized data, its signal loss properties, and its

relationship to DFT filtering. In Section 4, we examine DAYENU’s

performance in foreground filtering and power-spectrum estimation

with realistic simulations of foregrounds and 21-cm fluctuations

observed by the Hydrogen Epoch of Reionization Array (HERA;

DeBoer et al. 2017).

2 FORMALISM

In this section, we set up our notation and review the formalism of

QEs and OQEs.

2.1 Bandpowers

The data x observed in a fluctuation experiment can be decomposed

into foregrounds ( f ), noise (n), and cosmological fluctuations (s)

x = f + n + s. (4)

Since f , n, and s are independent, C = 〈xx†〉 − 〈x〉〈x†〉 can be

decomposed into

C = Cfg + N + S, (5)

where N = 〈nn†〉, S = 〈ss†〉 − 〈s〉〈s†〉, and Cfg = 〈 f f †〉 −
〈 f 〉〈 f †〉.

2In Hebrew, ‘day’ translates approximately to ‘sufficient’ and ‘enu’ means

‘to us’. The acronym refers to the fact that our filter is sufficient to us for

removing foregrounds for 21 cm and other intensity mapping data sets.

Bandpowers are usually defined by decomposing S into a set of

response matrices

S =
∑

α

pα
C,α. (6)

While many authors stick with bandpowers that only describe S,

Parsons et al. (2014), Ali et al. (2015), and Liu, Parsons & Trott

(2014a, b) adopt bandpower definitions where Cfg + S =
∑

α pαC,α .

The decision to define bandpowers for the signal covariance S alone

versus Cfg + S is an analysis choice with important consequences

that we explore in paper II. Since we do not know the 21-cm signal a

priori, we do not actually know what the correct bandpowers to use

are. Instead, we choose a set of response matrices Ĉ,α that may not

actually be correct. A standard choice for Ĉ,α uses our expectation

that the 21-cm signal is homogenous so that the correlation between

temperatures at two locations is given by the continuous Fourier

transform of the power spectrum. Authors usually replace this

continuous Fourier Transform with a DFT. Thus, many works (e.g.

Dillon et al. 2015; Trott et al. 2016; Barry et al. 2019; Mertens et al.

2020) choose Ĉ,α = C,α
DFT

. For a 3D data cube, each data point xm

has an associated co-moving position rm so

[
Ĉ,α

DFT, 3D]
mn

∝
∑

k∈Vα

e−ik·(rm−rn), (7)

where Vα are Fourier-space bins (cylindrical or spherical) and k are

wavenumbers given by the DFT of a gridded image.

In this work, we focus on per-baseline QEs employed by PAPER

and HERA (Parsons et al. 2012b, 2014; Ali et al. 2015) which

operate independently on different baselines at different LSTs. These

estimators sacrifice a small amount of sensitivity for short baselines

(Zhang, Liu & Parsons 2018) and have the advantage of being

analytically and computationally simple to work with. For a per-

baseline estimator, x is the frequency data from a single visibility at

a single LST that has potentially been averaged over many identical

copies in a redundant baseline group and many different nights at

the same LST. We emphasize that this estimator is distinctive from a

multibaseline estimator where the data are x consists of all baselines

in our data set (e.g. Liu et al. 2014a, b). The DFT bandpowers used

in per-baseline estimators are usually just the squared coefficients

of a 1D frequency DFT. If the baselines are all sufficiently close

together, each spherical k-bin is the same as each k� bin in the LoS

DFT. Parsons et al. (2014), Ali et al. (2015), and in this paper, we

focus on LoS DFT bandpowers

[
Ĉ,α

DFT]
mn

∝ e−2πimn/Nd . (8)

2.2 Quadratic estimators

In the QE formalism, we denote our Nb estimates of bandpowers p̂α to

be equal to a normalized linear combination pairwise multiplications

of data points

p̂α =
1

2

∑

β

Mαβx†
Eβx − b̂α, (9)

where Eβ is one of Nb different Nd × Nd matrices (one for

each bandpower) that perform a weighted sum over pairs of data

measurements. M is an Nb × Nb normalization matrix and b̂α is a

subtracted estimate of the true bias bα which includes all covariance

contributions not described by bandpowers.

bα =
∑

β

Mαβ tr

[
Eβ

(
C −

∑

γ

C,γ

)]
. (10)

MNRAS 500, 5195–5213 (2021)
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5198 A. Ewall-Wice et al.

It is convenient to expand Eα into a product of filter matrices, R, and

a quadratic matrix, Qα

Eα = R
†
QαR. (11)

Under this expansion, R describes all filtering applied to data prior

to Fourier transforming. For a single visibility, this could be the

apodization by a Blackman–Harris window in which case RBH
mn ≡

δk
mnT

BH
n , where δk is the Kronecker delta matrix and T BH

n is the nth

element of a Blackman–Harris window. Alternatively, for inverse

covariance weighting, we might set R
OQE ≡ C

−1
. Qα performs the

transformation into the bandpower basis for both data vectors along

with binning and squaring. A standard example for Qα used to esti-

mate DFT bandpowers is the per-baseline delay-transform matrix
[
Qα

DFT
]
mn

= e−2πiα(m−n)/Nd . (12)

M is usually chosen in a way that trades off mixing between band-

powers and their error correlations. The expectation value of each es-

timated bandpower, p̂α is equal to an admixture of true bandpowers

〈p̂α〉 =
∑

β

Wαβpβ + bα − b̂α (13)

where

W = MH (14)

and

Hαβ =
1

2
tr(R

†
QαRC,β ). (15)

2.3 Optimal quadratic estimators

The OQE that minimizes error bars and preserves all information

from the original data is given by (Tegmark 1997; Liu & Tegmark

2011)

p̂α
OQE =

[
Diag(F)

]−1

αα

[
(C

−1
x)†C,α(C

−1
x)
]

− bα, (16)

where Diag(F) is the diagonal of the Fisher information matrix given

by

Fαβ =
1

2
tr
[
C

−1
C,αC

−1
C,β

]
. (17)

If we instead choose, M = F
−1

, p̂OQE also has the desirable property

that its window functions are Kronecker deltas so that no mixing

between bandpowers occurs. However, fluctuations from the mean,

described by the bandpower covariance matrix

�αβ ≡ 〈p̂αp̂
∗
β〉 − 〈p̂α〉〈p̂∗

β〉 (18)

are significantly larger and more correlated (Liu & Tegmark 2011).

Comparing equation (16) with equations (9) and (11), one can

plainly see that the OQE is a result of choosing R
OQE = C

−1
and

Qα
OQE = C,α .

3 DAYENU – A SIMPLE FOREGROUND FILTER

Unfortunately, many of the ingredients in equation (16) including

C
−1

weights, bα , and F, require perfect knowledge of C which

includes thermal noise, the 21-cm signal, and instrumental effects

such as antenna gains. Moreover, our understanding of the radio sky

and radio interferometers is limited. We also do not really know

what the correct C,α are either – the focus of paper II. In order to

implement an OQE, several authors attempted to estimate C directly

from the data. Dillon et al. (2015) obtained Ĉ, an estimate of C for

the frequency–frequency covariance of 3D gridded visibilities by

treating all other visibilities in an annulus of fixed u as independent

samples of the same covariance, ignoring correlations in u. Ali

et al. (2015) implemented a per-baseline OQE Ĉ by computing

the covariance between channels of an individual baseline over

time. In that case, because Ĉ is derived from the data itself, there

exists significant risk of signal loss (Cheng et al. 2018). Loss issues

led the PAPER team to seek simpler alternatives to C estimation.

In their most recent analysis, PAPER implemented a per-baseline

QE identical to a windowed Fourier transform with R = R
BH

,

M = I ≡ MID, and Qα = Qα,DFT (Kolopanis et al. 2019).

Unfortunately, conservative taper-only filtering choices are of

limited utility since they are unable to directly address the sidelobes

from incomplete frequency sampling resulting from RFI flags.

CLEANing provides a pre-processing option that can remove a

significant fraction of this ringing but has the drawbacks that it

is slow and the resulting statistics are difficult to propagate into a

final estimate. Furthermore, under realistic flagging conditions, no

implementation of 1D CLEAN has yet been shown to provide the level

of foreground subtraction necessary for a robust 21-cm detection.

Thus, relying on CLEAN is a significant risk. A second approach

is to model the foreground covariance given our best understanding

of the sky’s statistics and our radio telescope. Works such as Shaw

et al. (2014) and Trott et al. (2016) construct detailed models of

diffuse and point-source foregrounds and incorporate information

on the instrumental primary beam and antenna gains. Modelling

approaches are a promising alternative to data-driven covariances that

seemingly avoid the associated signal loss risks. However, it is not yet

understood what amount of detailed modelling needs to be included

in an inverse covariance filter for it to provide sufficient foreground

suppression, especially when our knowledge of the instrument and

radio sky are so limited. In this work, we explore a third option;

modelling our covariance using as little knowledge of our telescope

and foreground statistics as possible (DAYENU).

3.1 What makes a covariance model good enough?

Before we construct a simple covariance filter, we should get a sense

of what the requirements on an inverse covariance filter are by writing

down its action on a data vector.

If Qα performs an untapered Fourier transform, then any

foregrounds that are left in our data at this point will be smeared by

RFI gaps and the finite bandwidth. Thus, we want the ratio between

foregrounds and signal in our inverse covariance-weighted data to

be smaller than the level of sidelobes from finite bandwidth and RFI

gaps.

To see what requirements this demand puts on our covariance

model, we can decompose a hypothetical, non-singular covariance

model Ĉ into the sum of eigenvalue-weighted outer-products of its

eigenvectors which we divide into a set that are dominated by signal

{us} and a set that our dominated by foregrounds {uf}

Ĉ =
∑

s

λsusu
†
s +

∑

f

λf uf u
†
f . (19)

The action of Ĉ
−1

on a data vector x as

z ≡ Ĉ
−1

x =
∑

s

1

λs

us

(
u†

s · x
)

+
∑

f

1

λf

uf

(
u
†
f · x

)

=
∑

s

1

λs

usxs +
∑

f

1

λf

ufxf, (20)
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A simple foreground filter 5199

where xs are the coefficients of each signal-dominated mode in the

data-vector and xf are the coefficients of each foreground-dominated

mode in the data. We see in equation (20) that all our inverse

covariance weighting does is down-weights modes that we have

identified as foregrounds in our covariance by λf and signal by λs.

As long as λf is larger then λs by the dynamic range between the

signal and the foregrounds, then z is dominated by signal. Note that it

does not actually matter that we get the λf values right. They just have

to be large enough to make the foreground terms much smaller then

the signal terms. This is not typically difficult, especially since λf and

λs square any estimate of the dynamic range between foregrounds

and signal so even if an estimate of the dynamic range is low, it is

made up for in the squaring.

We can go one step further and set λs = 1 so that our inverse

covariance-weighted vector z includes signal modes with unity

weight and foreground modes that are downweighted by λf ≫ 1.

As long as we come up with a model covariance whose foreground

component is described a relatively small number of orthonormal

modes and these modes span the actual foregrounds, the relative

amplitudes of the foreground components in our covariance do not

actually matter as long as they are large enough to suppress the

foregrounds in the data below the signal. While this is a straightfor-

ward requirement, it means that regularization factors larger then the

signal-foreground dynamic range will spoil foreground subtraction.

For example, if Ĉ includes the thermal noise component of a visibility

after a short integration, as is the case in Dillon et al. (2015), Ali

et al. (2015), and Trott et al. (2016), then it may actually prevent

sufficient foreground subtraction for a 21-cm detection even though

the covariance is technically more representative of the true data.

To summarize, we have shown that a Ĉ is good enough for 21-

cm power-spectrum estimation in the presence of missing data (RFI

gaps and finite, untapered bandwidth) when it upweights all of the

principal components of the foregrounds to larger then the dynamic

range between foreground and signal modes in the data. The detailed

amplitudes of each mode in the actual covariance does not matter as

long as the dynamic range is large enough. Covariance models that

include thermal noise for short integrations may not include sufficient

dynamic range. We can avoid downweighting signal entirely by

setting λs to unity in an estimated covariance by including only

foreground modes with large λf added to an identity matrix.

In the remainder of this section, we will derive a simple covariance

matrix that meets these requirements, motivated by the fact that

foregrounds are overwhelmingly contained to large wavelength

frequency Fourier modes over a finite range of delays. The covariance

that we do derive will be diagonalized by DPSSs which are a set of

vectors whose Fourier coefficients are maximally concentrated to

within a finite delay-range. This basis is optimal in the sense that

its vectors have maximal dot-products with foregrounds on large-

frequency scales and minimal dot-products with the 21-cm signal at

fine frequency scales and is an excellent choice for modelling and

subtracting band-limited foregrounds in 21-cm experiments.

3.2 Defining DAYENU

As a first step towards understanding the necessary modelling fidelity

required for effective foreground subtraction we attempt to write a

model covariance that makes only the simplest assumptions about the

foregrounds on an individual baseline. It has long been appreciated

that if we could somehow take a continuous and infinite frequency

Fourier transform of a visibility with an achromatic beam, that the

power from spectrally flat foregrounds is completely contained to

delays with amplitudes less then τ ≤ τH = b/c, where c is the speed

of light and b is the separation between the two antennas forming

the visibility (Datta et al. 2010; Morales et al. 2012; Vedantham

et al. 2012; Parsons et al. 2012b). Beam chromaticity and realistic

spectral slope and curvature in the foregrounds modify this result

but as long as these effects are relatively smooth (Ewall-Wice et al.

2016c; Thyagarajan et al. 2016; Patra et al. 2018), they still allow one

to define some delay τw � τH below which foregrounds are much

brighter than any 21-cm contribution and above which foregrounds

are much smaller then both their τ = 0 value and 21-cm fluctuations.

For a particular baseline, we make the simple assumption that the

power in each delay is uncorrelated, an assumption that is true for

point-source foregrounds but not strictly true for diffuse emission.

This is because different delays map to different regions on the sky.

Blake & Wall (2002) find source correlations fall below ≈10−3 on

large scales greater then 1◦, thus the different delays for different

regions are approximately uncorrelated. Since diffuse emission in

different regions of the sky is correlated, diffuse emission in different

delays is correlated. In order for delays to be uncorrelated, we must

also impose an assumption that the statistics in frequency space are

stationary (frequency independent).

When τ ≤ τw (foreground region), we assume that the variance

of each delay is the inverse of a small number ǫ. For τ ≥ τw , we set

the variance equal to the channel-width �ν

C̃�(τ, τ ′) =
{

ǫ−1 1
2τw

δD(τ − τ ′) |τ | ≤ τw

�ν δD(τ − τ ′) |τ | > τw.
(21)

Here, �ν is the width of each frequency channel and not necessarily

the spacing between different channels. The first piece of equa-

tion (21) represents foregrounds in delay-space while the second

piece represents thermal noise.

Suppose we have measurements at Nd different arbitrary frequen-

cies. The covariance matrix for these discrete measurements can be

obtained by integrating the continuous delay covariance

C�
mn =

∫
dτdτ ′e−2πi(τνj −τ ′νk )C̃�(τ, τ ′)

= ǫ−1Sinc [2πτw(νm − νn)] + �νδD(νm − νn)

= ǫ−1Sinc [2πτw(νm − νn)] + δk
mn, (22)

where Sinc[x] ≡ sin x/x. In the last line of equation (22), we substitute

the Dirac delta-function for a Kronecker delta,3 �νδD → δk. An

astute reader might note that we could have just as easily have

constructed C̃� as being diagonal in discrete delay space instead

of continuous delay space and constructed C� by taking the 2D DFT

of C̃� instead of performing the integrals in equation (22). We will

justify our choice of a continuous definition in Section 3.6 but for

now we emphasize that defining C̃� in continuous delay-space is

essential to its efficacy.

In equation (22), we assumed that foregrounds uniformly occupy

a finite range of delays between −τw and τw . More generally, we

can model foregrounds occupying any number of rectangular delay

regions (indexed by ℓ) with half widths of τ ℓ
w centred at τ ℓ

c and

uniform amplitude ǫℓ.

C�
mn = δk

mn +
[
C�

FG

]
mn

, (23)

where

[
C
�
FG

]
mn

=
∑

ℓ

1

ǫℓ

e−2πiτ ℓ
c (νm−νn)Sinc

[
2πτ ℓ

w(νm − νn)
]
. (24)

3This standard normalization for replacing the Dirac delta with the Kronecker

delta ensures that 1 =
∫

dνδD = �ν
∑

n δK
mn/�ν.
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5200 A. Ewall-Wice et al.

Figure 1. Left: An example of C� for 100 channels, �ν = 100 kHz, ǫ =
10−9, and τw = 250 ns. C� is a covariance that is diagonal in the continuous

Fourier basis and as a result is Toeplitz. Right: To obtain a filter matrix,

we take the inverse of C� and obtain R�. While this inverse is translation

invariant in the limit of infinite frequency resolution, it is not for discrete

channels.

A covariance with multiple delay regions, such as the one in

equation (24) can be useful for filtering data with super-horizon

artefacts including cable reflections (Dillon et al. 2015; Beardsley

et al. 2016; Ewall-Wice et al. 2016b).

We define our lazy DAYENU filter to be the inverse of C�

R
� = [C�]−1. (25)

While C� is Toeplitz, the actual weighting that we apply to visibility

data, R� is not (Fig. 1).

3.3 Without RFI flags, C� is diagonalized by discrete prolate

spheroidal sequences

The Sinc foreground component to the covariance in equation (22) is

diagonalized by a heavily studied set of orthonormal vectors known

as discrete prolate spheroidal sequences (DPSSs, Slepian 1978).

Letting W = τw�ν, Slepian (1978) define a DPSS u(α)(Nd,W)

to be one of the countable orthonormal set of vectors solving the

eigenvalue problem

Nd−1∑

n=0

Lmn(Nd,W)u(α)
n (Nd,W) = λα(Nd,W)u(α)

m (Nd,W) (26)

where

Lmn(Nd,W) =
sin 2πW(m − n)

π (m − n)
. (27)

Since L = 2WC�
FG, the DPSSs also diagonalize C�

FG. Because

C� is the sum of C�
FG and an identity term, DPSSs are also the

eigenvectors of C� as we show numerically in Fig. 2. Let {hn}Nd

be the set of all complex sequences of length Nd. Slepian (1978)

shows that u(0)(Nd,W) the DPSS with the largest eigenvalue λ0 is

the unit-norm Nd sequence that maximizes the quantity

μ ≡
∫W

−W
|H (f )|2df

∫ 1

−1
|H (f )|2df

, (28)

where H(f) is the DFT of hn centred at n = (Nd − 1)/2

H (f ) = e−iπf (Nd−1)

Nd−1∑

n=0

e−2πinf hn. (29)

Figure 2. The eigenvectors of the C� in Fig. 1 with Nd = 100, B = 10 MHz,

τw = 150 ns, and ǫ = 10−9 for the zeroth (blue), second (orange), and fourth

(green) largest eigenvalues (wide light lines). We compare these eigenvectors

to the zeroth (blue), second (orange), and fourth (green) DPSSs of length

Nd = 100, τw = 150 ns, over a frequency bandwidth of B = 10 MHz (dashed

lines). With no flags present C� is diagonalized by DPSSs. We next set 10

random rows and columns of C� equal to zero to simulate RFI flags. The

resulting eigenvectors (dotted lines) do not correspond to DPSSs.

They also show that u(1)(Nd,W) is the vector that simultaneously

maximizes μ, has unity norm, and is orthogonal to u(0)(Nd,W). More

generally, u(α)(Nd,W) is the vector that simultaneously maximizes

μ, has unity norm, and is orthogonal to the vectors in the set

{u(α′)(Nd,W) : α′ < α}.
It follows that DPSSs have the ideal property of maximally

concentrating power into a rectangular region of Fourier space with

half-bandwidth τw . The DPSS with the largest eigenvalue is the

unity norm Nd length sequence that concentrates maximal power

(as quantified by μ) within τw . The DPSS with the second largest

eigenvalue is the unity norm Nd-length sequence that maximally

concentrates power within τw and is orthogonal to the DPSS with

the largest eigenvalue. Ordering DPSSs by their eigenvalues (largest

to smallest), the αth DPSS for Nd and τw is the length Nd unity-

norm sequence that maximally concentrates power within τw and is

orthogonal to all α
′
< α DPSSs. Thus, our foreground covariance

is diagonalized by the basis that most efficiently concentrates power

within τ < τw . In the absence of channel flags, DPSS vectors are

the eigenbasis of C�. As we discussed in Section 3.1 though this

covariance may not include the detailed information on the true

values of λf for each foreground mode on a particular baseline, as

long as ǫ−1 is large enough, it will remove the foregrounds to a small

enough level that we can measure the 21-cm signal in the presence

of flagging sidelobes.

Slepian (1978) also shows that the first ≈2NdW eigenvalues of

L, λα(Nd,W), are close to unity after which they rapidly drop to

zero. When Nd is small, the number of non-zero eigenvalues tends

to exceed this number but it becomes increasingly accurate as Nd

increases. Fitting and characterizing foregrounds with DPSS vectors

therefor requires ≈2Bτw components.

Under the realistic circumstance that there is missing data (e.g.

RFI gaps), the eigenvectors are not equal to DPSSs. In Fig. 2,

we compare the zeroth, second, and fourth numerically determined

eigenvectors (ordered by decreasing eigenvalue) of C� in Fig. 1

to DPSSs with length Nd, frequency bandwidth B = 10 MHz, and

delay-space width of τw = 150 ns. To within numerical precision, the
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A simple foreground filter 5201

DPSSs are identical to numerically computed eigenvectors of C�. We

flag 10 random channels in C� by setting the corresponding rows and

columns to zero and show the resulting eigenvectors with the zeroth,

second, and fourth largest eigenvalues. The eigenvectors of C� with

flagged channels are not merely DPSSs with flagged elements equal

to zero. Hence, when we have missing data (RFI gaps), we must set

the corresponding rows and columns of C� to zero and set R� equal

to the psuedo-inverse of this flagged covariance.

As stated in Section 3.1, the effective action of R� is to transform

our data into a basis close to DPSSs where C� is diagonal, divide

the data by the eigenvalues of C� in the C� eigenbasis, and then

transform back. The degree to which foreground removal and signal

preservation are successful depends on how well isolated foreground

and signal components are in the C� eigenbasis and whether we have

included sufficient dynamic range in the ǫ−1 parameter of R�.

3.4 A simple example

As a first test, we apply it to a realization of a simplistic

model autocorrelation for an isotropic sky with temperature Tsky =
60 K (λ/1 m)2.55, a chromatic Airy beam from a 14-m diameter

aperture, a receiver temperature of 100 K, and 200, evenly spaced fre-

quency channels, of width �ν = 100 kHz between 140 and 160 MHz.

To simulate RFI flags, we randomly set the power levels in 20

channels to zero. To simulate thermal noise, we assume an integration

time of tint = 100 h, similar to what is necessary for a robust 21-cm

detection, and set the standard deviation of each channel equal to

A/
√

�νtint where A is the autocorrelation amplitude (Thompson,

Moran & Swenson 2017). In Fig. 3, we show the impact of applying

[C�]−1 to a single realization of the autocorrelation with ǫ = 10−10

and τw = 50 ns. After applying our filter, the foregrounds are

suppressed by six orders of magnitude and the remaining residual

(orange line) is very close to the original noise (green line). Taking

the difference between the injected noise and residuals (dotted grey)

we see that in the frequency domain, the filter residuals agree with

the injected noise at the ≈10 per cent level.

In the bottom panel of Fig. 3, we inspect our simulation in

the delay domain. In the absence of flags, we can use a 7-term

Blackman–Harris4 taper-filtered Fourier transform to suppress the

impact of a finite sampling bandwidth beyond ≈250 ns (solid grey

line). When we set channels containing RFI to zero, these sharp edges

spread foregrounds across all DFT modes (black dashed line). We

compare the Blackman–Harris Fourier transform of residuals after

applying R� and the injected noise in delay space. The majority of the

≈10 per cent disagreement observed in frequency space is contained

within 250 ns of the edge of our filter (shaded grey region).

Beyond 250 ns the injected noise and R� residuals agree at the

≈10 per cent level. At τ � 250 ns, the leaked foregrounds are

subtracted to the level of 10−8, even with flagging. This is much

better than what can be accomplished by an apodized DFT with no

flagging. Since apodization functions go to zero at the band edges,

they also attenuate the signal. While we applied an apodization before

DFTing R�x to obtain a more direct comparison with the unflagged

4The 7-term Blackman-Harris (see, for example Solomon 1993) includes

additional sinusoidal terms beyond the standard 4-term Blackman-Harris

found in standard libraries such as scipy.signal (Virtanen et al. 2020).

While the additional terms increase the width of the central lobe, they

substantially lower sidelobes compared to the typical 4-term implementation.

We use a 7-term Blackman-Harris taper for all analysis in this paper and refer

to it hereon out as simply ‘Blackman-Harris’.

Figure 3. Top: A simulated signal with 200 channels (noise plus fore-

grounds) at a single LST drawn from a Gamma distribution with variance

consistent with 100 h of integration, similar to what is necessary for a 21-

cm detection, with (dashed black line) and without (solid grey line) 20

random flags. Flagged channels are shown with vertical grey lines and the

corresponding rows and columns in C� are set to zero before calculating

the psuedo-inverse for R�. Channel–channel fluctuations (thermal noise)

are at the ∼10−5 level (orange line). Residuals after applying R� with

τw = 50 ns, ǫ = 10−9 to the flagged signal results in the teal curve. The

difference between R� residuals and the injected noise at the 10 per cent

level (dotted black line). Bottom: the same as the top but in the DFT domain

(with Blackman–Harris windowing). The filter residual agrees very well with

the noise (compare teal and orange in both plots) except for within 100–200 ns

of the attenuation region (shaded grey rectangle in bottom panel) where some

foreground residual is still present. DAYENU does not have to down-weight

power near the band edges, leading to similar levels of foreground residual

across the entire band (dotted black line). Outside of ∼200 ns, the noise is

preserved by the filter at the level of a few per cent (compare black dotted

and orange lines).
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5202 A. Ewall-Wice et al.

model in which no foregrounds were filtered, we technically did not

have. Thus, applying R� allows one to circumvent the band-edge

signal attenuation that comes with apodization.

In this simplified example, R� is highly effective at suppressing

foregrounds. However, our simulation made a number of unrealistic

assumptions. We assumed an isotropic sky with identical spectral

indices. In addition, we assumed that the only chromaticity in our

antenna response was sourced by its airy function beam pattern.

Ultimately, R� and any other inverse covariance filter schemes will

only be effective if the foregrounds as viewed by the instrument

are spanned by the model covariance’s foreground eigenmodes and

the model covariance has enough dynamic range to suppress the

foreground modes in the data to a level where their flagging sidelobes

do not mask the 21-cm signal power spectrum. For R�, this means

that it will prevent foreground bleed by the DFT and missing data as

long as ǫ is large enough and τw extends beyond the delays where the

foregrounds convolved with the instrument exceed the 21-cm signal

level. From a practical standpoint, this means that R� cannot help us

detect 21-cm fluctuations if internal and external antenna reflections

as observed for example by Beardsley et al. (2016), Ewall-Wice

et al. (2016a), and Kern et al. (2019) extend into the delays where

interferometers derive most of their sensitivity. On the other hand, if

the signal chain chromaticity is contained within some upper τw; a

design requirement for the Hydrogen Epoch of Reionization Array

(HERA; DeBoer et al. 2017), then all an analyst needs to do in order

to filter foregrounds from their data is to choose a large ǫ−1 and

set an appropriate τw in R� that extends to the horizon delay τH

plus the intrinsic chromaticity of the antenna. Considering HERA as

an example; the HERA antenna’s chromaticity leaks power above

≈−50 dB at 250 ns (Ewall-Wice et al. 2016c; Thyagarajan et al.

2016; Patra et al. 2018). For HERA, we therefore recommend a τw

equal to the wedge plus roughly 250 ns.

3.5 Filtering efficacy and signal attenuation

To be an effective foreground filter, R� should attenuate foregrounds

while leaving as much of the 21-cm signal as untouched as possible.

If 21 cm is also attenuated and we do not account for this attenuation

in the normalization step we can end up with an unaccounted bias

in our measurement: signal loss. Signal loss is not necessarily a bad

thing and is in fact desirable if it suppresses foregrounds on otherwise

contaminated 21-cm modes (we would not want our normalization to

restore this). In paper II, we will explore when and how good signal

loss occurs. In this paper, we focus on the attenuation properties of

our simple filter DAYENU with the conservative assumption that we

use MID so no correction is made at the normalization step. Under

these conditions we treat signal attenuation as significant if its power-

spectrum signature exceeds sample variance errors which dominate

the most sensitive regions of k-space in upcoming experiments.

Lanman & Pober (2019) find that sample variance errors for per-

baseline power spectra are of the order of 20 per cent which places

a 10 per cent constraint on attenuation in the visibility domain.

Spherically averaged power spectra are expected to be far more

sensitive, with ∼2 per cent sample-variance errors. This places a

constraint of 1 per cent on visibility attenuation.

We investigate the degree that DAYENU can suppress modes with

different τ by studying the amplitudes of zτ = R�xτ where xτ is a

complex sinusoid with delay τ and amplitude equal to unity sampled

every 100 kHz. In Fig. 4, we plot the RMS of zτ ,

√
N−1

d

∑
m |zτ

m|2

versus τ for two bandwidths; 10 and 100 MHz, ǫ = 10−9, and two

filter widths; τw = 150 and τw = 500 ns.

Figure 4. The RMS of residual after applying a R� with ǫ = 10−9; τw =
150 ns (black lines), and τw = 500 ns (red lines); and bandwidths of 10

(dashed lines) and 100 MHz (solid lines). Note that the bottom panel has a

logarithmic y-scale and the top panel has a linear y-scale. Shaded regions

indicate the τw half widths of each filter. Tones within the attenuation region

are suppressed between 10−7 and 10−6, more than enough for robust 21-

cm studies. Greater filter bandwidth allows for enhanced overall suppression

and reduces attenuation outside of the attenuation region. Attenuation above

10 per cent is required to bring biases below the level of expected sample

variance in per-baseline power spectrum estimates. This occurs for τ �

300 ns beyond the filter edge if a filtering bandwidth of 10 MHz is used and

only 50 ns beyond the filter edge if a bandwidth of 100 MHz is employed.

Spherical power spectrum estimates will bring variance errors down to

2 per cent in the power spectrum which translates to a 1 per cent attenuation

requirement in visibility space. Filtering over 100 MHz brings attenuation

below 1 per cent for τ � 300 ns beyond the filter edge with 100 MHz of

filtering bandwidth. In principal, attenuation can be corrected for at the

power-spectrum normalization step so these requirements only strictly apply

to power spectrum estimates with identity normalization.

Within the attenuation region, we see that input tones are sup-

pressed by a factor of 10−7–10−6, depending on the bandwidth

with larger bandwidths achieving more effective suppression. When

10 MHz of bandwidth is used, �10 per cent signal attenuation occurs

within roughly 300 ns of the filter edge. Performance improves

dramatically if a filtering bandwidth of 100 MHz is used instead.

For 100 MHz filtering, �10 per cent attenuation occurs beyond 50 ns

of the filter edge and �1 per cent attenuation is reached by 300 ns

beyond the filter edge. Thus, if we conservatively choose to normalize

with MID then attenuation beyond 300 ns will be smaller then the

expected sample variance errors in upcoming experiments. MID is

a conservative choice, however, and we can do better if we choose

normalizations that undo these attenuations which we explore in

paper II.

We also inspect how the amplitude of zτ depends on ǫ in Fig. 5. We

note that the overall level of suppression is consistent (within a few

dB) whether we filter across 100 or 10 MHz. We compute the average

level of suppression of tones over a range of τw and bandwidths as

a function of ǫ in Fig. 6. For a fixed ǫ, the amplitudes of residuals

MNRAS 500, 5195–5213 (2021)
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A simple foreground filter 5203

Figure 5. The RMS residual after applying R� across 100 (solid lines) and

10 MHz (dashed lines) for different values of ǫ. The level of suppression

within the filter region is roughly consistent within 0.25 dex for fixed ǫ and

different bandwidths.

Figure 6. The average suppression of tones within the filter region induced

by R
� for several different filtering bandwidths and τw values (coloured

lines) as well as a power-law fit to their average (black dashed line). For fixed

ǫ, the residual amplitudes inside of the filter region agree within a few dB

over a wide range of τw and bandwidths. The RMS residual amplitude goes

roughly as the square root of ǫ (dashed lines). It follows that ǫ � 10−8 should

be used to reduce foreground residuals by a factor of ≈10−5, comfortably

below the 21-cm signal.

within the filtering region agree within 0.25 dex over a wide range of

τw and bandwidths. The RMS suppression of Fourier tones within

the filtering region follows a power law which we fit to be RMS

≈ 0.1ǫ0.5. It follows that to suppression 21 cm foregrounds that are

≈104 times larger then cosmological fluctuations, we should apply

filters with ǫ � 10−8. Since the foregrounds in the EoR window will

be suppressed by flagging sidelobes, it is possible that one could get

away with ǫ one-to-two orders of magnitude larger depending on the

severity of flagging.

3.6 DAYENU and the DFT basis

To derive C� (equation 22), we wrote down discrete elements of

our frequency covariance matrix by taking the continuous Fourier

transform of a covariance that was diagonal in continuous delay

space. On the other hand, many power-spectrum estimators (e.g.

Parsons et al. 2012b; Dillon et al. 2013; Trott et al. 2016; Barry

et al. 2019) estimate band-powers in DFT space. This difference in

approach immediately raises the question, why not derive R from

a covariance matrix that is diagonal in DFT space rather than the

continuous space that we chose? After all, if we could just write

down R as diagonal in DFT space, could we just divide the DFT of

our data set by the diagonal DFT of R, R̃, and save computational

steps? The short answer is that an R that is diagonal in DFT space

only includes information on foreground modes with delays equal

to m/B, m ∈ { − Nd/2, . . . Nd/2 − 1} and as a result is incapable

of properly suppressing foregrounds at intermediate delays. In order

to see this effect, we write C
DFT

as the DFT of a covariance that is

diagonal in DFT space

C̃DFT
rs =

{
ǫ−1 1

2τwB
δk
rs

∣∣ r
B

∣∣ ≤ τw

δk
rs

∣∣ r
B

∣∣ > τw

. (30)

We then transform C̃
DFT

into discrete frequency space by performing

a 2D DFT

CDFT
mn = δk

mn +
ǫ−1

2τwB

∑

|r|≤τwB
|s|≤τwB

e−2πi(rm−sn)/Ndδk
rs

= δk
mn +

ǫ−1

2τwB

∑

|r|≤τwB

e−2πir(m−n)/Nd

= δk
mn + ǫ−1

∞∑

s=−∞
Sinc

[
2πτw

(
B

m − n

Nd

− sB

)]
, (31)

where we used the Poisson summation formula (e.g. Epstein 2007)

to go from the second and third lines in equation (31). We see that the

foreground component of CDFT is essentially an infinite sum of copies

of the foreground component of C� translated along the diagonal by

integer multiples of B. This can also be seen by visual inspection in

Fig. 7 where we plot C� next to CDFT. The wrap-around arises from

the fact that our covariance elements are exclusively comprised of

tones that are periodic over the interval B.

By definition, CDFT is diagonalized by the DFT. Thus, when we

weight by its inverse, it will only down-weight modes with τ =
mB−1 ≤ τw; harmonic or on-grid DFT tones. Visibilities include a

continuum of delays and only a fraction of their power is accounted

for by harmonic tones within the wedge. Thus, R
DFT ≡ [CDFT]−1

is incapable of removing the bulk of foreground power, especially

power in the sinc-sidelobes of the aharmonic tones. These sidelobes

remain at high delays and prohibit a 21-cm measurement.

Fig. 8 illustrates the limitations of C
DFT

, where we show the same

quantities as in Fig. 4 but now include the performance of R
DFT

. We

study the impact of progressively adding in-between-modes back into

C
DFT

by increasing the wrap-around interval in equation (31). For

example, increasing the wrap-around from B to 2B, adds additional

modes that are periodic over a bandwidth of 2B but are not periodic

over B. The orange lines in Fig. 8 show the residual amplitudes

leftover after applying R
DFT

to complex sinusoides with various

delays, τ . Unlike R�, gaps are present, R
DFT

’s filter coverage and

truely effective filtering only occurs at τ = m/B, m ∈ Z. Between

B−1 harmonics, filtering only decreases the foreground amplitude by

a factor of ∼10−1.

As we increase period of the wrap-around in equation (31), the

harmonic filter tones move closer together and eventually merge. Be-

cause larger bandwidths have greater Fourier resolution, increasing

the DFT wrap-around to 2B over 100 MHz actually attains similar

performance for the completely continuous case though DAYENU still

subtracts foregrounds to roughly ≈10−2 × the level of DFT modes at

the filter edge. This indicates that if we did want to use DFT modes

to model our foregrounds and subract them, we need of the order of

�2 × as many modes. Since CDFT converges to DAYENU as the wrap
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5204 A. Ewall-Wice et al.

Figure 7. Left: C� with τw = 250 ns and ǫ = 10−9 where each element is

obtained using a continuous Fourier transform (equation 22). Right: C
DFT, the

2D DFT of which is diagonal. The two matrices differ through the presence

of wrap-around, C
DFT is equal to an infinite sum of copies of C� translated by

integer intervals of B along the diagonal (equation 31). The real-life absence

of correlations between opposite band-edges in our foregrounds, which is de-

manded by DFT modes, is what causes C
DFT to perform poorly relative to C�.

interval approaches �2B, roughly �4τwB DFT modes are necessary

to model foregrounds at a level similar to ≈2τwB DPSS vectors.

As we mentioned in Section 3.3, for large Nd, the number of DPSS

modes with non-zero eigenvalues in C� is approximately 2Bτw .

If the DPSS modes are precomputed and the number of DPSS

modes being fit is much less then the number of frequency channels,

then finding the fit coefficients for a single flagging pattern and set of

fitted modes is dominated by calculating A
†
wA where A is the Nd ×

Nmode design matrix where each row is one of the Nmode DPSS vectors

that we are fitting. This matrix multiplication requires ∼O(NdN
2
mode)

operations. Since typically twice as many DFT modes are required

then DPSS modes, DPSS fitting with pre-computed modes reduces

computational operations by a factor of four.

In summary, filtering with a covariance that is diagonal in the

discrete Fourier basis will perform very poorly in foreground sub-

traction because it only contains the subset of foreground modes that

are harmonics of B−1. In defining C�, we instead allow foregrounds

to include any continuous delay within the wedge and use numerical

matrix inversion determine and downweight a discrete set of principal

components.

3.7 Pre-truncation filtering

It is clear from Fig. 4 that the larger the bandwidth we filter over, the

smaller the unwanted signal attenuation outside of τw . This motivates

the use of ∼100-MHz bandwidths for filtering. The power spectrum

is usually approximated over bandwidths of �10 MHz in order to

ensure roughly stationary statistics for the evolving 21-cm signal.

These two ends can simultaneously be achieved by applying R�

over a ≈100-MHz band, truncating, and then estimating the power

spectrum from a DFT over a smaller sub-band. Under this scheme,

R� is a non-square Nd × NF
d matrix, where NF

d is the number of

channels to be filtered over and NF
d ≥ Nd. To obtain a truncated R�,

all we have to do is zero out the rows of R� corresponding to channels

that we do not want to include in the application of Qα .

Fig. 9 examines signal attenuation as a function τ over 10 different

10 MHz sub-bands where truncation to 10 MHz is performed after

the application of R�. In each sub-band, signal attenuation is

dramatically reduced compared to filtering over the 10-MHz band

alone. With the exception of the edge bands (100–110 and 190–

200 MHz), �1 per cent signal attenuation is achieved by 250 ns

Figure 8. The RMS residual R� applied of tones with delay τ . We filter τ � τw ≈ 125 ns over 10 (dashed lines) and 100 MHz (solid lines) with the covariance

matrix periodicity (the coefficient next to ‘m’ in equation 31) set to be 1B (grey lines), 1.5B (red lines), 2B (purple lines), and infinite (black lines). Enforcing

periodicity on the covariance matrix is equivalent to restricting its Fourier modes to be harmonics of its wrap-around period. As a result, the covariance matrix

is only able to effectively filter these harmonics. For example, when we set periodicity to 10 MHz, our filter only effectively removes the 1/(10 MHz) = 100 ns

tone (dashed black line). When the periodicity is set to 20 MHz, we can remove the 50, 100, and 150 ns tones. When we use 100-MHz bandwidth, tones are

spaced by 10 ns. When we set the periodicity to 200 MHz, the spacing between tones drops to ≈5 ns but all tones within the attenuation region are effectively

removed due to the finite width of suppression about each tone. The fact that the DFT diagnalized filtering matrix approximately converges to DAYENU at

�2B wrap-around indicates that ∼4τwB modes must be fit in order to achieve similar performance. This can be understood as an approximate manifestation of

Nyquist’s theorem since we are attempting to describe frequency-limited foregrounds with infinite but highly concentrated support in delay space. Representing

such a signal requires at least �1/2B sampling.
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A simple foreground filter 5205

Figure 9. The RMS residual of truncated 10 MHz sub-bands of tones after

R� is applied to the full 100-MHz band. The degree of signal attenuation is

significantly improved over the case where the filter is applied directly to each

10 MHz sub-band after truncation (black dashed line). With the exception of

the two outer sub-bands, signal attenuation is below 1 per cent by �200 ns

beyond the filter edge. The edge bands have �10 per cent signal attenuation

within 250 ns of the filter edge. Bringing attenuation below�1 per cent brings

it within the expected sample variance error bars of spherically average power

spectra. Bringing this attenuation below 10 per cent brings it below the

expected sample variance of per-baseline power spectra (Lanman & Pober

2019).

beyond the filter edge. In the outer 10 MHz bands, 10 per cent

loss is still achieved by 150–200 ns off the filter edge. In light of

these results, we recommend sub-band power spectrum estimates be

obtained from data on which DAYENU is applied over as wide a band

as possible and then truncated.

3.8 Flagged channels

In real life, some fraction of interferometric channels are contami-

nated by RFI and must be discarded. Thus, it is necessary for DAYENU

to work robustly on data that is not evenly sampled. We investigate the

impact of RFI flagging by inspecting RMS residuals from applying

the psuedo-inverse of C� where rows and columns corresponding to

flagged channels are set to zero. We explore two different scenarios

over 100 MHz of bandwidth. One in which 20 per cent of channels

are flagged randomly and one in which 200 kHz flags are applied

every 1.28 MHz; similar to what must be performed on the MWA

(Dillon et al. 2015; Beardsley et al. 2016; Ewall-Wice et al. 2016b;

Barry et al. 2019) (Fig. 10). Since the MWA records ≈30 MHz

simultaneously, we also show the RMS residual of R� with 200 kHz

flags every 1.28 over 30 MHz.

With 200 100 kHz channels flagged randomly over 100 MHz, we

find that attenuation beyond the filter width increases by approx-

Figure 10. RMS residuals of R� for tones filtered with various flagging

patterns in data sampled every 100 kHz. We compare no flags over 100 MHz

(black line) 200 randomly flagged channels (grey line) and 200 kHz of

flagging every 1.28 MHz (red line) – similar to what is typically performed

on the MWA. Since the MWA only observes 30 MHz simultaneously, we also

show 200 kHz flags every 1.28 MHz (gold line). Random flagging increases

attenuation by a percent or so. MWA-like flagging results in ≈2 per cent

attenuation over most delays.

imately 1 per cent out to large delays. The presence of periodic

flags results in the flagging attenuation being concentrated in a

concentrated region centred ≈781 ns, the delay of the 1.28 MHz

flag periodicity. Outside of this region, the attenuation is negligible

but within this region it exceeds 2 per cent, in excess of the average

1 per cent induced by randomized flagging.

3.9 DAYENUREST

By subtracting foregrounds with a matrix multiplication, DAYENU

accomplishes one of the primary objectives of the iterative CLEAN

filter (Parsons et al. 2012b). z = R�x is equivalent to the residual

after CLEAN is applied. The second goal of CLEAN is to smoothly

interpolate (restore) the subtracted foregrounds by adding back their

CLEAN components; interpolating the foregrounds over flagged

channel gaps with DFT modes. We can isolate the foregrounds

subtracted by R� with the matrix operation (I − R�) and fit them to

NDPSS DPSS modes. DPSS vectors are eigenvectors of the foreground

component of C� so we can approximate our foregrounds with the

DPSS vectors with eigenvalues above some small number relative

to the largest eigenvalues. We choose a cut-off of 10−12 the largest

eigenvalue that ensures that foreground modes are subtracted to a

level of �10−6.

Fitting and interpolating with our NDPSS modes can be achieved

applying the linear least-squares solution matrix to (I − R�)

A = A[AT
wA]−1

A
T
w, (32)
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5206 A. Ewall-Wice et al.

where A is an Nd × NDPSS matrix

Amα = u(α)
m (Nd, τw), (33)

where u(α)
m (Nd, τw) is the mth element of the αth DPSS vector

of length Nd that diagnalizes the Nd × Nd matrix Smn(Nd, τw) =
(2τw�ν)Sinc[2πτw(νm − νn)] and w is a diagonal matrix set to unity

at unflagged channels and zero at flagged channels. Applying A to

(I − R�) provides us with DPSS interpolated CLEAN components.

Adding these CLEAN components to the residual gives us a linear

REST (restoration) matrix which both filters the data and interpolates

the subtracted foregrounds.

R
REST = A[AT

wA]−1
A

T
w(I − R

�) + R
�. (34)

We can understand the first term of equation (3.9) as follows.

First (I − R�) is applied which effectively filters out all small-

scale structure dominated by the 21-cm signal and contains RFI

flagging gaps. Next, A
T
w transforms the flagged data into the DPSS

basis. Mode-mixing between the DPSS coefficients, due to flagged

channels, is undone by applying [AT
wA]−1 and a final application

of A transforms back into frequency space. Thus, the total action of

the first term is the interpolation over flagged channels with fitted

smooth DPSS modes. The second term of equation (3.9) isolates

the fine-frequency components of the signal including noise and the

21-cm signal itself.

In Section 4, we will demonstrate the performance of DAYENUREST

on realistic foreground and signal simulations.

4 VALIDATION W ITH REALISTIC

SIMULATIONS

In the last section, we tried to understand how demixing and filtering

were limited by non-idealities of the signal covariance matrix. To this

end, we simulated Gaussian realizations of a simplified foreground

model with no consideration of antenna chromaticity or reference

to an actual sky with spectral slope. In addition, the dynamic range

that we assumed between foregrounds and 21 cm (eight orders of

magnitude in the power spectrum), was somewhat less than what is

expected for many models. In this section, we validate DAYENU by

applying it to more realistic simulated visibilities.

4.1 Simulation description

In this section, we use simulated HERA visibilities (Appendix A,

Kern et al. 2019) to validate filtering with R� along with the

overall impact of this filtering on power-spectrum statistics. We

construct our simulations using the HEALVIS software (Lanman &

Kern 2019), which integrates the visibility equation using a HEALPIX

representation of the sky (Górski et al. 2005). The simulations use

the Global Sky Model (GSM; de Oliveira-Costa et al. 2008) for

the foreground model, and a flat-spectrum, uncorrelated random

Gaussian field as the EoR model with a variance of 25 mK2.

They also use a simplified model of the HERA primary beam in

instrumental XX and YY polarization, assuming minimal frequency

structure in the sidelobes of the beam. Specifically, the beam is low-

pass filtered across frequency at every HEALPIX pixel to reject struc-

tures for |τ | > 250 ns. For this work this is likely an inconsequential

feature of the simulations, as it sets at which delay the foreground

power dips below the EoR signal, which is not something that our

analysis is sensitive to (Fagnoni et al. 2019). The simulations span 8

h of local sidereal time (LST) and have a frequency coverage from

120 to 180 MHz in 256 channels leading to a 235 kHz channelization.

We refer the reader to Lanman et al. (2019) for more details on the

HEALVIS package and (Kern et al. 2019) for further information on

the simulated data products. RDI plays a major role in setting the

efficacy of these techniques. In this section, we use flagging masks

representative of the RFI environment for HERA’s first observing

season (Kerrigan et al. 2019; Kern et al. 2020).

4.2 Validating DAYENU and DAYENUREST as visibility filters

Aside from being used as a filtering matrix in the final calculation of

p̂α , DAYENU can readily be employed in sandbox-type data analyses

assessing the level of spectral structures in individual visibilities,

data-cubes, and other products. In this section, we compare its

efficacy to CLEAN filtering which is often used to a similar end. To do

so, we inspect the performance of the direct application of DAYENU

and DAYENUREST to our simulated visibilities, and compare our

results to CLEAN. In the literature (e.g. (Kern et al. 2019)), CLEANing

is performed on the visibility after zero-padding by Nd channels on

either side (For these simulations Nd = 256) and taper-filtering with

a Tukey window with α = 0.15. Zero-padding is performed to give

CLEAN a larger number of Fourier modes to work with; allowing it

to fit the same aharmonic delays that are absent from an Nd DFT. We

perform CLEANing over ±150 ns in delay-space. Each iteration of

CLEAN finds the peak power of the data in delay-space and subtracts

the peak power times 0.1 (gain) times a flagging kernel centred at

the peak delay until the RMS residual changes with each iteration

by less than some fraction of the RMS of the original visibilities.

The tolerance parameter can be set as low as we want to obtain some

arbitrary degree of foreground subtraction. In practice, the choice

of tolerance depends on the constraints of computational resources.

We adopt 10−9 that is currently being used in the HERA analysis

pipeline. In addition, for Nd = 256, CLEANing a single baseline on a

single time to 10−9 tolerance has a similar runtime (within an order

of magnitude) of computing the psuedo-inverse of C� to obtain R�.

For DAYENUREST, we limit the set of DPSS vectors to those with

eigenvalues of L greater then 10−12. As we stated in Section 3.3,

the maximum eigenvalue of L is close to unity. We compare the

sum of clean residuals and clean components, which interpolate over

flagged channel gaps (center, Fig. 11), to DAYENURESTd simulations

(right, Fig. 11). At large scales, our linear cleaning and interpo-

lation technique performs just as well as CLEAN in reproducing

macroscopic foreground features. In order to understand the low-

level disagreements between the two, we inspect their residuals.

We compare the residuals from CLEAN and DAYENUREST (Fig. 12).

For CLEAN, we refer to residuals as what is left in the data after

iteratively subtracting all CLEAN-components and for DAYENU and

DAYENUREST, as in the previous sections, residuals refer to the data af-

ter applying R�. Note that the residuals for DAYENU and DAYENUREST

are identical by the definition of DAYENUREST (equation 3.9). In

Fig. 12, DAYENU and DAYENUREST subtract the foregrounds to below

the 21-cm level (right-hand panel) while CLEAN leaves significant

residuals (center right panel). To understand the impact of flagging,

we also inspect the residuals of CLEAN with no flagging (center

left panel). The CLEAN residuals are nearly identical whether or not

flagging is present. It follows that flagging alone does not impact

the absolute level of residuals left after CLEANing. If these residuals

intrinsically stay within the wedge, they will not have an impact

on our ability to detect 21 cm outside of the wedge. However, the

presence of flagged channels will cause the residuals to enter the

EoR window at a level that depends on the flagging.

In Fig. 13, we compare the Blackman–Harris taper-filtered delay-

transform of DAYENUREST and CLEAN filtered data with and without

flagging across three different bands. For DAYENUREST filtered data
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A simple foreground filter 5207

Figure 11. Left: A simulated visibility including modelled foregrounds and 21-cm fluctuations with gaps at the locations of frequency dependent RFI flags.

Center: Simulated foregrounds and EoR after low-delay frequency interpolation with the CLEAN algorithm. Right: Simulated foregrounds and EoR after low-delay

frequency interpolation with DAYENUREST. At the macro-scale, linear in-painting delivers qualitatively similar results to iterative CLEANING. The low-level

inconsistences between foreground interpolation by CLEAN and DAYENUREST are best understood by inspecting the residuals left over after subtracting these

foreground models (Figs 12 and 13).

Figure 12. Left: an injected mock EoR signal. Center left: Residuals after filtering using the CLEAN algorithm with no flagging. Center right: Residuals after

foreground filtering using the CLEAN algorithm with flagging. The level of real-space CLEAN residuals is roughly independent of flagging. Although the CLEAN

residuals exceed the 21-cm signal, as long as these residuals are spectrally smooth, they are not an obstacle to detecting 21 cm in Fourier space. The presence of

flagging and residuals presents complications (as we see below in Fig. 13). Right: Residuals after foreground filtering using our linear filter. EoR fluctuations

remain primarily intact while foregrounds have been completely eliminated.

refer to the data after the application of RREST. For CLEAN filtered

refers to CLEAN residuals plus the interpolating CLEAN components.

Our three bands are as follows. First, the entire 120–180 MHz band.

Secondly, a 120–138 MHz band below ORBCOMM which is heavily

flagged, and thirdly 141–180 MHz above ORBCOMM with roughly

twice the bandwidth as below. With no RFI flagging, CLEAN and

DAYENUREST perform similarly well as can be seen by comparing the

red-solid and grey-solid lines in Fig. 13. Unfortunately, the presence

of RFI flags causes significant bleed of the CLEAN filtered data

outside of the wedge and is especially bad when the DFT band

includes ORBCOMM at 137 MHz. We also plot the residuals of

CLEAN and DAYENUREST as dashed lines. The maximum low-delay

level of CLEAN residuals is practically the same with and without

flags. The presence of flags causes these residuals to bleed to high

delays at levels much larger then 21 cm. Since the level of these

bleeding residuals agrees with the level of the total filtered data,

we conclude that the structures in CLEAN residuals introduced by

flagging are to blame for high-delay contamination in the CLEAN

filtered visibilities. Even without ORBCOMM, leakage of CLEAN

residuals exceeds our injected 21-cm signal by a factor of a few.

DAYENUREST (red-solid line) successfully removes foregrounds

below the level of the 21-cm signal (black dotted line) in all cases.

The relatively narrow bandwidth below ORBCOMM, presents a

potential challenge since the central foregound lobe extends to

k‖ ≈ 0.2 h Mpc−1. Losing k‖ � 0.2 h Mpc−1 to foregrounds has a

significant impact on science returns (Pober et al. 2014; Ewall-Wice

et al. 2016a, c). In Section 4.3, we investigate whether the central

foreground lobe is actually a fundamental limitation.

Over 256 channels, CLEAN’s runtime per integration is also signif-

icantly larger than DAYENUREST’s. With our adopted parameters, on

a laptop with a 2.4 GHz i5 processor, computing R� for each unique

flagging pattern and set of filter-widths, centres, and suppression

factors takes roughly 0.24 s while filtering a baseline at a single

time with a cached filter matrix takes approximately 0.003 s. In

comparison, the time for CLEAN to run on each baseline-time is 0.8

s and there is no possibility of speeding things up through caching.
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5208 A. Ewall-Wice et al.

Figure 13. Time averages over 8 h of LST of the absolute value of delay-transformed visibilities in Fig. 11, tapered by a 7-term Blackman-–Harris window.

Left: 120–180 MHz (all 256 channels), centre: 120–137 MHz (below ORBCOMM), and right: 141–179 MHz (above ORBCOMM). Solid lines represent filtered

and restored foregrounds and thin dashed lines show residuals. We show the attenuation of our CLEAN andDAYENU filters as a grey-shaded region. Over all

bands, ringing from RFI flags causes the unfiltered foregrounds (purple lines) to completely mask the 21-cm signal (black-dotted lines). Pealing and in-painting

foregrounds using the CLEAN algorithm with a tolerance of 10−9 leaves significant residuals that exceed the 21-cm signal in all studied bands and are especially

problematic when the FT window includes the heavily flagged ORBCOMM frequencies (≈137 MHz). DAYENUREST (dashed line) subtracts foregrounds far

below the 21-cm level, allowing for an unbiased estimate of 21-cm emission outside of the central foreground lobe.

Before we move on to power spectra, it is worth noting that

although we have focused filtering visibilities, R� can just as easily

be used to foreground-filter gridded visibilities by applying R� along

the frequency axis of each uv cell. In this situation, one would set

τw to include not only the intrinsic chromaticity of the antenna and

the wedge in the uv cell but also to include any additional spectral

structure that might be introduced by gridding. We leave the question

of how much one would need to increase τw for different gridding

strategies to future work.

4.3 Power spectra

We now explore the impact that various choices of R have on the

final power spectrum when we use identity normalization M ∝ MID.

We calculate a normalized p̂ from 42 channels between 145 and

155 MHz; corresponding to a redshift interval of �z ≈ 0.5 for the

following choices of R.

(i) Blackman–Harris: We use an apodization filter with the diag-

onal set equal to a 7-term Blackman–Harris taper function R = R
BH

.

To obtain a noise-equivalent bandwidth of 10 MHz, we extend the

spectral window to 96 channels (22.5 MHz).

(ii) No flags: A scenario for reference. The same as simple delay-

spectrum but with no RFI flagging. In this scenario, we also have

R = R
BH

.

(iii) DAYENU Narrowband: Apply R� with ǫ = 10−9 and

τw = 150 ns across the same bandwidth as the Fourier transform

(42 channels – 10 MHz; R�). We do not use a taper in the Fourier

transform. Thus R = R�.

DAYENU Restored: Perform linear inpainting of foregrounds using

DAYENUREST with a 150 ns attenuation region and in-painting

modes spaced by 44.44 ns (RREST). An identical Blackman–Harris

tapered Fourier transform as our Blackman–Harris scenario is used

to estimate bandpowers from the filtered data. Thus R = R
BH

R
REST

.

(iv) DAYENU Extended filter: We perform filtering across the

entire 60-MHz band with R� before truncating and performing a

DFT across the central 10 MHz, R = R�.

In all cases, we use Qα = Qα
DFT

. In order to convert our power

spectra from visibility to cosmological units, we multiply MID by a

constant

M = S × MID, (35)

where

S =
(

λ2

2kB

)2
X2Y

N2
d �ppB

, (36)

�pp is the solid angle integral of the primary beam squared and

averaged over our band of interest, Y = dr�/dν, X = dr⊥/dθ , λ

is the average observation wavelength, and kB is the Boltzmann

constant. We refer the reader to Morales & Hewitt (2004), Parsons

et al. (2012a, 2014) for more the full expressions of these constants

and their derivations. We estimate power spectra from 8 h of LST by

computing an independent p̂ every 30.6 s and incoherently averaging.

Our bandpower estimates appear in Fig. 14 along estimates of vertical

and horizontal 68 per cent confidence errorbars. We derive these

confidence intervals from estimates of the bandpower covariances �̂

and window-functions Ŵ. Before we discuss the results in this

plot we first describe our calculations �̂ (Section 4.3.1) and Ŵ

(Section 4.3.2).

4.3.1 Error bars

To calculate σ̂ p̂
α , the standard deviation of our αth bandpower after

incoherent averaging, we first calculate σ̂ 0
α ≡

√
�̂αα by empirically

computing the covariance of p̂ across all LSTs. We show our

estimates of �̂ in Fig. 15. To account for the reduction in errors that

occurs from incoherently averaging over the independent realizations

of foregrounds and 21-cm fluctuations in the sky, we use the equation

σ̂ p̂
α = σ̂ 0

α

√
FWHMα

c

T
, (37)

where FWHMα
c is the full-width half-maximum in time of the

correlation between the αth bandpower and itself �̂αα(�t) and T

is the total amount of time over which LSTs are averaged (8.5 h). We
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A simple foreground filter 5209

Figure 14. Power spectra estimated from a −29 m east–west oriented

baseline over 10 MHz noise equivalent bandwidth centred at 150 MHz and 8 h

of LST. Vertical error bars are 68 per cent confidence regions computed from

the diagonal of �̂ and arise from the sample-variance in 8 h of sky observations

(Section 4.3.1). Horizontal errorbars are the 68 per cent confidence intervals

derived from estimates of the window-function matrix Ŵ (Section 4.3.2)

and points are plotted at 50 per cent point of each Ŵ row. With only a

Blackman–Harris apodization filter applied, power spectrum estimates are

heavily contaminated by flagging sidelobes of the foregrounds (pink points).

Filtering with DAYENUREST and a Blackman–Harris both interpolates the

flagged channels and removes power associated with the sharp edges of our

finite sample bandwidth (blue points), resulting in a measurement that is in

general agreement with an unflagged Blackman–Harris tapered DFT (purple

points). Tapered DFT methods that leave the foregrounds in must contend

with those foreground’s sidelobes. Over 10 MHz NEB, these sidelobes extend

to ∼0.2 h Mpc−1, rendering measurements of larger scale modes highly

contaminated by foreground bias. DAYENU is a filter that targets and removes

foregrounds. But unintentional attenuation of the signal also occurs beyond

the edge of the attenuation region (vertical grey filled region) specified by

τw . If we apply DAYENU over 10 MHz then this attenuation is significant

in our single baseline power spectrum out to 0.2 h Mpc−1 (orange points).

ApplyingDAYENU across 60 MHz before estimating our bandpowers from

the central 10 MHz sub-band allows us to measure bandpowers down to

∼0.1 h Mpc−1 with relatively small bias which can be further mitigated using

more sophisticated normalization.

compute bandpower time-correlations using

�̂αα(�t) =
1

Nt

∑

t

p̂α(t + �t)p̂∗
α(t), (38)

where Nt is the number of times and p̂α(t) is the band-

power estimate at each time-step. In our case, Nt = 1000. We

find the full-width half-maximum of �̂αα(�t) using the method

scipy.signal.find peaks. In Fig. 14, we show the averaged

bandpowers and 2σ error bars. Since our simulation does not include

noise, the errors are purely sourced by sample variance in the

foregrounds and signal.

4.3.2 Window matrices

We estimate window matrices using the equation

Ŵ = MĤ, (39)

where

Ĥαβ =
1

2
tr(R

†
QαRĈ,β ). (40)

In practice we do not necessarily have Ĥ = H since we do not know

the a priori actual bandpowers of the signal in question and are instead

forced to guess some Ĉ,β . While we technically do potentially have

the ability to calculate true bandpowers for our simulated visibilities,

we defer an exploration of the consequences of not using true

bandpowers to compute H for paper II. In this paper, we adopt the

standard DFT bandpower assumption so that Ĉ,β = Ĉ,β

DFT
.

We show Ŵ for our various R choices, averaged over all time-

samples, in Fig. 16. Our window functions for the Delay Spectrum

and DAYENU Restored are very close to each-other outside of the

filtering region where they are narrowly peaked but level off at

≈−35 dB. We also plot every fourth row of Ŵ for an estimator with

no flagging and a Blackman–Harris apodization filter in Fig. 16.

Since these window functions continue to descend below −35 dB,

we conclude that the −35 dB floor in most Ŵ rows is a consequence

of flags. In our Blackman–Harris estimator, these −35 dB sidelobes

extend from bandpower estimates inside of the attenuation region

just as much as bandpower estimates outside of the attenuation

region. If no foregrounds are subtracted, bandpower estimates inside

of the attenuation region are heavily contaminated by foregrounds,

causing the significant contamination across all bandpowers that

we observe in the Blackman–Harris model (pink points) in Fig 14.

Since the vast majority of power within the filtering region is

sourced by interpolated and effectively unflagged DPSS modes, the

DAYENU Restored filter removes the components of sidelobes of

bandpowers centred outside of the attenuation region that overlap

with the attenuation region. This effectively breaks the coupling

of modes outside the attenuation region with the foregrounds. The

DAYENU Narrowband filter suppresses the coupling of all bandpower

estimates with delays inside of the attenuation region and as a

consequence, many of the rows of Ŵ that would typically be

centred inside of the attenuation region are now centred at its edge

at k‖ ≈ 0.2 h Mpc and preventing us from effectively measuring

cosmological modes below this value. By extending the filtering

bandwidth from 10 to 60 MHz our DAYENU Extended filter reduces

the width of the attenuation region to ≈0.1 h Mpc−1 and allowing for

significant improvements in our ability to detect and interpret 21-cm

fluctuations.

4.3.3 Power-spectrum results

Having explained the source of our vertical and horizontal 68 per cent

confidence regions, we discuss the results of Fig. 14. The presence of

RFI gaps introduces window-function sidelobes at the −35 dB level

(Fig. 16). Thus, if our R filter does not attenuate foregrounds before

applying Qα
DFT

, all bandpowers will be heavily contaminated by

foregrounds. This is indeed the case for our Blackman–Harris model

(pink points). If no flags are present, these flagging sidelobes do

not exist and our estimator eventually recovers 21 cm. However, the
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5210 A. Ewall-Wice et al.

Figure 15. The covariance matrices of p̂ �̂ from which the errorbars in Fig. 14 are derived. Left: As a result of flagging, and not attempt to decorrelate,

power-spectrum errors for the DFT of EoR simulated data are highly correlated. Center left: Errors from DAYENUREST which restores foregrounds using linear

interpolation with DPSSs and as a result, requires a taper-filtered FT over a larger bandwidth. Error bars are very large below k� � 0.2 h Mpc−1 but outside

of the foreground region, they are somewhat less correlated then the EoR only panel. This is in part because of the larger DFT and lower sidelobes from a

Blackman–Harris. Centre right: �̂ for DAYENU applied over the same 10-MHz bandwidth of the DFT. Large foreground errors are now contained within the

DC bin but significant error correlations exist below k� � 0.2 h Mpc−1. Right: �̂ for our DAYENU Extended filtering estimator. Correlations between large k�
modes are similar to the EoR-only and DAYENU panels. However, the strong correlations at k� � 0.2 h Mpc−1 that exist when DAYENU is applied over a

smaller bandwidth have been greatly reduced, as have the foreground errors in the k� = 0 h Mpc−1 bin.

smallest k� that we can access is limited by the Blackman–Harris

sidelobes of foregrounds which extend to k� ∼ 0.2 h Mpc−1. The

same is true for the DAYENU Restored scenario (blue points). The

primary accomplishment of foreground interpolation is to remove

the bleed from flagging gaps but we must still contend with the

Blackman–Harris sidelobes. DAYENU Narrowband (orange points)

eliminates foregrounds but also severely attenuates signal out to

≈0.2 h Mpc−1. Thus, we are still restricted to k� � 0.2 h Mpc−1 and

samples that would otherwise be foreground contaminated at smaller

k� are instead primarily contributed to by power just outside the

attenuation region, leading to the handful of points with very large

horizontal error bars piled up at k� ≈ 0.2 h Mpc−1. By using a larger

bandwidth in the filtering step, DAYENU Extended reduces the region

of excessive attenuation down to �0.1 h Mpc−1 (red points). Hence,

by filtering foreground selectively, we can access significantly larger

co-moving scales then if we only use apodization tapers. From Fig. 4,

we know that our bandpowers are biased low at the 1–10 per cent

level – something that is technically not significantly detected in

our single-baseline analysis due to sample variance errors. However,

this bias can have implications for more sensitive spherically binned

power spectra.

5 C O N C L U S I O N S

In this paper, we introduced a new method for subtracting fore-

grounds with a highly approximated inverse covariance filter that

we call DAYENU. With no flagging, DAYENU effectively filters

foregrounds using DPSSs which are a set of sequences that maximize

power concentration within the wedge. Unlike apodization filters,

which subtract power equally from foregrounds and signal, DAYENU

targets and subtracts low-delay foregrounds with minimal impact

on high delay signal and noise. DAYENU avoids the band edge

signal attenuation that is a feature of multiplicative taper filters.

DAYENU is fast, only requiring that one take the psuedo-inverse of

a modestly sized analytical covariance for each baseline length and

unique flagging pattern while its linearity allows us to propagate its

effect into error estimates and other statistical calculations. We have

tested DAYENU on simulated visibilities, but in principal it can also

filter foregrounds from gridded uv data by applying it to each uv cell

instead of each baseline provided that τw is increased sufficiently to

include gridding artefacts. Applying DAYENU to realistic simulations,

we have learned the following:

(i) DAYENU is effective at subtracting delay-limited foregrounds

at the�10−6 level, even in the presence of significant flagging (Figs 3

and 12). If applied across an ≈100 MHz band, signal attenuation is

kept below ≈1 per cent beyond 300 ns of the delay-space filter edge.

This attenuation can be corrected further in the power-spectrum

normalization step. DAYENU’s efficacy over filtering with a DFT

arises from the fact that, unlike the DFT, it down-weights foreground

wedge structures that are not harmonics of B−1.

(ii) A combination of DAYENU and least-squares fitting of DPSSs

(DAYENUREST ) is a fast, linear alternative to the iterative CLEAN

algorithm whose residuals are significantly smaller than CLEAN ’s

given similar computing times (Figs 11 and 12).

(iii) Applying DAYENU across an ∼60–100 MHz band before

estimating bandpowers over the ∼10 MHz necessary for stationary

21-cm statistics allows us to access LoS scales of �.15 h Mpc−1 that,

even without flagging, are inaccessible to apodized DFTs of Fig. 14

and Fig. 16.

Our takeaway from examining DAYENU is that in the regime where

baselines are short so that their information is mutually independent,

an inverse covariance filter that is good enough for us is simply

one that captures the large dynamic range between foregrounds

and signals over the wedge delays and includes information on the

frequency structures in the foreground wedge that are not harmonics

of B−1. We have shown that a simple covariance like R� can be

many orders of magnitude different from that of the true data

covariance but still serve as a highly effective filter. This bodes

well for 21 cm and other intensity mapping applications where the

precision characterization of our instruments and foregrounds is

difficult.
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A simple foreground filter 5211

Figure 16. Rows of Ŵ for the various choices of R considered in this paper. Each coloured line is a different row. We also show every fourth row of Ŵ

for an unflagged Blackman–Harris filtered power spectrum as grey shaded regions. The attenuation set by τw in DAYENU is also indicated by a grey shaded

region bordered by a dashed line. Top left: Rows of Ŵ when only a Blackman–Harris filter is used on the flagged visibilities. Window functions exhibit a

floor at ≈−35 dB arising from the flags. Top right: When we use the DAYENUREST filter, flagging gaps are interpolated over by DPSS vectors that span the

attenuation region. This results in the removal of the flagging sidelobes of bandpowers centred within the attenuation region, preventing foreground leakage.

Flagging sidelobes remain outside of the attenuation region. Bottom left: Applying DAYENU across a narrow band (10 MHz) removes power within the 150 ns

attenuation region along with associated sidelobes, eliminating the problem of foreground-flagging sidelobes contaminating all bandpowers. Ŵ rows that would

otherwise be centred inside of the attenuation region are now centred outside and have larger sidelobes that extend to larger wavenumbers. This is because

these bandpowers had most of their power eliminated by DAYENU but the flagged DFT leaks power back in from high delays. The relatively large amount of

unintentional attenuation that accompanies a narrow band filter (see also Fig. 4) prevents us from effectively measuring bandpowers below k� � 0.2 h Mpc−1.

Bottom right: Our DAYENU Extended filter filters over all 60 MHz of before performing a DFT over the same 10 MHz as the DAYENU and DAYENU Restored

scenarios. The reduction in unintentional attenuation results in our ability to measure 21 cm fluctuations down to ∼0.1 h Mpc−1, enhancing our ability to perform

sensitive 21-cm measurements.

C O D E

An interactive jupyter tutorial on using DAYENU can be found

at https://github.com/HERA-Team/uvtools/blob/master/examples/li

near clean demo.ipynb. DAYENU’s source code can be found at https:

//github.com/HERA-Team/uvtools/blob/master/uvtools/dspec.py

This work made use of the NUMPY (Virtanen et al. 2020), SCIPY

(Virtanen et al. 2020), MATPLOTLIB (Hunter 2007), AIPY https://github

.com/HERA-Team/aipy, and ASTROPY https://www.astropy.org/ and

JUPYTER https://github.com/jupyter/jupyter python libraries along

with PYUVDATA (Hazelton et al. 2017) and HEALVIS (Lanman &

Kern 2019) PYTHON packages.
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A P P E N D I X A : TH E D E P E N D E N C E O F CLEAN

R E S I D UA L A M P L I T U D E S O N TH E

TO L E R A N C E PA R A M E T E R

In our comparison, we assumed a fixed set of CLEAN parameters

employed by the HERA pipeline (Kern et al. 2019) and the RFI

environment of the Karoo radio observatory. The presence of flagging

leaks residuals left over by CLEANing across all delays. Hampering

a 21-cm detection. Lowering the residuals also lowers this leakage

so in principal decreasing the tolerance should allow for sufficiently

low residuals for a 21-cm detection. In this appendix, we examine

the CLEAN performance as a function of flagging percentage and

tolerance parameter. We run CLEAN for a single model baseline

and time across all 256 channels with 256 channel zero-padding

on either side and a Tukey taper. We iteratively increase the width

of flagging on the ORBCOMM band; starting with no flags, then

introducing two 235 kHz channels centred at 137 MHz. Next, we

introduce four channels, eights channels, and 16 channels. In the

top-panel of Fig. A1, we compare residuals for different levels of

flagging to the injected 21-cm signal. Even when two channels are

flagged, significant deviations are introduced in CLEAN when the

tolerance is set to 10−9 (solid coloured lines). On the other hand,

DAYENUREST reproduces both the foregrounds and signal with no

residual bias.

As we mentioned above, the biases from CLEAN arise from fore-

ground residuals that have not been fully subtracted and still contain

sidelobes from flagging. By decreasing the tol parameter in CLEAN,

we can actually subtract deeper. Thus, in principal there should

exist small enough values of the tolerance such that sidelobes are

suppressed enough to recover 21 cm fluctuations without significant

foreground bias. We explore this possibility by lowering the tolerance

to 10−11 (Fig. A1 bottom panel). Given this lower value, residuals
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Figure A1. Top: Delay-transformed CLEANed visibilities for tol = 10−9

(top panel) and tol = 10−11 (bottom panel). Different colours denote

different numbers of contiguous flagged channels centred at the 137 MHz

ORBCOMM frequency. No other flags are introduced and CLEAN is per-

formed over the entire band. Dotted lines are the results of applying DAYENU

to the various levels of flagging. The DAYENU filtered visibilities are in very

good agreement with the signal outside of the attenuation region.

are not visibly present with two flagged channels but �10 per cent

biases appear after �8 channels (only 3.1 per cent of the data) are

flagged. Running CLEAN with tol = 10−11 takes 22 s per baseline

and time-sample on a 2.4 GHz i5 processor – ∼100 times slower then

the linear filter if R� is computed at every baseline time and ∼104

times slower then the realistic scenario where all baseline-times can

be filtered with cached matrices.

While decreasing the tolerance can lower foreground leakage,

there are diminishing returns and even after a 104 performance

hit relative to DAYENU, we run into trouble with just 3 per cent of

channels flagged.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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