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Abstract

Background: Microbial communities associated with indoor dust abound in the built environment. The

transmission of sunlight through windows is a key building design consideration, but the effects of light exposure on

dust communities remain unclear. We report results of an experiment and computational models designed to assess

the effects of light exposure and wavelengths on the structure of the dust microbiome. Specifically, we placed

household dust in replicate model “rooms” with windows that transmitted visible, ultraviolet, or no light and

measured taxonomic compositions, absolute abundances, and viabilities of the resulting bacterial communities.

Results: Light exposure per se led to lower abundances of viable bacteria and communities that were

compositionally distinct from dark rooms, suggesting preferential inactivation of some microbes over others under

daylighting conditions. Differences between communities experiencing visible and ultraviolet light wavelengths were

relatively minor, manifesting primarily in abundances of dead human-derived taxa. Daylighting was associated with

the loss of a few numerically dominant groups of related microorganisms and apparent increases in the abundances

of some rare groups, suggesting that a small number of microorganisms may have exhibited modest population

growth under lighting conditions. Although biological processes like population growth on dust could have

generated these patterns, we also present an alternate statistical explanation using sampling models from ecology;

simulations indicate that artefactual, apparent increases in the abundances of very rare taxa may be a null expectation

following the selective inactivation of dominant microorganisms in a community.

Conclusions: Our experimental and simulation-based results indicate that dust contains living bacterial taxa that can

be inactivated following changes in local abiotic conditions and suggest that the bactericidal potential of ordinary

window-filtered sunlight may be similar to ultraviolet wavelengths across dosages that are relevant to real buildings.
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Background
Humans spend most of their time in the built environ-

ment [1], exposed to microbial communities associated

with indoor dust. These communities are diverse [2],

in part comprising putative commensal and pathogenic

human-associated microorganisms [3, 4], and appear to

be influenced by architectural features of the buildings

they occupy [3, 5–7]. A predictive understanding of the

drivers of microbial communities associated with indoor
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dust may therefore have relevance for human health

[3, 8–13] and potential consequences for future building

design and operation [7, 14].

Sunlight is a central component of architectural design

[15] and has long been considered a potential buffer

against the spread of pathogens in buildings [16–20] due

to its potential bactericidal effects [21]. Culture-based

investigations of a small number of bacterial taxa have

indicated that exposure to light, and especially ultravi-

olet (UV) wavelengths [16, 22–25], can inactivate many

microorganisms and therefore potentially reduce dust

microbial community viability. It has, however, been

difficult to extend these findings to dust communities
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in real buildings since ordinary windows transmit vis-

ible light and block most ultraviolet wavelengths [26].

Changes in lighting also typically co-occur with changes

in human occupancy, temperature, and humidity con-

ditions. A coherent understanding of when mortality

of viable microorganisms does or does not occur in

dust, and whether different light exposures influence

these processes at the microbial community scale, is still

lacking.

One impediment to a comprehensive understand-

ing of indoor microbiome community structure is that

controlled and manipulable built environment experi-

ments are logistically challenging and rarely achievable.

As a result, indoor microbiome research has primar-

ily relied on non-invasive in situ observational sam-

pling. These studies have revealed associations between

abiotic features like humidity, temperature, and ventila-

tion, and the structure of indoor microbial communities

[2, 3, 5, 27–29]. However, parsing the effects of the

numerous covarying abiotic and biotic factors that are

hypothesized to influence indoor microbial communities

remains a significant challenge for observational stud-

ies in occupied buildings [28]; manipulative experiments

are still needed to disentangle the relative contributions

of these factors toward shaping the built environment

microbiome [6].

Microcosms—small artificial habitats—have been cen-

tral in experimentally testing otherwise intractable

community-level hypotheses in ecology and microbiome

research [30–32], due to the ability to manage and repli-

cate environmental conditions in these systems. Here, we

combine a controlled microcosm experiment with eco-

logical sampling models to test the hypotheses that light

exposure (i) leads to compositionally distinct dust bacte-

rial communities, (ii) reduces the total abundance of living

bacteria compared to dust experiencing darkness, and (iii)

impacts phylogenetically related taxa in similar ways. As

a secondary goal, we sought to determine whether these

daylighting impacts depended on the transmittance of

ultraviolet compared to visible light wavelengths. Finally,

we developed an ecological sampling model in order to

evaluate observed changes in bacterial community struc-

ture against null expectations [33, 34], as a tool for

generating hypotheses about the mechanisms underlying

experimental outcomes. To accomplish these aims, we

established an array of small climate-controlled built envi-

ronment “rooms” and inoculated themwith dust collected

from residential homes in Eugene, OR, USA. A window

was installed in each microcosm that filtered sunlight

passing into the rooms and created a natural gradient of

light exposures of either mostly visible or ultraviolet light.

Replicate dust communities were positioned within each

microcosm (Fig. 1a), and the IlluminaMiSeq platformwas

used to sequence amplified fragments of the 16S rRNA

gene which, together with real-time quantitative poly-

merase chain reaction (qPCR) and propidium monoazide

(PMA) treatment, allowed us to measure taxonomic com-

positions, total abundances, and viabilities of the resulting

bacterial communities after a 90-day period and to com-

pare these emergent community features to those from

dust in dark rooms.

Methods
Experimental design

We constructed eleven identical built environment micro-

cosms that simulated lighting, reflectance, temperature,

and humidity conditions in a typical indoor room. These

boxes were 1:32 scale models of a room measuring

4.3 m wide, 7.9 m deep, and 3.3 m tall, with a single

3.5 m × 1.2 m view window and 1 m sill—dimensions and

proportions that are well within those of typical residential

and non-residential rooms. These microcosms were posi-

tioned in south-facing building openings with very little

solar obstruction such that the window of each micro-

cosm was exposed to the outside and were sealed to their

base plates with rubber gasketing to prevent air exchange.

The microcosm floors were demarcated by a 3 × 5 grid

(Fig. 1a).

One of three glazing treatments was applied to the win-

dows of nine microcosms, transmitting either mostly (i)

visible, (ii) ultraviolet, or (iii) no light (i.e., dark; an alu-

minum plate). The visible-transmitting glass has a spectral

profile intended to represent ordinary architectural glass

used in buildings [26], blocking a large portion of UVA

and UVB but admitting most visible and near infrared

(Fig. 1b). The UV-transmitting glass has the opposite pro-

file, admitting most UVA and UVB radiation but blocking

most visible and near-infrared (Fig. 1b). This served two

purposes. First, it allowed us to compare dust commu-

nity structures in rooms that are daylit to those that are

not (i.e., contrasts between visible light and dark dust

communities). Second, it allowed us to determine the

extent to which ultraviolet wavelengths were responsible

for observed patterns inmicrobiome structure when com-

pared to rooms receiving visible light. This is an important

distinction since prior work has suggested a strong effect

of ultraviolet light wavelengths on mortality of bacterial

taxa [16].

Two additional microcosms were outfitted with light

sensors within each cell of the 3 × 5 grid: one microcosm

for visible (LI-COR 210SZ, Lincoln, Nebraska, USA) and

UV wavelengths (Apogee SU-100 , Logan, Utah, USA),

in order to measure hourly visible and UV light dosages

throughout the microcosms. One additional sensor of

each type was placed on the roof of the building to

monitor total exterior light. Temperature sensors (Onset,

Bourne, Massachusetts, USA) were installed in the ceil-

ing of each microcosm to monitor ambient conditions to
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Fig. 1 Schematic of experimental system and light treatments. a Diagram of a microcosm showing the floor plate, the box comprising the walls and

roof, and the window opening and glazing. The floor of the box shows a simulation of the total visible light exposure during the study period in a

real-world space of the same proportions. The color scale indicates the percentage of total time (during daylight hours) each point receives at least

300 lx—an illumination target level common for office-type spaces. For representation purposes only, these values were calculated using RADIANCE

daylight simulation software [81]. These values are within the range of typical values found in daylit buildings. Thick outlines and circles on the grid

mark the locations of the six replicate dust communities within each microcosm. b Transmittance (%) of different light wavelengths through the

visible (gold) and ultraviolet (blue) light treatment glass pane across the range of UV and visible light wavelengths. Both glass treatments permitted

the transmittance of some near-infrared (dark red bands) and infrared (black bands) light wavelengths

confirm that they held within ranges observed in build-

ings. Microcosms were placed in plywood enclosures with

thermostatically controlled climate systems and small fans

for air mixing to provide additional temperature regula-

tion. Temperatures were maintained between 18.19 and

22.34 °C for the duration of the experiment, typical of

conditions in buildings, with an average of 20.28 °C. We

confirmed that neither maximum nor minimum daily

temperatures varied significantly between rooms, regard-

less of light treatment, using linear mixed effects models

(P = 0.58, P = 0.09 respectively) [35]. Relative humidities

in all microcosms were maintained between 23 and 64%

for the duration of the experiment. This range is consis-

tent with real-world spaces according to design standards

for both winter and summer periods [36].

Microcosms produced an average visible light ratio of

interior to available exterior light of ca. 2.7% over the

course of the experiment. As a reference, schools and

classrooms are often designed for a ratio of 2 to 4%,

whereas buildings like warehouses typically range from 2

to 10% [37]. Thus, the distribution of daylight achieved

in our microcosms was consistent with real-world spaces.

The ultraviolet microcosms therefore experienced light

conditions consistent with what would be expected if

architectural glazings admitted these wavelengths.

Dust was collected from seven volunteer residential sin-

gle family homes in Eugene, OR, USA. Residents were

instructed to use personal vacuum cleaners to collect

and pool dust from every room of their homes. The col-

lected dust was mixed and homogenized using scissors

in a dark laboratory. Six replicate dust samples weighing

0.25 g were collected from the homogenized dust pool and

applied in a thin layer to individual sterile petri dishes for

each microcosm. We demonstrate that repeated samples

from this homogenized dust pool produce relatively simi-

lar bacterial communities in Additional file 1.Microcosms

were sterilized with ethanol prior to the start of the exper-

iment, and the petri dishes were placed on the delineating

grid (Fig. 1a) in each of nine microcosms (6 dust inocula×

3 microcosms per treatment × 3 treatments = 54 bacte-

rial communities in total). The experiment was conducted

from December 21, 2015, to March 18, 2016.

Sample collection andmolecular analysis

After a 90-day exposure period, the dust samples were col-

lected from all microcosms and subdivided into two equal

aliquots of 0.125 g. A 90-day period was chosen based on

estimated residence times for dust particles in real build-

ings with normal cleaning frequencies [38] and because it

allowed us to characterize long-term changes in the dust
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microbiome relative to bacterial generation times. One

of these dust aliquots was placed into a 15-mL tube for

propidium monoazide (PMA) treatment, to separate the

viable from the total (i.e., the combined living and dead)

bacterial community [39]; the other did not receive PMA

treatment and instead was extracted using the MoBio

PowerSoil DNA Extraction Kit (MoBio, Carlsbad, CA,

USA). Upon photo activation, PMA links to extracellu-

lar DNA, precluding amplification by polymerase chain

reaction [39, 40]. Two milliliters of 1x phosphate-buffered

saline (PBS) was added to each 15-mL tube to suspend the

dust. Each tube received 5 µL of 20 mM PMA (Biotium,

Fremont, CA, USA) based on the manufacturer’s instruc-

tions, was vortexed for 5 s, placed in the dark for 5 min,

and finally placed on a bed of ice for photo activa-

tion. PMA was activated using two 500-W halogen lamps

placed above the samples for 15 min. At the 5- and 10-min

marks, tubes were vortexed and placed back on the bed of

ice. After PMA activation by light treatment, an additional

2-mL of PBS was added to each sample. The samples

were then centrifuged (Eppendorf 5810R) at 3000 rpm for

10 min and the supernatant removed; the remaining bolus

of dust was extracted from the tube and transferred to a

MoBio PowerLyzer Glass Bead Tube for DNA extraction.

Both PMA- and non-PMA-treated DNA were ampli-

fied in a PCR enrichment of the V3 and V4 (319F-806R)

regions of the 16S rRNA gene following the protocol

described by Kembel et al. [41]: PCRs were purified

with a bead-based DNA clean-up protocol using Mag-

Bind RxnPure Plus (Omega Bio-tek, Norcross, GA, USA),

quantified using Quant-iT dsDNA assay kit, and pooled

with equal concentrations of amplicons using an Eppen-

dorf epMotion 5075 robot. The DNA from all samples

was manually extracted using the MoBio PowerLyzer

PowerSoil DNA Isolation Kit according to the manu-

facturer’s instructions with the following modifications:

0.125 ± 0.01 g of dust sample was used, 1 mL of bead

solution was used, samples were vortexed using a BioSpec

Mini-BeadBeater 96 for 1 min, and solutions C4 and C5

were substituted for PW3 and PW4/PW5 solutions from

the same manufacturer’s PowerWater DNA isolation kit

as in [41]. Libraries were sequenced on an Illumina MiSeq

generating 250 bp paired end reads.

We estimated the total counts of 16S rRNA gene

copies per milligram of dust (a proxy for absolute bac-

terial abundances) of living and total communities using

real-time quantitative PCR (qPCR; Applied Biosystems

StepOnePlus System). The reaction mixture (50 µL) con-

tained ABS PowerUp SYBR Green PCR Master Mix

(25 µL), 10 µM Total Bacteria F SYBR Primer 5′-

gtgStgcaYggYtgtcgtca-3′ (2 µL), 10 µM Total Bacteria

R SYBR Primer 5′-acgtcRtccMcaccttcctc-3′ (2 µL), PCR

grade water (16 µL), and 5 µL of 1:10 diluted DNA tem-

plate [42]. The plate was prepared using an Eppendorf

epMotion 5075 robot. The thermocycling program was

as follows: initial denaturation for 2 min at 50 °C, 2 min

at 95 °C; 40 cycles of 15 s at 95 °C, 15 s at 60 °C, and

60 sec at 72 °C; followed by a melt curve in the range

of 60 °C to 95 °C. Standard curves were generated using

serial-dilutions of synthetic 167 bp gBlocks Gene Frag-

ments (Integrated DNA Technologies, Coralville, Iowa,

USA) with known gene sequence copy numbers.

Statistical analyses

Raw Illumina sequence data were filtered, trimmed, and

denoised using the DADA2 v1.7.0 statistical inference

algorithm [43, 44], which identifies ribosomal sequence

variants (RSVs) and has the benefit of fewer spurious

sequences compared to cluster-based approaches used

for inferring operational taxonomic units. Forward reads

were truncated at 200 nt, and each read was required

to have fewer than two expected errors based on quality

scores. Taxonomy was assigned to RSVs using the RDP

Bayesian classifier implemented in DADA2 against the

Silva [45] version 128 reference database, with a 75% boot-

strapped threshold for retaining classifications. Prior to

analyses, we removed variants classified as mitochondria

or chloroplasts, as well as those that were unclassified

beyond the kingdom level. RSV counts were normalized

by rarefying the dataset to a sequencing depth of 50,000

sequences per sample and converted to absolute abun-

dances (16S rRNA gene copies × mg−1 dust) by scaling

relative normalized RSV counts in each community by

estimates of total bacterial abundance per milligram dust

generated by qPCR assays [46]. To remove putative con-

taminants, we followed the suggestion of Nguyen et al.

[47] and subtracted the number of sequences of each RSV

present in negative PCR and DNA extraction kit controls

from the sequence counts in experimental samples; this

approach eliminated only four rare RSVs.

Quantitative bacterial community dissimilarities, or β-

diversities, were calculated using the Canberra distance

measure [48] and log10 1 + x-transformed absolute RSV

abundances. The effects of different light treatments on

the community compositions of dust were quantified

using a permutational multivariate analysis of variance

(PERMANOVA). Pairwise contrasts between treatment

groups were accomplished by performing PERMANOVA

analyses with 10,000 matrix permutations for each pair

of factor levels and adjusting P values for multiple com-

parisons using the Benjamini-Hochberg procedure [49].

Differences in group variances were tested using a multi-

variate homogeneity of groups dispersions analysis (per-

mdisp2 procedure; [50]) with ANOVA and Tukey’s post

hoc test. Differences between qPCR-based estimates of

total and living bacterial abundances between commu-

nities experiencing visible, ultraviolet, or no light were

assessed using ANOVA and Tukey’s post hoc test. All
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analyses were conducted with the statistical programming

language, R [51].

Community dissimilarities were visualized using t-

distributed Stochastic Neighbor Embedding (t-SNE)

[52, 53]. t-SNE is a nonlinear embedding technique that is

useful for visualizing high-dimensional data that lie near

a low-dimensional manifold [52]; this visualization tech-

nique was selected because of a small number of variants

with large absolute abundances (see Results) that yielded

uninformative arch effects [54, 55] when β-diversities

were visualized with unconstrained principal coordinates

analysis (PCoA). We accomplished t-SNE visualization by

initializing the Barnes-Hut implementation of the algo-

rithm [53] in the Rtsne package using point coordinates

generated by PCoA.

Bacterial source tracking

We classified the types of living and dead microbial

communities that remained in dust following the 90-

day exposures using a Bayesian source tracking classifier

(SourceTracker v1.0.1; [56]). Our goal was to estimate

the relative contributions of human- and environmentally

derived microbiomes to each dust community that per-

sisted after light treatment. We amassed a training dataset

comprising local human and environmental microbiomes

that, like our dust samples, were collected in or near

Eugene, OR, USA. Human microbiome training data

included bacterial communities from a set of human arm

and leg skin swabs (N = 94) from local volunteers and

a subset of fecal communities from the American Gut

Project’s [57] Oregon residents (N = 83). Environmen-

tal microbiome training data included outdoor air settling

dishes (N = 27) placed outside local residential homes

and a set of soil cores (N = 21) collected from an Ore-

gon forest for the Earth Microbiome Project [58]. Details

on the datasets used for source tracking are provided in

Additional file 1.

To account for variation in sample collection, process-

ing, and sequencing depth among individual studies and

sequencing runs, the final collated training dataset used

for source tracking was aggregated at the level of bac-

terial genus and rarefied to a depth of 2500 sequences

per sample; taxa whose genus-level classification did not

meet the 75% bootstrap threshold against the Silva version

128 reference database were aggregated at the next high-

est taxonomic level. The trained model was then tested

on experimental samples that were aggregated using the

same procedure, generating coarser-grained predictions

than RSV-level analyses.

Phylogenetic analysis

We used phylogenetic tree-based sparse linear discrimi-

nant analysis (sLDA) as a feature selection tool, to iden-

tify whether individual RSVs or groups of related RSVs

discriminated between experimental dust communities

under different lighting regimes. The details of this analy-

sis are described by Fukuyama et al. [59] and summarized

below. Briefly, we created a de novo phylogenetic tree of

RSVs using a maximum likelihood GTR+ Gamma phylo-

genetic model in FastTree [60] following Callahan et al.

[44]. The tree was used to generate two feature sets: one

comprising log10 1 + x-transformed absolute abundances

of each RSV leaf, and another comprising each node in the

tree. For the latter set, values associated with each node

were log10 1 + x-transformed summed abundances of all

descending RSV leaves. These were scaled and used as

input to the implementation of sLDA in the sparseLDA

package; the optimal number of model predictors and

sparsity parameter were determined by five repeats of

fivefold cross-validation. This approach ignores branch

lengths and instead incorporates phylogenetic informa-

tion by employing a sparsity constraint that allows the

simultaneous modeling and selection of leaf and node

features with strongly covarying feature values [59].

Ecological sampling theory

We build upon theory developed by Klein et al. [61] and

develop a computational null model [33, 34] that predicts

qualitative differences in RSV abundance patterns follow-

ing the simulated loss of a small number of abundant

“light-sensitive” bacteria. The model predicts changes in

the detection rates, and therefore the apparent abun-

dances, of taxa in pairs of nearly identical communities

where one has lost a small number of abundant com-

munity members. These changes are said to be apparent

because the underlying communities are otherwise identi-

cal; differences in RSV abundances only seem to occur as

a result of the loss of highly abundant taxa, which relaxes

limitations on the detection rates of all others [62]. The

primary goal of this modeling procedure was to generate

null expectations regarding those biases and to gain intu-

ition into how they may influence observations of dust

communities following light treatment.

Our model is derived from two community scale pat-

terns. Analogous to the species abundance distribution in

ecology [63], we first assumed a sequence abundance dis-

tribution (SAD) describing the abundances (χi)
S
i=1 of 16S

rRNA gene copies per milligram dust originating from

the living and dead cells of S bacterial taxa in a com-

munity. We assumed a lognormal distribution for this

SAD, which is commonly used in ecological models [63],

whence (χ)Si=1 is a random sample from Lognormal(µ, σ).

Second, we assumed that the fraction of the χi gene copies

which originate from living cells is given by the logistic

function

α(χi) =
λ − φ

1 + e−k(χ−χ0)
+ φ, (1)
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where φ and λ are the minimum andmaximum viabilities,

k is a parameter describing the steepness of the curve, and

χ0 is a half-saturation constant. Thus, (α(χi)χi)
S
i=1 rep-

resents living population sizes for this collection of taxa.

Our underlying assumption is that the fraction of gene

copies originating from living cells is a function only of

the abundance of that gene. Because the functional form

of this relationship is unknown for bacterial communi-

ties, we studied a model with many degrees of freedom (as

parameterized by φ, λ,χ0, and k) to evaluate a wide range

of community structures and dependencies between total

DNA amounts and viabilities.
We performed 104 iterations of this simulation pro-

cedure, independently drawing parameter values from

uniform distributions (Additional file 2: Table S1); we

then repeated this for each drawn parameter set, this

time simulating the loss of a small number of abundant

“light-sensitive” taxa by removing between 10 and 65 of

the most abundant sequences from the SAD. This range

was chosen because it reflected experimental outcomes

(see “Results”). To simulate the sequencing of communi-

ties with these underlying SADs, we accounted for the

fact that microbiome studies typically pool sequencing

libraries in equal concentration of amplicons by perform-

ing size-biased random sampling of (α(χi)χi)
S
i=1 at a fixed

depth of 50,000 reads. This procedure generated abun-

dance distributions meant to mimic those obtained from

high-throughput sequencing, for pairs of viable communi-

ties that experienced the inactivation of dominant taxa but

were otherwise identical. Model predictions were sum-

marized using plots of the expected log10-fold apparent

change in simulated sequence abundances for each com-

munity pair, as a function of the true abundances of those

sequences.

Results
Light exposure alters total and living dust community

structure

Absolute abundance-weighted β-diversities of total (i.e.,

the combined living and dead) communities varied signif-

icantly with treatment type (PERMANOVA; R2 = 0.116,

P < 0.001) indicating that patterns in bacterial abun-

dances were in part determined by exposure to light

and variation in particular wavelengths (Fig. 2a, dark-

shaded points; Table 1). We did not detect an effect

of mean daily light dosage (i.e., measurements from

visible and UV light sensors) on community composi-

tion in either of the groups receiving light treatment.

The largest differences in community composition were

observed between dust communities experiencing dark-

ness and those experiencing light per se—either vis-

ible (PERMANOVA; R2 = 0.111, adjusted P = 0.002)

or ultraviolet (R2 = 0.11, P = 0.002) light wavelengths.

We detected minor but significant differences between

total communities experiencing visible and UV light

(R2 = 0.032, P = 0.043; compare R2 values), suggest-

ing that different light wavelengths effected only minor

changes in community RSV membership and abundance

distributions for living and dead taxa.

The living (i.e., assayed using PMA) portion of each dust

community exhibited similar quantitative β-diversity pat-

terns (Fig. 2a, light-shaded points), with the exception of

the contrast between the living visible and UV light com-

munities (Table 1); we did not detect differences between

these groups (R2 = 0.031, P = 0.099), indicating that dif-

ferences between bacterial dust communities experienc-

ing visible and ultraviolet light wavelengths manifested

primarily in abundances of dead members of those com-

munities. Living dust communities were distinct from

their combined living and dead counterparts on average,

regardless of light treatment (PERMANOVA; R2 = 0.096,

P < 0.001). A multivariate dispersion analysis (permdisp2

procedure; Anderson, 2006) revealed that quantitative

community compositions in the dark were more variable

than in either visible or UV light microcosms (adjusted P

values <0.001; Fig. 2a, gray ellipses).

Light exposure reduces living bacterial abundance

The qPCR-based estimates of total bacterial abundance

(i.e., log10 16S rRNA gene sequence copy number for

the combined living and dead bacteria) were marginally

lower in visible (ANOVA; adjusted P = 0.051) and ultra-

violet (P = 0.11; Fig. 2b) communities compared to dark

ones. However, living bacterial abundance was signifi-

cantly lower under both visible (Tukey’s post hoc test;

P < 0.001) and UV light (P < 0.001; Fig. 2b). As a result,

the estimated fraction of viable bacteria was highest in

dark dust, on average. This fraction ranged from 0.4 to

73% across all communities, with an average of 12%, 6.8%,

and 6.1% viability for dark, visible, and UV treatment

groups respectively. Living bacterial abundances were

comparable to previous estimates from built environment

dust communities [64, 65]. Taken together, these results

suggest that window-filtered light exposure, regardless of

the particular transmittance profile, decreases the number

of living bacteria in dust communities, but not necessar-

ily total DNA amounts. We did not detect differences in

living bacterial abundances between communities experi-

encing visible and ultraviolet light (Fig. 2b).

Light exposure selects taxa derived from outdoor air

Bacterial source tracking [56] predicted that 69.2% of

the genera that persisted in dust after the 90-day experi-

ment originated from either human skin or outdoor air on

average (Fig. 3a), a result that is consistent with prior pre-

dictions [66]. For dark, visible, and ultraviolet light groups

respectively, the dust communities’ living fractions con-

sisted of 15% ± 4.7%, 19.6% ± 1.3%, and 25% ± 2.2%
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Fig. 2 Effects of light on dust community β-diversity and microbial abundance. a t-distributed stochastic neighbor embedding (t-SNE; [52])

visualization of pairwise Canberra distances, calculated using log10 1+ x-transformed RSV absolute abundances. Ellipses delineate treatment groups

and represent one standard deviation from the group centroid. Points represent bacterial communities that are colored by their corresponding

lighting regime: dark are gray, visible are gold, and ultraviolet are blue. The size of each point is scaled proportionately to the qPCR-based estimates

of absolute bacterial abundances. Dark and light shades of each color indicate whether the sample represents the total or viable community

respectively. b Boxplots of qPCR-based estimates of log10-transformed absolute abundance per milligram dust. The left and righthand boxes for

each factor level correspond to the total and living bacterial abundances respectively. Colors are the same as in panel a

skin-derived taxa and 24.2% ± 5.6%, 64.9% ± 2.1%, and

62.1% ± 2.1% (mean ± SEM) outdoor air-derived taxa on

average. In contrast, fewer than 1% of genera on average

were predicted to have originated from the human gut and

soil habitats in our training set. Dust experiencing light

Table 1 Results of pairwise PERMANOVA analyses of Canberra

distance between treatment groups

Contrast Total/living R2 adj. P

Dark-visible Total 0.111 0.002

Dark-UV Total 0.11 0.002

Visible-UV Total 0.032 0.043

Dark-visible Living 0.072 0.002

Dark-UV Living 0.066 0.002

Visible-UV Living 0.031 0.099

RSV features were weighted by their log10 1 + x-transformed absolute abundances.

The Contrast column indicates the pair of factor levels to which the statistics refer,

and Total/living designates whether analysis was of the total (i.e., no PMA treatment)

or living (i.e., PMA treated) components of the communities. Model results are

provided in the R2 and Benjamini-Hochberg adjusted P values columns

comprised a significantly smaller proportion of predicted

human skin-derived bacterial genera compared to dark

communities (ANOVA; P < 0.001) and instead contained

a plurality of outdoor air-derived genera (Fig. 3a). A higher

relative fraction of skin-derived bacterial genera was pre-

dicted for communities experiencing darkness, although

these taxa consisted mainly of dead individuals (Fig. 3a,

dark shades). The predicted proportion of outdoor air-

sourced genera was higher in the living portion of all

communities, and in particular those experiencing light

(Fig. 3a, light shades).

Related taxa are associated with darkness and light

exposure

A phylogenetic tree-informed sparse discriminant anal-

ysis [59] identified a mixture of 12 small clades and

8 RSVs that strongly discriminated between dark, vis-

ible, and ultraviolet light dust communities (Fig. 3b–e;

Additional file 3: Table S2) based on their feature load-

ings on the discriminating axis. The largest of these

clades was a dark-associated group of 23 RSVs in the
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Actinobacteria. Of these, 18 RSVs were classified as mem-

bers of the genus Saccharopolyspora. Members of this

clade collectively accounted for an average of 30.1%, and

as high as 90.1%, of dark communities and were highly

abundant in the living portions of their respective com-

munities (Fig. 3b, e). Together with this clade, a group of

12 RSVs classified as Staphyloccocus created a numeric

gradient in community dominance in dark microcosms

(Fig. 3e, top two rows). This gradient was responsible for

the large amount of observed variability in dark commu-

nities (i.e., results of the permdisp2 analysis). These taxa

were likewise rare in communities experiencing light, sug-

gesting that these groups may be sensitive to light expo-

sures conditional on their presence or initial abundance

in dust inocula (see Additional file 1). The largest visible-

and ultraviolet-associated clades each contained three

RSVs in the Acidimicrobiales and Cytophagales respec-

tively (Fig. 3c, d); these taxa were seldom detected in

dark communities (Fig. 3e). These results indicate that

our experimental light exposures led to the loss of a

related set of numerically dominant, sensitive taxa and an

apparent increase in the abundances of a small number
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of relatively rare, related RSVs (Fig. 3e; Additional file

3: Table S2).

Sampling models identify potential mechanisms

underlying empirical patterns

Our sampling theorymodel generates two key results con-

sidering these empirical observations. First, the model

predicts that an apparent increase in the abundances of

a small number of very rare taxa can be expected to

consistently occur under a wide range of potential con-

ditions (Additional file 2: Table S1), if a few dominant

taxa are inactivated and lost from the community (Fig. 4).

Second, our model predicts that with the exception of

these very rare RSVs, the majority of taxa that are sam-

pled at a density below 500 gene copies per milligram

of dust will not exhibit large apparent changes in esti-

mated abundances (Fig. 4). In our experimental dataset,

99% of RSVs exhibited mean viable abundances below

this threshold. Taken together with the fact that all dust

inocula originated from a single homogenized pool (Addi-

tional file 1), results of our experiment and simulations

point to two mechanisms that could have generated the

observed increases in abundances of a few related bac-

terial taxa following lighting treatments (Fig. 3b–e). The

first might be expected if these taxa increased in abun-

dance and passed a threshold of detectability because

of light exposures, for instance as a result of photosyn-

thetic activity or the presence of other ecological or cel-

lular mechanisms that facilitate population growth under

lighting conditions. The second might be expected if

these taxa exhibited apparent increases in abundance,

due to the increased detection rate of very rare RSVs fol-

lowing the putative inactivation and loss of numerically

dominant Saccharopolyspora and Staphylococcus by light

(Fig. 3b, e)—a phenomenon that is predicted by the model

(Fig. 4). Of course, these two possibilities are not mutually

exclusive.

Discussion
We observed marked differences in the compositions,

abundances, and viabilities of microbial communities

associated with household dust when exposure to day-

light was experimentally disrupted (Figs. 2 and 3; Table 1).

Communities associated with dust were more variable in

darkness compared to those in the presence of daylight

(Fig. 2a), which may indicate a convergence in commu-

nity structures under regular disturbances [67, 68], in this

case light disturbance [16]. Our results indicate that dust

exposed to daylight contains smaller viable bacterial com-

munities (Fig. 2b) that more strongly resemble outdoor air

communities (Fig. 3a) and that the bactericidal effects of

ordinary window-filtered sunlight may be similar to those

achieved by ultraviolet light wavelengths for some taxa

(Fig. 3b, e), but not for others (Fig. 3c, d).

Our experimental light exposures were associated with

the loss of a related set of numerically dominant, poten-

tially sensitive taxa (Fig. 3e, gray circles) and apparent

increases in the abundances of a small number of rare

taxa (Fig. 3e, gold and blue circles). However, we were

unable to determine whether these apparent increases

were due to metabolic activity and bacterial popula-

tion growth under lighting conditions or the result of

sampling artifacts arising from DNA sequencing. Pho-

tochemical transformation of organic materials due to

exposures to visible or ultraviolet light wavelengths have

been shown to increase bacterial growth rates in some

ecosystems [69] and are at least one mechanism that

could influence bacterial growth under strong daylight-

ing. However, prior research indicates that many if not

most built environment-associated bacteria require water

activity greater than 95% for growth [64]—conditions that

are significantly wetter than what was maintained in our

microcosms. Instead, results of our experiment, sampling

model, and prior studies point to the explanation that

these apparent increases were artefacts resulting from

the inactivation and loss of numerically dominant, light-

sensitive taxa (Fig. 3e, gray circles). We hypothesize that

when highly abundant community members like Saccha-

ropolyspora and Staphyloccocus were lost, the underlying

taxonomic abundance distribution was truncated in a way

that mitigated our inability to detect very rare RSVs. Sam-

pling theory provides a path to further understand what

drives the underlying structure of microbiomes by estab-

lishing null expectations for ecological patterns [3, 62, 70];

microbiome studies will benefit from a continued con-

sideration of quantitative theories that explicitly account

for the technological limitations and biases surrounding

the detection of rare microorganisms from environmental

DNA [71].

The most diverse and abundant group of organisms

associated with dark dust containedmembers of the genus

Saccharopolyspora, which have been previously associ-

ated with soils and buildings in rural areas [72], and

built environment-mediated respiratory diseases [73, 74].

The observation that these dominant RSVs were largely

absent or rare in daylit dust provides some evidence to

the hypothesis [21] that sunlight may be used to selec-

tively limit the viabilities of microorganisms in buildings

like hospitals, although we are not able to determine the

pathogenic potential of any of the bacteria detected in this

study. Additional experiments are needed, to determine

themicrobicidal potential of light exposures under a wider

range of conditions, especially in conjunction with the

enhanced indoor microbial growth rates reported under

elevated water availability [64, 75] and with an explicit

focus on known pathogenic microorganisms including

viruses, fungi, archaea, and protists. Interactions between

sunlight and population sizes have been observed for a
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small number of viral, [76] fungal [77], and protozoan

[78] taxa in other systems, but these relationships have

not yet been uncovered for holistic dust communities

that comprise multiple microbial kingdoms in real build-

ings [7]. Experimental studies that include detailed time

series measurements are also needed to characterize the

transient dynamics and mechanisms underlying sunlight-

induced changes in dust microbial communities, which

may exhibit phylogenetic signals or depend on functional

genes related to photosynthesis, photoreactivation and

repair [79], and oxidative stress [80].

We used a model system to study the effects of light

exposure on the structure of microbial dust communi-

ties, although we expect many of the results observed in

this study to apply to real built environments. Our micro-

cosms were designed to approximate conditions in real

buildings, including temperatures, reflectances, humidi-

ties, and transmittances. While the microcosms used here

permit more control compared to typical built environ-

ment microbiome studies, these systems are still idealized

representations of human-occupied spaces. Our exper-

iment was limited in that it characterized features of

the dust microbiome across a relatively narrow range of

light dosages. We aimed for dosages relevant to well-

daylit buildings, but there are many architectural and geo-

graphical instances that produce lower or higher dosages

than examined here that may merit additional study. Our

microcosms were south-facing and therefore experienced

the greatest possible daily exposures. Other latitudes, alti-

tudes, climate zones, building orientations, and obstruc-

tions (e.g., trees) would indeed change exposures raising

the possibility of linkages between the spatial context of

buildings, design decisions that impact the transmittance

of light, geographical or seasonal variation in sunlight

availability, and the structure of indoor dust microbial

communities.

Conclusions
Our experiment suggests that the use of ultraviolet-

filtering glazing, that is found in many if not most build-

ings, may not be a significant shaper of indoor dust

communities as originally anticipated, in comparison to

glazing that transmits ultraviolet wavelengths. It also sug-

gests that architects and lighting professionals designing

building facades and rooms with more or less access to

daylight may play a role in influencing the microbial com-

munities of indoor dust. However, the impacts of daylight

exposure on the dust microbiome uncovered here, rela-

tive to other factors like building occupancy, geography,

ventilation, and humidity [3, 5, 6, 27, 64, 75], remain

unclear, emphasizing the pressing need for controlled

indoor experiments that are designed to disentangle
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the likely complex and context-dependent relationships

among covarying abiotic drivers and the dust microbiome.

Additional files

Additional file 1: Supplementary Information. Additional details on

training data used for microbial source tracking and dust homogenization
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Additional file 3: Table S2. Table describing the taxonomy of RSVs

identified by sLDA analysis. (XLSX 10 kb)
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