
ORIGINAL ARTICLE Infertility

DAZ duplications confer the
predisposition of Y chromosome
haplogroup K* to non-obstructive
azoospermia in Han Chinese
populations
Chuncheng Lu1,2,†, Ying Wang2,†, Feng Zhang3,†, Feng Lu4, Miaofei Xu2,
Yufeng Qin2, Wei Wu2, Shilin Li3, Ling Song2, Shuping Yang3, Di Wu2,
Li Jin3,5, Hongbing Shen1,4, Jiahao Sha1, Yankai Xia1,2,*, Zhibin Hu1,4,
and Xinru Wang1,2

1State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China 2Key Laboratory of
Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China 3State Key Laboratory of
Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University,
Shanghai 200433, China 4Department of Epidemiology and Biostatistics and Key Laboratory of Modern Toxicology of Ministry of Education,
School of Public Health, Nanjing Medical University, Nanjing, China 5Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China

*Correspondence address. Tel: +86-25-86862845; Fax: +86-25-86862847; E-mail: yankaixia@njmu.edu.cn

Submitted on January 28, 2013; resubmitted on April 16, 2013; accepted on April 23, 2013

study question: What are the genetic causes for the predisposition of certain Y chromosome haplogroups (Y-hgs) to spermatogenic
impairment?

summaryanswer: The AZFc(azoospermia factor c)/DAZ (deleted in azoospermia) duplications might underlie the susceptibility of Y-hg K*
to spermatogenic impairment.

what is known already: The roles of Y chromosomal genetic background in spermatogenesis are controversial and vary among
human populations. Individuals in predisposed Y-hgs may carry some genetic factors, which might be a potential genetic modifier for the
Y-hg-specific susceptibility to spermatogenic impairment.

study design, size, duration: A total of 2444 individuals with azoospermia or oligozoospermia and 2456 healthy controls were
recruited to this study from March 2004 and January 2011.

participants/materials, setting, methods: We performed a two-stage association study to investigate the risk and/or
protective Y-hgs for spermatogenic impairment. In addition, the genetic causes for the predisposition of certain Y-hg to spermatogenic impair-
ment were investigated. Deletion typing and DAZ gene copy number quantification were performed for individuals in predisposed Y-hgs.

main results and the role of chance: Y-hgs K* and O3e* showedsignificantly different distribution between casesand controls
consistently in two-stage studies. Combined analyses identified significant predisposition to non-obstructive azoospermia in Y-hg K* [odds ratio
(OR) 8.58; 95% confidence interval (CI) 3.31–22.28; P ¼ 1.40 × 1025], but a protecting effect in Y-hg O3e* (OR 0.64; 95% CI 0.53–0.78; P ¼
4.20 × 1025). Based on the dynamic nature of the Y chromosome, we hypothesized that Y-hgs K* and O3e* may be accompanied by modifying
genetic factors for their predisposing or protecting effects in spermatogenesis. Accordingly, we quantified the multi-copy DAZ gene, which has
variable copy numbers between individuals and plays an important role in spermatogenesis. In combined analysis, we found that the over-
dosage of DAZ was significantly more frequent in Y-hg K* than in O3e* (OR 4.79; 95% CI 1.67–13.70; P ¼ 6 × 1023).
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limitations, reasons for caution: Owing to the inconsistency of genetic background, it remains to be determined whether the
results derived from Han Chinese populations are applicable to other ethnic groups.

wider implications of the findings: The findings of this study can advance the etiology of spermatogenic impairment, and also
shed new light on Y chromosome evolution in human populations. Y-hg-specific genetic factors of modifying spermatogenic phenotypes deserve
further investigation in larger and diverse populations.

study funding/competing interest(s): Funding was provided by grants from National 973 Program (2009|CB941703,
2011CB944304 and 2012CB944600), National Natural Science Foundation of China (30930079, 81100461 and 31000552), Jiangsu Natural
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Natural Science Research Project in Jiangsu Province (11KJB330001) and the Priority Academic Program for the Development of Jiangsu Higher
Education Institutions (Public Health and Preventive Medicine). There were no competing interests.
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Introduction
Infertility affects about one in six couples attempting pregnancy, with
male factors being responsible in approximately half of the cases
(Guzick et al., 2001). The important role of the human Y chromosome
in the causation of male infertility is increasingly recognized. The male-
specific region of the Y chromosome, differentiating the sexes and com-
prising 95% of the chromosome’s length (Skaletsky et al., 2003), consists
of long, Y-specific repeats called amplicons. Non-allelic homologous re-
combination between amplicons has been shown to generate deletions,
duplications and their combinations, which commonly result in sperma-
togenic impairment. Obviously, the human Y chromosome has high
genetic variability due to frequent chromosomal rearrangements.

The Y chromosome is now the most informative haplotyping system,
with applications in evolutionary studies, forensics, medical genetics and
genealogical reconstruction (Y chromosome consortium, 2002). In add-
ition, many Y-linked variations can be genetic markers to study the roles
of Y chromosomal factors in spermatogenic impairment (Yang et al.,
2008). The past several years have witnessed an explosion in identifica-
tion of the Y chromosome haplogroups (Y-hgs) associated with
increased risk of spermatogenic impairment (Kuroki et al., 1999; Previ-
dere et al., 1999; Krausz et al., 2001; Carvalho et al., 2003; Arredi
et al., 2007). In our previous study with a limited sample size, we sug-
gested the susceptibility of a group of Y chromosomes to spermatogenic
impairment in Han Chinese (Lu et al., 2007). That susceptible group
mixed up Y-hg K* and a subgroup of Y-hg N* according to a more com-
prehensive Y chromosome haplogrouping in a previous study (Lu et al.,
2007). To further investigate this interesting issue and draw a solid
conclusion, we validated this predisposition using an enlarged sample
comprising two populations of separate geographic origins and additional
Y-haplogrouping markers. In total, 14 Y-hgs in 2444 patients with idio-
pathic male infertility and 2456 healthy controls were studied using a
multiplex SNaPshot assay.

In addition, numerous Y chromosome rearrangements (including de-
letion, duplication and inversion) have been demonstrated to be genetic
causes or risk factors of spermatogenic impairment (Kuroda-Kawaguchi
et al., 2001; Repping et al., 2003, 2004; Lin et al., 2007; Lu et al., 2009).
The AZFc (azoospermia factor c) region is particularly susceptible to rear-
rangements and the most commonly known genetic cause of azoosper-
mia or oligozoospermia (Tiepolo and Zuffardi, 1976; Vogt et al., 1996;
Ferlin et al., 2007). The findings in recent studies of AZFc/DAZ (deleted
in azoospermia) duplications conferring risk for spermatogenic

impairment led us to hypothesize that the individuals in predisposed
Y-hgs may carry some genetic factors, for example DAZ gene duplica-
tions, which might be potential genetic modifiers for the Y-hg-specific
susceptibility to spermatogenic impairment (Lu et al., 2011).

To test this hypothesis, the copy number of the testis specifically
expressed DAZ gene, a candidate for AZFc (Reijo et al., 1995), was quan-
tified in predisposed Y-hg K* and O3e*. To our knowledge, this is the
largest study population in the literature in which all potential methodo-
logical and selection biases were carefully avoided in order to detect the
potential modifier(s) for the Y-hg-specific predisposition to spermato-
genic impairment.

Materials and Methods

Studied populations
We performed a two-stage case–control association study. The first stage
included 1425 idiopathic cases of male infertility recruited from the infertility
clinic at the Affiliated Hospitals of Nanjing Medical University at Jiangsu
(NJMU Infertile study) between March 2004 and January 2011 and 1634
male controls from the same hospital during the same period. The second
stage included 1019 cases sampled from Renji Hospital, Shanghai, and 822
healthy male controls also from the same hospital. Some cohorts within
the sample sets have been reported in previously published data (Wu
et al., 2007; Lu et al., 2009). All infertile subjects were genetically unrelated
ethnic Han Chinese men and selected on the basis of comprehensive andro-
logical examination, including semen analysis, examination of medical history,
a series of physical examinations, scrotal ultrasound, hormone analysis, kar-
yotyping and Y chromosome microdeletion screening. All controls with
normal reproductive function were from the early pregnancy registry of
the same hospitals, whose wives were in the first trimester of pregnancy
and confirmed as having healthy babies 6–8 months later. Furthermore, a
questionnaire was used to collect information, including personal back-
ground, lifestyle factors, occupational and environmental exposures,
genetic risk factors, sexual and reproduction status, etc. Those with a
history of cryptorchidism, vascular trauma, orchitis, obstruction of the vas
deferens, vasectomy, abnormalities in chromosome number or microdele-
tions of the azoospermia factor region on the Y chromosome were excluded
from the study. Semen analysis for sperm concentration, motility and morph-
ology was performed following World Health Organization criteria (Cooper
et al., 2010). To ensure the reliability of the diagnosis, each individual was
examined twice. According to the sperm concentration, the main semen par-
ameter, the cases in Stage I were classified into three subgroups: 608 with
non-obstructive azoospermia (no sperm in the ejaculate even after
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centrifugation), 293 with oligozoospermia (sperm counts from 0.1 to 15 ×
106/ml) and 524 with normozoospermia (sperm counts ≥15 × 106/ml;
Cooper et al., 2010). The cases in Stage II were all non-obstructive azoosper-
mia. At recruitment, informed consent was obtained from each subject, and
this study was approved by the Institutional Review Boards of all participating
institutions.

The distributions of the patients and controls in Y-hgs are shown in Fig. 1.
Rousset’s exact test of population differentiation was performed using Arle-
quin software (Raymond and Rousset, 1995). A Markov chain of 10 000 steps
and the statistical significance level of P , 0.05 were used. Based on the Y-hg
data of the controls, no significant differences in population genetic structures
were observed between these two populations (Stages I and II) of separate
geographical origin.

Y chromosome haplogrouping
Y-hgs were defined using 14 highly informative polymorphic loci for East
Asians: M130, YAP, M89, M9, M231, M120, M119, M268, M95, M176,
M175, M122, M134 and M117 (Jin and Su, 2000, Jobling and Tyler-Smith,
2003). As shown in Fig. 1, a total of 14 Y-hgs were defined following the
nomenclature recommended by the Y Chromosome Consortium (YCC)
and its update (Y chromosome consortium, 2002, Sengupta et al., 2006).
We used the SNaPshot (Applied Biosystems, Foster City, CA, USA) minise-
quencing reaction assay for polymorphism genotyping (Salas et al., 2005).
We genotyped the aforementioned 14 polymorphisms in one multiplex
amplification and one SNaPshot reaction (Supplementary data, Fig. S1).
The experimental procedures, mainly involving multiplex PCR amplification,
multiplex single-base primer extension and capillary electrophoresis, were

described previously (Cai et al., 2009) with minor modifications. PCR and ex-
tension primers are listed in Supplementary data, Table SI.

Deletion typing and DAZ gene copy number
quantification
Details of the deletion typing procedure in AZFc were described in our pre-
vious study (Lu et al., 2011). The deletion patterns in these two Y-hgs O3e*
and K* are shown in Supplementary data, Table SII. The detection of DAZ
gene copy number was performed using a previously described quantitative
real-time PCR assay and the markers of SNV V (i.e. sY587 located in the
region of DAZ gene) and M159 (a Y chromosome locus outside AZFc as
the reference locus to serve as an internal dosage control; Supplementary
data, Fig. S2; Zhang et al., 2007; Lu et al., 2011).

Reactions were analyzed on an ABI 7900 Real-time PCR system. Owing to
the substantial variation of the DAZ/M159 signal ratio of the same DNA
sample between different batches of reactions caused by slight drift in the
PCR condition, controls with known copy number were included in each
batch of PCR reactions, which served as standards for internal control. To
ensure the reliability of our results, each sample was detected three times
simultaneously.

Southern blot analysis for copy number
confirmation
To confirm the results of the quantitative PCR, Southern blot analysis on the
DAZ gene copies were carried out according to a previously reported
method (Lin et al., 2005, 2006). Genomic DNAs were digested with NsiI,
then probed with a mixture of the 3′untranslated regions of DAZ and DAZL

Figure 1 The phylogenetic tree of human Y-hg and the distribution of the patients and controls in haplogroups.
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(the autosomal DAZ-like gene) and isolated by PCR amplification (Lin et al.,
2006). Thus, DAZL acts as an internal standard with a known copy number
(Supplementary data, Fig. S2).

Statistical analysis
The distributions of Y-hg among cases and controls were assessed by using
the Arlequin software (Raymond and Rousset, 1995). Differences in Y-hg fre-
quencies between cases and controls were calculated and tested withx2 test
using the Intercooled Stata 7.0 or Fisher’s exact test. We used QVALUE soft-
ware to calculate false discovery rate (FDR)-adjusted P-value (Storey and
Tibshirani, 2003). Probability (P) values of ,0.05 were regarded as statistic-
ally significant.

Results

Y-hg distributions of the cases and controls
To assess whether some Y-hgs are predisposing to or protecting against
the spermatogenic impairment, we first investigated the Y-hg distribu-
tions between the case and control groups in the NJMU population.
The detailed Y-hg distributions are shown in Table I. Comparing with
the control group, we found that Y-hg K* and O2b were significantly
more frequent in the azoospermia group: Y-hg K* [odds ratio (OR)
11.88; 95% confidence interval (CI) 3.37–41.83; P ¼ 1.26 × 1024]
and O2b (OR 13.54; 95% CI 1.58–116.14; P ¼ 4.69 × 1022). In con-
trast, the frequency of Y-hg Q1 and O3e* was much lower in the azoo-
spermia group than that in the control group: Y-hg Q1 (OR 0.45; 95% CI
0.23–0.89; P ¼ 6.79 × 1022) and O3e* (OR 0.71; 95% CI 0.53–0.93;
P ¼ 6.72 × 1022), although the distribution difference was not signifi-
cant. In the other two groups (oligozoospermia and infertility/normo-
zoospermia groups), no significant distribution differences were found,
except Y-hg O* in the infertility/normozoospermia group.

To verify the risk Y-hgs (K* and O2b) and the protective Y-hgs (Q1 and
O3e*) for spermatogenic impairment, we conducted a second stage ana-
lysis in a separate population (Shanghai) with 1019 non-obstructive azoo-
spermic patients and 822 healthy male controls. Of these three loci, Y-hg
K* (OR 6.13; 95% CI 1.40–26.86; P ¼ 4.27 3 1022) and O3e*(OR
0.63; 95% CI 0.48–0.84; P ¼ 2.38 × 1022) showed consistent associ-
ation results in the replication stage. No significant difference in Y-hgs
O2b and Q1 distribution was found between the azoospermic patients
and controls in the second populations (Table II).

Subsequently, a combined analysis based on Y-hg was performed. In
the combined analysis of 1627 azoospermic patients and 2456 healthy
controls, we observed more highly significantly different distributions
between cases and controls: Y-hg K* (OR 8.58; 95% CI 3.31–22.28;
P ¼ 1.40 × 1025) and O3e* (OR 0.64; 95% CI 0.53–0.78; P ¼
4.20 × 1025; Table II). Our observations suggested a potential role of
Y-hg-specific genetic background for the susceptibility to spermatogenic
impairment, the mechanism of which deserves further investigation.

Distributions of the DAZ gene copy number
between Y-hg K* and O3e*
To investigate the possible genetic factors contributing to Y-hg-specific
spermatogenic effects between Y-hg K* and O3e*, we have quantified
the copy number of the DAZ gene in all the 28 Y-hg K* cases and 169
Y-hg O3e* cases, as shown in Table III. Based on the DAZ gene copy
number, we classified the subjects into three sub-patterns: the

common level pattern (four copies), the over-represented pattern
(greater than four copies) and the under-represented pattern (less
than four copies).

In the first population (Stage I), 4 out of 13 (30.77%) azoospermic
patients in Y-hg K* were duplicated, whereas none was deleted. In
Y-hg O3e*, 5 out of 71 (7.04%) cases were duplicated, whereas 9 out
of 71 (12.68%) were deleted. In the over-represented pattern, com-
pared with Y-hg O3e*, there was a significant increase in frequency of
Y-hg K* (OR 5.87; 95% CI 1.32–25.98; P ¼ 2.90 × 1022). In the
second stage, in Y-hg K*, 3 out of 15 (20%) cases were over-represented
with more than four DAZ gene copies, whereas 1 out of 15 (6.67%) were
under-represented with less than four copies. In Y-hg O3e*, 6 out of 98
(6.12%) cases were duplicated, whereas 9 out of 98 (9.18%) were
deleted. More over-represented individuals were identified in Y-hg K*
(3 out of 15, 20%) than that in O3e* (6 out of 98, 6.12%), although no
significant difference in the distribution was identified. In the combined
analysis, comparing with Y-hg O3e*, we found that over-represented
DAZ was significantly more frequent in Y-hg K* (OR 4.79; 95% CI
1.67–13.70; P ¼ 6 × 1023).

Distribution of the DAZ gene copy number
between the cases and controls of Y-hg
K* and O3e*
Based on the above observations, we hypothesized that the susceptibility
of Y-hg K* to azoospermia was possibly attributed to the increased DAZ
gene copy number. Therefore, we speculated that the over-dosage of
DAZ gene may be a potential risk factor for spermatogenic impairment.
To verify our speculation, we analyzed the distribution of the DAZ gene
copy number between the case and control groups of Y-hg K* and O3e*
(Table IV). In Y-hg K*, 4 out of 13 (�31%; Stage I), 3 out of 15
(20%; Stage II) have DAZ duplications in the case group, whereas none
of five controls (Stages I and II) was duplicated. In Y-hg O3e*, 5 out of
71 (�7%; Stage I) and 6 out of 98 (�6%; Stage II) cases were of more
than four DAZ copies, whereas 12 out of 258 (�5%; Stage I) and 5 out
of 118 (�4%; Stage II) controls were of more than four copies. In com-
bined analysis, notably in Y-hg K*, 7 out of 28 (25%; combined) cases
were duplicated, whereas no control was duplicated. In Y-hg O3e*, 11
out of 169 (�7%; combined) azoospermic patients were duplicated,
while 17 out of 376 (�5%; combined) controls were found to be
duplicated. Generally, more over-represented individuals tended to be
identified in the azoospermia group than that in the control group of
the studied haplogroups, although these differences in the distribution
did not reach statistical significance.

Discussion
The male-specific region of the Y chromosome, consisting of long Y-
specific repeats, favors numerous homologous recombination, and
then generates various genomic rearrangements (Tiepolo and Zuffardi,
1976; Vogt et al., 1996). Additionally, the Y chromosome is transmitted
exclusively through sperm, which undergoes multiple cell divisions during
gametogenesis. Each cellular division provides an opportunity to accu-
mulate mutations. These properties consequently put the Y chromo-
some at a risk of mutation 4.8 times greater than the rest of the
genome (Nachman and Crowell, 2000; Kumar and Subramanian,
2002; Graves, 2006). Because of the high variability of the human Y
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Table I Distribution of the cases and controls of Han Chinese population (stage I) in Y-hg.

Y-hg Stage I

Control Case

Fertility/
normozoospermia
(n 5 1634)

All infertility (n 5 1425) Azoospermia (n 5 608) Oligozoospermia (n 5 293) Infertility/normozoospermia (n 5 524)

n OR Pa,b n OR (95%CI) Pa,b n OR (95%CI) Pa,b n OR (95%CI) Pa,b n OR (95%CI) Pa,b

C 122 1.00 129 1.23 (0.95–1.60) 1.73 × 1021 54 1.21 (0.86–1.69) 5.36 × 1021 30 1.41 (0.93–2.15) 4.90 × 1021 45 1.16 (0.81–1.66) 6.27 × 1021

DE 6 1.00 17 3.28 (1.29–8.33) 3.87 3 1022 7 3.16 (1.06–9.44) 1.48 × 1021 2 3.76 (1.05–13.39) 3.62 × 1021 8 3.14 (1.01–9.79) 1.93 × 1021

F* 4 1.00 5 1.43 (0.38–5.35) 7.42 × 1021 1 0.67 (0.07–6.02) 1.00 2 2.80 (0.51–15.36) 4.56 × 1021 2 1.56 (0.29–8.55) 6.37 × 1021

K* 3 1.00 22 8.53 (2.55–28.54) 4.34 3 1024 13 11.88 (3.37–41.83) 1.26 3 1024 4 7.52 (1.68–33.80) 1.75 × 1021 5 5.24 (1.25—21.99) 1.67 × 1021

N* 112 1.00 112 1.16 (0.88–1.52) 4.02 × 1021 52 1.27 (0.90–1.79) 3.96 × 1021 19 0.94 (0.57–1.56) 1.04 41 1.15 (0.80–1.67) 5.75 × 1021

Q1 58 1.00 36 0.70 (0.46–1.07) 2.04 × 1021 10 0.45 (0.23–0.89) 6.79 3 1022 10 0.96 (0.49–1.90) 1.06 16 0.86 (0.49–1.50) 6.32 × 1021

O1 241 1.00 193 0.91 (0.74–1.11) 4.34 × 1021 86 0.95 (0.73–1.24) 9.14 × 1021 38 0.86 (0.60–1.24) 7.44 × 1021 69 0.88 (0.66–1.17) 6.46 × 1021

O2a 27 1.00 29 1.24 (0.73–2.10) 4.64 × 1021 11 1.10 (0.54–2.22) 9.31 × 1021 1 0.20 (0.03–1.51) 3.81 × 1021 17 2.00 (1.08–3.69) 1.16 × 1021

O2* 61 1.00 70 1.33 (0.94–1.89) 1.89 × 1021 24 1.06 (0.65–1.72) 8.76 × 1021 11 1.49 (0.85–2.62) 4.60 × 1021 35 1.57 (1.00–2.45) 1.35 × 1021

O2b 1 1.00 6 6.90 (0.83–57.42) 1.54 × 1021 5 13.54 (1.58–116.14) 4.69 3 1022 0 – 1.00 1 3.12 (0.19–50.01) 5.98 × 1021

O* 3 1.00 11 4.23 (1.18–15.19) 5.60 × 1022 3 2.70 (0.54–13.39) 4.95 × 1021 1 1.86 (0.19–17.96) 7.52 × 1021 7 7.36 (1.90–28.57) 4.00 3 1022

O3* 522 1.00 415 0.88 (0.75–1.02) 2.12 × 1021 181 0.90 (0.74–1.11) 5.66 × 1021 98 0.96 (0.73–1.26) 1.07 136 0.80 (0.64–0.99) 1.56 × 1021

O3e* 258 1.00 176 0.75 (0.61–0.92) 4.62 3 1022 71 0.71 (0.53–0.93) 6.72 3 1022 38 0.79 (0.55–1.15) 5.08 × 1021 67 0.78 (0.59–1.04) 1.89 × 1021

O3e1 216 1.00 204 1.10 (0.89–1.35) 4.42 × 1021 90 1.14 (0.87–1.49) 5.16 × 1021 39 1.01 (0.70–1.45) 1.04 75 1.10 (0.83–1.46) 6.11 × 1021

CI, confidence interval; OR, odds ratio; Y-hg, Y chromosome haplotype.
aThe significance was tested by x2 or Fisher’s exact tests and statistical significance were bold formatted (P value , 0.05).
bFDR-corrected P-value.
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Table II Distribution of the cases and controls of Han Chinese populations (Stages I and II) in Y-hg.

Y-hg Stage I Stage II Combined

Azoospermia
(n 5 608)

Fertility
(n 5 1634)

OR (95%CI) Pa,b Azoospermia
(n 5 1019)

Fertility
(n 5 822)

OR (95%CI) Pa,b Azoospermia
(n 5 1627)

Fertility
(n 5 2456)

OR (95%CI) Pa,b

C 54 122 1.21 (0.86–1.69) 5.36 × 1021 91 77 0.95 (0.69–1.30) 1.00 145 199 1.11 (0.89–1.39) 4.61 × 1021

DE 7 6 3.16 (1.06–9.44) 1.48 × 1021 8 7 0.92 (0.33–2.55) 1.00 15 13 1.75 (0.83–3.68) 2.39 × 1021

F* 1 4 0.67 (0.07–6.02) 1.00 5 5 0.81 (0.23–2.79) 1.00 6 9 1.01 (0.36–2.83) 9.90 × 1021

K* 13 3 11.88 (3.37–41.83) 1.26 3 1024 15 2 6.13 (1.40–26.86) 4.27 3 1022 28 5 8.58 (3.31–22.28) 1.40 3 1025

N* 52 112 1.27 (0.90–1.79) 3.96 × 1021 95 64 1.22 (0.87–1.70) 5.67 × 1021 147 176 1.29 (1.02–1.62) 7.07 × 1022

Q1 10 58 0.45 (0.23–0.89) 6.79 3 1022 32 18 1.45 (0.81–2.60) 5.67 × 1021 42 76 0.83 (0.57–1.22) 4.73 × 1021

O1 86 241 0.95 (0.73–1.24) 9.14 × 1021 129 116 0.88 (0.67–1.16) 7.24 × 1021 215 357 0.90 (0.75–1.07) 3.64 × 1021

O2a 11 27 1.10 (0.54–2.22) 9.31 × 1021 39 20 1.60 (0.92–2.76) 4.25 × 1021 50 47 1.63 (1.09–2.43) 6.02 × 1022

O2* 24 61 1.06 (0.65–1.72) 8.76 × 1021 45 39 0.93 (0.60–1.44) 1.00 69 100 1.04 (0.76–1.43) 8.51 × 1021

O2b 5 1 13.54 (1.58–116.14) 4.69 3 1022 6 4 1.21 (0.34–4.31) 1.00 11 5 3.34 (1.16–9.62) 5.04 × 1022

O* 3 3 2.70 (0.54–13.39) 4.95 × 1021 2 1 1.61 (0.15–17.84) 1.00 5 4 1.89 (0.51–7.05) 5.81 × 1021

O3* 181 522 0.90 (0.74–1.11) 5.66 × 1021 268 218 0.99 (0.80–1.22) 1.00 449 740 0.88 (0.77–1.02) 1.62 × 1021

O3e* 71 258 0.71 (0.53–0.93) 6.72 3 1022 98 118 0.63 (0.48–0.84) 2.38 3 1022 169 376 0.64 (0.53–0.78) 4.20 3 1025

O3e1 90 216 1.14 (0.87–1.49) 5.16 × 1021 186 133 1.16 (0.91–1.48) 5.67 × 1021 276 349 1.23 (1.04–1.46) 7.79 × 1022

CI, confidence interval; OR, odds ratio; Y-hg, Y chromosome haplotype.
aThe significance was tested by x2 or Fisher’s exact tests and statistical significance were bold formatted (P value , 0.05).
bFDR-corrected P-value.
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Table III Comparison of DAZ gene copy number between Y-hg K* and O3e* in the case groups of Han Chinese populations (Stages I and II).

Group Y-hg n DAZ gene copy number

<4 copies 4 copies >4 copies

n OR(95%CI) Pa,b n OR(95%CI) Pa,b n OR(95%CI) Pa,b

Stage I/azoospermia (n ¼ 608) O3e* 71 9 1.00 57 1.00 5 1.00
K* 13 0 – 0.343 9 0.55 (0.15–2.06) 0.462 4 5.87 (1.32–25.98) 2.90 × 1022

Stage II/azoospermia (n ¼ 1019) O3e* 98 9 1.00 83 1.00 6 1.00
K* 15 1 0.71 (0.08–6.01) 1.00 11 0.50 (0.14–1.77) 0.277 3 3.83 (0.85–17.37) 9.80 × 1022

Combined (n ¼ 1627) O3e* 169 18 1.00 140 1.00 11 1.00
K* 28 1 0.31 (0.04–2.43) 0.485 20 0.52 (0.21–1.29) 7 4.79 (1.67–13.70) 6.00 × 1023

CI, confidence interval; OR, odds ratio; Y-hg, Y chromosome haplotype.
aThe significance was tested by x2 or Fisher’s exact tests.
bFDR-corrected P-value.

........................................................................ ........................................................................ ..........................................................................

................................ ................................ ................................. ................................ .................................. ................................

..........................................................................................................................................................................................................................................................

Table IV Distribution of DAZ gene copy number between the cases and controls of Han Chinese populations (Stages I and II) in Y-hgs K* and O3e*.

DAZ
gene

Stage I Stage II Combined

Azoospermia (n 5 608) Fertility (n 5 1634) Azoospermia (n 5 1019) Fertility (n 5 822) Azoospermia (n 5 1627) Fertility (n 5 2456)

O3e*(71),
n (%)

K*(13),
n (%)

O3e*(258),
n (%)

K*(3),
n (%)

O3e*(98),
n (%)

K*(15),
n (%)

O3e*(118),
n (%)

K*(2),
n (%)

O3e*(169),
n (%)

K*(28),
n (%)

O3e*(376),
n (%)

K*(5),
n (%)

Two
copies

9 (12.68) – 24 (9.30) – 9 (9.18) 1 (6.67) 12 (10.17) – 18 (10.65) 1 (3.57) 36 (9.57) –

Four
copies

57 (80.28) 9 (69.23) 222 (86.05) 3 (100) 83 (84.69) 11 (73.33) 101 (85.59) 2 (100) 140 (82.84) 20 (71.43) 323 (85.90) 5 (100)

Six
copies

4 (5.63) 3 (23.08) 10 (3.88) – 5 (5.10) 3 (20) 5 (4.24) – 9 (5.33) 6 (21.43) 15 (3.99) –

Eight
copies

1 (1.41) 1 (7.69) 2 (0.78) – 1 (1.02) – – – 2 (1.18) 1 (3.57) 2 (0.53) –

Y-Hg, Y chromosome haplotype.
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chromosome, the Y-linked variations may represent a genetic back-
ground for the susceptibility to spermatogenic impairment.

Recently, several studies have investigated the possible association
between Y-hg and spermatogenic impairment. However, the roles of
Y-hgs (e.g. K*) in spermatogenesis are controversial and vary among
human populations (Kuroki et al., 1999; Previdere et al., 1999; Krausz
et al., 2001; Lu et al., 2007; Yang et al., 2008). Therefore, we addressed
this issue using a larger sample size of two independent populations in
Han Chinese. Notably, in the NJMU cohort (Stage I), the frequencies
of Y-hg K* and O2b were significantly higher in the azoospermia group
than those in the control group. In contrast, the frequency of Y-hg Q1
and O3e* was lower in the azoospermia group, although the distribution
difference was not significant (Table I).

To confirm these predispositions, we re-investigated this association
in another population, which was mainly from Shanghai (Stage II). The
genetic structures of these two populations showed no significant differ-
ence. We compared the distributions of Y-hgs between the case group
and the control group in the Shanghai population. Unexpectedly, among
these four potential risk/protective Y-hgs, Y-hgs K* and O3e* showed
consistent association signals in the replication stage. However, no signifi-
cant distribution difference of Y-hg Q1 and O2b between cases and con-
trols was detected in the Shanghai population.

Y-hg K is an old lineage established �40 000–50 000 years ago, prob-
ably originating in Southwestern Asia or South Asia (Karafet et al., 2008).
This lineage contains two distinct classes of groups: (i) major Y-hg L to T;
(ii) minor Y-hg K* and K1 to K4. According to previous reports, Y-hg K*
(excluding N, Q1 and O) was found only at low frequency in the Han
Chinese population (Xue et al., 2006). These facts suggested that
some Y-hg-specific variations of K* may weaken the individual resistance
to spermatogenic impairment, which could explain the low frequency of
Y-hg K* in Han Chinese populations.

In contrast, the frequency of Y-hg O3e* was significantly higher in the
control group than that in the case group. Namely, the Y-hg O3e*, which
was found frequently among Sino-Tibetan populations with a moderate
distribution throughout East Asia and Southeast Asia, was a protective
haplogroup against spermatogenic impairment (Shi et al., 2005). These
results indicated that some variations of Y-hg O3e* might reduce individ-
ual susceptibility to spermatogenic impairment, and thus result in the
relatively higher frequency of Y-hg O3e* in our study populations.

After identifying the risk Y-hg (K*) and the protective Y-hg (O3e*) of
spermatogenic impairment, we aimed at exploring the possible Y-linked
genetic modifier(s) in these two haplogroups with variable predispos-
ition to spermatogenic impairment. Our recent study showed that add-
itional AZFc/DAZ duplications did not compensate but convey the
susceptibility of b2/b3 deletion (one type of partial AZFc deletion) to
spermatogenic impairment in the tested population (Lu et al., 2011).
Besides, Lin et al. (2007) also observed that partial AZFc/DAZ duplica-
tions underlie the risk of spermatogenic impairment in the Taiwan popu-
lation. Based on this evidences, we hypothesized that the individuals in
these predisposed haplogroups might carry some genetic factors, such
as AZFc/DAZ duplications, which might be linked to Y chromosome
monophyletic groups, and affect the susceptibility to spermatogenic
impairment.

Since the AZFc/DAZ duplication might be a potential genetic modifier
of spermatogenesis in this study, we compared the DAZ gene copy
number between these two biased Y-hgs. The DAZ gene is the first
AZFc candidate gene, which is expressed specifically in testis. In the

first NJMU population, compared with Y-hg O3e*, there was a significant
increase in the frequency of the over-representation in DAZ gene in Y-hg
K* (P ¼ 2.90 × 1022). In the second Shanghai population, more over-
represented individuals were identified in Y-hg K* than in O3e*, although
no significant difference in the distribution was found. This might be due
to the relatively limited number of subjects. In combined analysis, we
found that the over-dosage of DAZ gene was significantly more frequent
in Y-hg K* than in Y-hg O3e* (P ¼ 6 × 1023). Our results indicated that
over-dosage of the DAZ gene might underlie the susceptibility of Y-hg K*
to spermatogenic impairment in the Han Chinese populations.

In summary, by investigating 2444 individuals with azoospermia or oli-
gozoospermia and 2456 controls in two Han Chinese populations, we
found that Y-hg K* and O3e* consistently showed significantly biased dis-
tributions between cases and controls of two independent populations.
Y-hg K* predisposed to spermatogenic impairment, while Y-hg O3e* had
a protecting effect. Furthermore, we investigated the effect of AZFc/DAZ
duplications on the predisposition in these two extreme Y-hgs. Our
results demonstrated that AZFc/DAZ duplications might underlie the
susceptibility of Y-hg K* to spermatogenic impairment in the Han
Chinese populations. Our findings emphasized the necessity of more ex-
tensive studies on Y chromosomal rearrangements for understanding
the predisposition of some Y-hgs to spermatogenic impairment.
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