
 

DB-suite: Experiences with Three Intelligent, Web-based 
Database Tutors 

 

ANTONIJA MITROVIC  
PRAMUDITHA SURAWEERA 
BRENT MARTIN 
AMALI WEERASINGHE 
 
Intelligent Computer Tutoring Group 
Computer Science Department 
University of Canterbury 
Private Bag 4800, Christchurch, New Zealand 
http://www.cosc.canterbury.ac.nz/~tanja/ictg,html 
 

Abstract: E-learning is becoming more and more popular with the widespread use of 
computers and the Internet in educational institutions. Current e-learning courses are 
nearly always developed using course management systems (CMS), such as WebCT or 
Blackboard. Although CMS tools provide support for some administrative tasks and 
enable instructors to provide online instructional material, they offer no deep support for 
learning: students have access to on-line material, simple multi-choice quizzes and chat 
tools, but there is no ability to track student’s progress and adapt the learning material and 
instructional session to the individual student. In this paper we present our experiences 
with three Web-based intelligent tutoring systems in the area of databases. SQL-Tutor 
teaches the SQL query language, NORMIT is a data normalization tutor, and KERMIT 
teaches conceptual database modelling using the Entity-Relationship data model. All 
three tutors in DB-suite have been used and evaluated in the context of genuine teaching 
activities. We present the most important features of these systems, as well as evaluation 
results. The DB-suite tutors have proved to be very effective in supporting deep learning, 
and are well liked by students. 
 
Keywords: Web-based intelligent tutoring systems, computational intelligence in learning and 

authoring tools, student modelling in Web-based education, evaluation of intelligent 
Web-based teaching and learning systems 

 
 
INTRODUCTION 
 
Intelligent Tutoring Systems (ITS) have been proven to be very effective in domains that 
require extensive practice (Corbett et al., 1998; Koedinger et al., 1997; Mitrovic & 
Ohlsson, 1999). In this paper, we present DB-suite, consisting of three Web-enabled ITSs 



 

that teach various database skills to university students. Databases are ubiquitous in 
today’s information systems. Our tutors are Web-enabled, and thus are classroom and 
platform independent (Vasilakos et al., 2004). The most mature of the three systems is 
SQL-Tutor (Mitrovic, 1998a; 1998b; Mitrovic & Ohlsson, 1999; Mitrovic et al., 2001), an 
ITS that teaches the SQL query language. KERMIT (Knowledge-based Entity Relationship 
Modelling Intelligent Tutor) (Suraweera & Mitrovic, 2001) teaches conceptual database 
modelling, while NORMIT (NORMalization Intelligent Tutor) teaches database 
normalization (Mitrovic, 2003). All three tutors comprising DB-suite are problem-solving 
environments, where the system presents problems to solve and offers adaptive problem-
solving support and feedback. 

The DB-suite tutors are based on Constraint-Based Modeling (CBM) (Ohlsson 
1994). The Intelligent Computer Tutoring Group (ICTG) has also developed other 
constraint-based tutors: for example, CAPIT (Mayo & Mitrovic, 2001) is a MS Windows-
based, standalone tutor that teaches punctuation and capitalization rules in English, and 
LBITS (Martin & Mitrovic, 2002b) teaches vocabulary skills to elementary school 
children. Based on our experiences developing these tutors, we have also implemented 
WETAS (Martin & Mitrovic, 2002a; 2003), an authoring shell for developing constraint-
based tutors. WETAS is now being used for developing new tutors, including a Web-
enabled version of KERMIT. 

We start by briefly describing CBM and our database tutors. The following three 
sections are devoted to SQL-Tutor, KERMIT and NORMIT respectively. The effectiveness 
and the students’ perception of DB-suite tutors were evaluated in several empirical 
evaluation studies. We present these studies, which demonstrate the effectiveness of the 
systems for student’s learning. Finally, we present the conclusions and directions for 
future work.  

 
 

CONSTRAINT-BASED TUTORS 
 
Intelligent tutoring systems are developed with the goal of automating one-to-one human 
tutoring, which is the most effective mode of teaching (Bloom, 1984). ITS offer greater 
flexibility in contrast to non-intelligent software tutors since they can adapt to each 
individual student. Although ITSs have been proven to be effective in a number of 
domains, the number of ITSs used in real courses is still extremely small (Mitrovic, 
Martin & Mayo, 2002). Our goal when developing DB-suite was twofold: to provide our 
students with a flexible learning environment that will adapt to their needs, and to 
develop a powerful methodology for developing constraint-based tutors. Our 
methodology is based on Ohlsson’s (1996) theory of learning from performance errors.  

The typical architecture of constraint-based tutors is given in Figure 1. The tutors are 
developed in AllegroServe Web server, an extensible server provided with Allegro 
Common Lisp. All student models are kept on the server. At the beginning of interaction, 
a student is required to enter his/her name, which is necessary in order to establish a 
session. The session manager requires the student modeller to retrieve the model for the 
student, if there is one, or to create a new model for a new student. DB-suite tutors 
identify the students by their login name, which is embedded in a hidden tag of HTML 
forms. All student actions are sent to the session manager, to be linked to the appropriate 
session and stored in the student’s log. The action is then sent to the pedagogical module 



 

(PM). If the submitted action is a solution to the current step, the PM sends it to the 
student modeller, which diagnoses the solution, updates the student model and sends the 
result of the diagnosis back to the PM, which generates feedback.  

SQL-Tutor and NORMIT are Web-enabled tutors with a centralized architecture, with 
all tutoring functions performed on the server side. In these two domains, solutions 
produced by students are textual, and the amount of information to be sent to the server is 
small, so that the centralized architecture is suitable. In KERMIT, students draw diagrams, 
and some tutoring functions related to drawing are performed on the client side. The 
tutoring functions are therefore distributed between the server and the Java applet, as 
described later. 

Domain knowledge consists of a set of constraints. Constraint-Based Modeling 
(CBM) (Ohlsson, 1994; Mitrovic & Ohlsson, 1999) is a student modeling approach that is 
not interested in the exact sequence of states in the problem space the student has 
traversed, but in what state he/she is in currently. As long as the student never reaches a 
state that is known to be wrong, they are free to perform whatever actions they please. 
The domain model is a collection of state descriptions of the form: If <relevance 
condition> is true, then <satisfaction condition> had better also be true, otherwise 
something has gone wrong. 

The knowledge base consists of constraints used for testing the student’s solution for 
syntax errors and comparing it against the system’s ideal solution to find semantic errors. 
The knowledge base enables the tutor to identify student solutions that are identical to the 
system’s ideal solution. More importantly, this knowledge also enables the system to 
identify valid alternative solutions, i.e. solutions that are correct but not identical to the 
system’s solution. Each constraint specifies a fundamental property of a domain that must 

be satisfied by all 
solutions. Constraints are 
problem-independent and 
modular, and therefore 
easy to evaluate. They 
are written in Lisp, and 
can contain built-in 
functions as well as 
domain-specific ones. 
For examples of 
constraints, please see 
(Mitrovic, 1998a, 2002; 
2003; Suraweera & 
Mitrovic, 2001; 2002; 
Martin & Mitrovic, 2003; 
Mitrovic, Koedinger & 
Martin, 2003). If the 
satisfaction condition of a 
relevant constraint is met 
by the student solution, 
the solution is correct. In 
the opposite case, the 
student will be given 
feedback on errors.  

Web server
(AllegroServe)

Session
manager

Student
modeler

Problem 
solver

Pedagogical
module

student
models

Problems

Web 
browser

Internet

 
Fig. 1. The architecture of DB-suite tutors 



 

One of the advantages of CBM over other student modeling approaches (Mitrovic, 
Koedinger & Martin, 2003) is its independence from the problem-solving strategy 
employed by the student. CBM models students’ evaluative, rather than generative 
knowledge and therefore does not attempt to induce the student’s problem-solving 
strategy. CBM does not require an executable domain model, and is applicable in 
situations in which such a model would be difficult to construct (such as database design 
or SQL query generation). Furthermore, CBM eliminates the need for bug libraries, i.e. 
collections of typical errors made by students. On the contrary, CBM focuses on correct 
knowledge only. If a student performs an incorrect action, that action will violate some 
constraints. Therefore, a CBM-based tutor can react to misconceptions although it does 
not represent them explicitly. A violated constraint means that student’s knowledge is 
incomplete/incorrect, and the system can respond by generating an appropriate feedback 
message. Feedback messages are attached to the constraints, and they explain the general 
principle violated by the student’s actions. Feedback can be made very detailed, by 
instantiating parts of it according to the student’s action. 

The student modeller evaluates the student’s solution against the knowledge base and 
updates the student model. The short-term student model consists of a list of violated and 
a list of satisfied constraints for the current attempt. The long-term model records the 
history of usage for each constraint. This information is used to select problems of 
appropriate complexity for the student, and to generate feedback. 

All DB-suite tutors contain predefined database problems. KERMIT and SQL-Tutor 
also contain a pre-specified ideal solution for each problem, as there are no problem 
solvers for these two tutors. NORMIT, on the other hand, contains a problem solver, and 
is capable of solving both pre-specified problems and the problems entered by students. 

The pedagogical module (PM) is the driving engine of the whole system. Its main 
tasks are to generate appropriate feedback messages for the student and to select new 
practice problems. PM individualizes these actions to each student based on their student 
model. Unlike ITSs that use model tracing (Anderson et al., 1996; Corbett et al., 1998; 
Koedinger et al., 1997), constraint-based tutors do not follow each student’s solution step-
by-step: a student’s solution is only evaluated once it is submitted, although the student 
may submit a partial solution to get ideas on how to progress. 

The feedback is grouped into six levels according to the amount of detail: correct, 
error flag, hint, detailed hint, all errors and solution. The first level of feedback, correct, 
simply indicates whether the submitted solution is correct or incorrect. The error flag 
indicates the type of construct (e.g. entity, relationship, etc.) that contains the error. Hint 
and detailed hint offer a feedback message generated from the first violated constraint. 
Hint is a general message such as “There are attributes that do not belong to any entity or 
relationship”. On the other hand, detailed hint provides a more specific message such as 
“The ‘Address’ attribute does not belong to any entity or relationship”, where the details 
of the erroneous object are given. Not all detailed hint messages give the details of the 
construct in question, since giving details on missing constructs would give away 
solutions. A list of feedback messages on all violated constraints is displayed at the all 
errors level. Finally, the complete solution is displayed at the solution level. 

Initially, when the student begins to work on a problem, the feedback level is set to the 
correct level. As a result, the first time a solution is submitted, a simple message 
indicating whether or not the solution is correct is given. This initial level of feedback is 
deliberately low, as to encourage students to solve the problem by themselves. The level 
of feedback is incremented with each submission until the feedback level reaches the 



 

detailed hint level. Automatically incrementing the levels of feedback is terminated at the 
detailed hint level to encourage to the student to concentrate on one error at a time rather 
than all the errors in the solution. Moreover, if the system automatically displays the 
solution to the student on the sixth attempt, it would discourage them from attempting to 
solve the problem at all, and may even lead to frustration. The system also gives the 
student the freedom to manually select any level of feedback according to their needs. 

When selecting a new problem, the PM firsts decides what concept is appropriate for 
the student on the basis of the student model. The concept that contains the greatest 
number of violated constraints is targeted. We have chosen this simple problem selection 
strategy in order to ensure that students get the most practice on the concepts with which 
they experience difficulties. In situations where there is no obvious “best” concept (i.e. a 
prominent group of constraints to be targeted), the next problem in the list of available 
problems, ordered according to increasing complexity, is given. We have also 
experimented with alternative problem-selection strategies, using Bayesian nets (Mayo & 
Mitrovic 2000; 2001) and neural networks (Wang & Mitrovic, 2002).  

SQL-TUTOR 

SQL-Tutor is our most heavily developed constraint-based tutor. The motivation for 
developing this tutor came from our teaching experience. SQL is usually taught in 
classrooms, by solving problems on the blackboard, complemented by lab exercises. 
Students experience many problems when learning SQL. Some errors come from the 
burden of having to memorize database schemas; others come from misconceptions in the 
student's understanding of the elements of SQL and the relational data model in general. 
Some of the concepts students find particularly difficult to grasp are grouping and 
restricting grouping. Join conditions and the difference between aggregate and scalar 
functions are another two common sources of confusion. Furthermore, students find that 
it is not easy to learn SQL directly by working with a RDBMS, because error messages 
are very often hard to understand, and are limited to the syntax only. 

The Web-enabled version of SQL-Tutor has been used in regular courses at the 
University of Canterbury since 1999. For a detailed discussion of the system, see 
(Mitrovic, Martin & Mayo, 2002); here we present only some of its features. The system 
contains definitions of several databases and a set of problems and their ideal solutions. 
SQL-Tutor contains no problem solver. The interface, illustrated in Figure 2, has been 
designed to be robust, flexible, and easy to use. It reduces the memory load by displaying 
the database schema and the text of a problem, by providing the basic structure of the 
query, and also by providing explanations of the elements of SQL. The top area contains 
the buttons students can use to request a new database/problem, see the history of the 
current session or their student model, ask for help and run their query. The middle left 
section displays the text of the problem being solved and students can remind themselves 
easily of the elements requested in queries. The middle left part also contains the clauses 
of the SELECT statement, thus visualizing the goal structure. Students need not 
remember the exact keywords used and the relative order of clauses. The middle right 
part is where the feedback and other help messages are displayed. The bottom part 
displays the schema of the current database. Schema visualization is very important; all 
database users are painfully aware of the constant need to remember table and attribute 
names and the corresponding semantics. Students can get the descriptions of databases, 
tables or attributes. The motivation here is to remove from the student some of the 



 

cognitive load required for checking the low-level syntax, and to enable the student to 
focus on higher-level, query definition problems.  

SQL-Tutor checks the student’s solution by comparing it to the correct solution using 
domain knowledge represented in the form of more than 600 constraints. The student may 
select problems in several ways: they may work their way through a series of problems 
for each database (ordered by their complexity), ask the system to select a problem on the 
basis of their student model, select a problem from a list, or select the type of problem 
they wish to work on, where the system then selects an individual problem of that type on 
the basis of their student model. 

 
 
KEEEERRRRMIT: A KNOWLEDGE-BASED ER MODELLING TUTOR 
 
Learning how to develop good quality databases is a core topic in the Computer Science 
curriculum. Database design is a process of generating a database schema using a specific 
data model. The quality of conceptual schemas is of critical importance for database 
systems. Most database courses teach conceptual database design using the Entity-
Relationship (ER) model, a high-level data model originally proposed by Chen (1976). 
Although the traditional method of learning ER modeling in a classroom environment 
may be sufficient as an introduction to the concepts of database design, students cannot 

 
Fig 2. A screenshot from SQL-Tutor 



 

gain expertise by attending lectures only: like other design tasks, extensive practise is 
necessary. KERMIT assists students in this task. The system is designed to complement 
classroom teaching, and therefore assumes that students are already familiar with the 
fundamentals of database theory. In KERMIT, students construct ER schemas that satisfy a 
given set of requirements. The system assists students during problem solving and guides 
them towards the correct solution by providing tailored feedback. 

The system is designed for individual work. The student is given a textual description 
of the requirements of the database, and uses the ER modelling notation to construct an 
ER schema, as shown in Figure 3. KERMIT’s interface consists of three main components. 
The top part contains the controls for the student to ask for a new problem, look at the 
history of the current session, explore their student model, ask for help or log out. The 
middle component is the Java applet, which displays the text of the problem. It also 
provides an ER modeling workspace where students create ER diagrams. The lower 
window displays feedback from the system in textual form. The ER diagram is 
constructed using the workspace integrated into KERMIT’s interface. Whenever a new 
object is created, the system asks for it to be named by highlighting a phrase from the 
problem text. This interface has two benefits: the student is forced to think about the 
requirements in terms of the original problem text, and it is also easier for the tutor to 
understand the semantics of the constructs in the student’s diagram. Once the student has 
completed the problem or requires guidance from the system, the solution is evaluated. 
Depending on the results of the evaluation, the system may either congratulate the student 
or offer hints on their errors. 

 
Fig. 3. KERMIT’s interface 



 

The Web-enabled version of KERMIT was developed in WETAS (Martin & Mitrovic, 
2003). The domain knowledge of KERMIT is represented as a set of constraints, which is 
used for testing the student’s solution (for syntax errors) and comparing it to the ideal 
solution. Currently KERMIT’s knowledge base consists of 135 constraints. Most syntactic 
constraints of KERMIT were formulated by analysing the target domain of ER modelling 
through the literature (Elmasri & Navathe, 1994). Due to the nature of the domain, the 
acquisition of syntactic constraints was not straightforward. Since ER modelling is an ill-
defined domain, descriptions of its syntax in textbooks are informal. This process was 
conducted as an iterative exercise in which the syntax outline was repeatedly refined by 
adding new constraints. Semantic constraints are even harder to formulate: we analysed 
sample ER diagrams and compared them against their problem specifications to derive 
the basic semantic constraints.  

 
 

LEARNING DATA NORMALIZATION IN NORMIT 
 
Database normalization is the process of refining a relational database schema in order to 
ensure that all tables are of high quality (Elmasri & Navathe, 1994). Normalization is 
usually taught in introductory database courses in a series of lectures, and later practised 
on paper by looking at specific databases and applying the definitions. NORMIT is a 
problem-solving environment, which complements traditional classroom instruction. The 
emphasis is therefore on problem solving, not on providing information. However, the 

 
Fig. 4. The interface of NORMIT 



 

system does provide help about the basic domain concepts, when there is evidence that 
the student does not understand them, or has difficulties applying knowledge.  

Database normalization is a procedural task: the student goes through a number of 
steps to analyze the quality of a database. We described the tasks NORMIT supports in 
detail elsewhere (Mitrovic, 2002; 2003). NORMIT requires the student to determine 
candidate keys (illustrated in Figure 4), the closure of a set of attributes, prime attributes, 
simplify functional dependencies, determine normal forms, and, if necessary, decompose 
the table. The sequence is fixed: the student will only see a Web page corresponding to 
the current task. The student may submit a solution or request a new problem at any time. 
He/she may also review the history of the session, or examine their student model. 

NORMIT currently contains over 80 problem-independent constraints that describe 
the basic principles of the domain. Some constraints check the syntax of the solution, 
while others check the semantics by comparing the student’s solution to the ideal 
solution, generated by the problem solver. In order to identify constraints, we studied 
material in textbooks, such as (Elmasri & Navathe 1994), and also used our own 
experience in teaching database normalization. 

NORMIT also provides support for self-explanation, one of the most effective 
learning strategies. In self-explanation, the student solves a problem (or explains a solved 
problem) by specifying why a particular action is needed and how it contributes toward 
the solution. Existing ITSs that support self-explanation, such as Geometry Explanation 
Tutor (Aleven & Koedinger, 2002) and SE-Coach (Conati & VanLehn, 2000), require the 
student to explain every problem-solving step. Instead, NORMIT requires an explanation 

 
Fig. 5. Asking the student to explain the current action 



 

for actions being performed for the first time only. For subsequent actions of the same 
type, explanation is required only if the action is performed incorrectly. This strategy 
reduces the burden on the more able students (by not asking them to provide the same 
explanation every time an action is performed correctly), and at the same time provides 
enough situations for students to develop and improve their self-explanation skills. Figure 
5 shows a situation when the student has specified a functional dependency that violates 
the third normal form (3NF) incorrectly. The tutor asks the student to specify the reason 
for selecting this functional dependency. If the student’s explanation is incorrect, they 
will be given another question, asking them to define the underlying domain concept. The 
purpose of the questions is to require the student to relate their problem-solving actions 
(generative knowledge) to declarative knowledge, thus supporting the acquisition of deep 
knowledge.  

In addition to the model of the student’s knowledge, NORMIT also stores 
information about the student’s self-explanation skills. For each constraint, the 
student model contains information about the student’s explanations related to that 
constraint. The student model stores the history of student’s explanation of each 
domain concept. 

 
 

EVALUATION OF DB-SUITE TUTORS 
 
We believe that the credibility of an ITS can only be gained by proving its effectiveness 
in a classroom environment, with typical students (Mitrovic, Mayo & Martin, 2002). This 
section presents the results of several evaluation studies performed on the presented 
tutors.  

 
Evaluating SQL-Tutor 
 
The stand-alone version of the system was evaluated in 1998 (Mitrovic & Ohlsson, 1999), 
showing that the system had a significant effect on students’ knowledge after a single 
two-hour session. Here we report on evaluation studies performed on the Web-enabled 
version of SQL-Tutor. General information about the studies is given in Table 1. In all 
studies, students had 4-6 lectures and labs before using the system. Their performance 
was measured by a pre/ and a post-test. Every action performed by a student was logged, 
and the logs were later analysed. All studies were carried out at the University of 
Canterbury, with Computer Science students enrolled in database courses. Each study had 
a specific focus. In this paper, we report on two dimensions: usability and learning.  

Study Timing Students Length Purpose of study 
1 May 1999 33 2 hours Feedback evaluation 
2 October 1999 34 2 hours Animated pedagogical agent; 

Probabilistic student model 
3 Sep-Oct 2000 70 7 weeks Meta-cognitive skills 
4 Sep-Oct 2001 77 1 month Open student model 
5 Sep-Oct 2002 100 1 month Problem selection 

Table 1. Details of the evaluation studies 



 

The first two studies involved a single, 2-hour long session. We refer the interested 
reader to (Mitrovic & Suraweera, 2000) for the details of the evaluation of the 
pedagogical agent, and to (Mayo & Mitrovic, 2000) for the details of the evaluation of the 
probabilistic student model. Studies 3, 4 and 5 were longer. In each of these studies, SQL-
Tutor was demonstrated in a lecture. The course involved a test on SQL a month and a 
half after the system was introduced. The experiments were set up this way so that the 
students may use the system over several weeks. The goal of study 3 was to analyze 
students’ metacognitive skills, and the results are described in (Mitrovic, 2001). In study 
4, we introduced an open student model, which presented an overview of student’s 
knowledge. The goal of that study was to see whether this open model supports learning 
and self-assessment skills (Mitrovic & Martin, 2002). Finally, in study 5 we analysed 
whether students can learn to select problems well (Mitrovic & Martin, 2003). 

We analyzed the student logs to evaluate how well SQL-Tutor supports learning. 
Since we represent knowledge of SQL in terms of constraints, we looked at how students 
acquire and apply them. In earlier work (Mitrovic & Ohlsson, 1999), the evaluation of 
SQL-Tutor showed that constraints represented psychologically appropriate units of 
knowledge; learning followed a smooth curve when plotted in terms of constraints. We 
performed the same analysis for SQLT-Web. Figure 6 shows the decrease in the number 
of violated constraints as a function of the number of times each constraint was relevant. 
The degree of mastery of a given constraint is a function of the amount of practice on that 
unit. There is not much difference between the three student populations, as the graphs 
for three evaluation studies are close to each other. In other words, the students from each 
of the three studies tended to acquire constraints at approximately the same rate. 

In the third study we compared the performance of students who used SQL-Tutor 
(experimental group) to the rest of the class (control group). These two groups listened to 

 

Study 1 
y = 0.0753x -0.9904 

R 2  = 0.6764 

Study 2 
y = 0.0407x -0.7266 

R 2  = 0.8375 

Study 3 
y = 0.0773x -0.7304 

R 2  = 0.9408 

0 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

0.08 

0.09 

0.1 

1 2 3 4 5 6 7 8 9 10 
Number of times relevant 

N
um

be
r 

of
 T

im
es

 V
io

la
te

d 
 

Study 1 Study 2 Study 3 
Power (Study 1) Power (Study 2) Power (Study 3) 

 

Fig. 6. Mastery of SQL-Tutor’s constraints 



 

exactly the same number of lectures and labs, and sat the same post-test. The pre-test was 
administered on-line, when the students logged on to the system for the first time. The 
results of the experimental group on the post-test are higher than the results of the control 
group, and the difference is significant (p<0.005). However, this result is not irrefutable, 
as the experiment was not controlled. The experimental group consisted of volunteers, 
who are usually more motivated students. 

Group Students Pre-test mean (SD) Post-test Mean (SD) 

Experimental 70 4.02 (1.52) 5.01 (1.24) 

Control 62  4.3 (1.6) 
Table 2. Pre- and post-test results for study 3 

The goal of study 4 was to determine the effect of a simple open student model on 
students’ learning and self-assessment skills. Let us first describe the way we visualize 
the student model. The student model in SQL-Tutor is implemented as an overlay on top 
of the constraint base. There are currently more than 600 constraints in the system, and 
therefore it is not possible to visualize information about each constraint. Instead, we 
generalized the student model to resemble the structure of the SELECT statement: the 
student is shown six “skill-ometers”, which show the student model in terms of the six 
clauses of the answer. For each clause we find all the relevant constraints and compute 
the coverage (the percentage of constraints that the student has used) and correctness (i.e. 
the percentage of all relevant constraints that the student has used correctly). These two 
percentages are visualized as shown in Figure 7. 

Study 4 (Mitrovic & Martin, 2002) was ablative: the experimental group had access 
to the open student model, while the control group had not. Although we did not see any 
significant difference in the post-test scores of the control and the experimental group, the 
less able students from the experimental group have scored significantly higher than 

 
Fig. 7. The visualization of the student model 



 

comparable students from the control group. Further, the more able students who had 
access to their models abandoned significantly less problems than their counterparts from 
the control group and had stronger opinions on what they should work on next, which 
often varied from the system’s suggestions. Overall, these results suggest that the open 
model may have improved the performance of less able students and boosted the self-
confidence of more able students, such that they abandoned fewer problems and judged 
their own abilities more readily. 

The goal of study 5 (Mitrovic & Martin, 2003) was to investigate whether students 
can learn how to select problems with the support of an open student model and 
scaffolded problem selection. For this study we developed three versions of the system, 
differing from each other in the problem selection strategy. We wanted the student to 
reflect on their knowledge, in order to identify the type of problems they have difficulties 
with. To support reflection, we open the student model to the users in the same way as in 
study 4. The three versions of the system used in the study support different problem 
selection strategies. In the first version, the system selects the appropriate type of problem 
for the student on the basis of the student model. When the student asks for a new 
problem, they get a page showing their student model, and a message specifying what 
type of problem is selected by the system. In the second version, the student is always 
asked to select a type of problem. In the last version, problem selection is faded. For 
novices, the student is asked to select the type of the problem. If the student’s selection 
differs from what the system prefers, the student receives a new page, showing the 
student model and specifying the system’s preference. Once the student’s level increases 
over the threshold, the student is allowed to select the type of problems without system’s 
intervention. We hypothesized that this version would support less able students in 
acquiring metacognitive skills, by opening the problem-selection strategy to them and 
supporting reflection on their knowledge via the overview of their student model. Once 
the type of problem has been determined in one of the previous three ways, the system 
searches for problems of the appropriate type that have not been solved yet. The system 
then selects one that is at the appropriate level of complexity for the student’s current 
state. Table 3 summarizes the experimental design. We assessed students’ abilities by a 
pre-test. More able students were randomly allocated to versions where problems were 

selected by the student or by the system. Less able students were randomly allocated to 
one of the three versions of the system. We hypothesized that less able students would do 
the best in the faded condition, and worst when selecting problems on their own. We 
further hypothesized that less able student would only be able to acquire problem-
selection skills in the faded condition. 

Table 4 gives the results on the pre- and post-test for students who have sat both. The 
two more able groups achieved higher results on the pre-test than on the post-test, but the 
difference is not significant. In previous studies with SQL-Tutor, more able students 
either improved (Mitrovic & Martin, 2002) or achieved slightly lower scores on the post-
test (Mitrovic, 2001). All three less able groups improved on the post-test, but the 
improvement is significant for the faded group only. This supports our hypothesis that 

Ability Problem selection 
More able System Student N/A 
Less able System Student Faded 

Table 3. The five groups in study 5 



 

less able students are not good in problem selection, and therefore learn more when they 
do not need to select problems by themselves.  

Table 4. Pre/post test results 

The experimental results did not support our first hypothesis: more able students 
appeared to be no better at problem selection than their less able counterparts, with all 
students benefiting from system assistance at problem selection. However, the results did 
highlight the importance of problem selection: students that had system help performed 
best on the post-test. It also appears that attempts to coach students in the skill of problem 
selection were successful: the students in the faded group improved their selection 
accuracy, and performed better at selection than the students who were not coached. 

 
Evaluating KEEEERRRRMIT 
 
An evaluation study was carried out at the University of Canterbury in August 2001. The 
study involved sixty-two volunteers from students enrolled in the Introduction to 
Databases course (COSC 226) offered by the Computer Science department. This second-
year course teaches ER modelling as outlined by Elmasri and Navathe (1994). The 
students had learnt ER modelling concepts during two weeks of lectures and had some 
practice during two weeks of tutorials prior to the study.  

The evaluation study was conducted in two streams of two-hour laboratory sessions. 
The participants interacted with either KERMIT (experimental group) or ER-Tutor (control 
group), a cut-down version of the system that provided no feedback on students’ 
solutions. The set of problems and the order in which they were presented was identical 
for both groups. A total of six problems were ordered in increasing complexity. Each 
session proceeded in four distinct phases. Initially each student was given a document 
that contained a brief description of the study and a consent form. The students sat a pre-
test and then interacted with the system. Finally, the participants were given a post-test 
and a questionnaire. The questionnaire contained fourteen questions. Initially students 
were questioned on previous experience in ER modelling. Most questions asked the 
participants to rank their perception on various issues on a Likert scale with five 
responses ranging from very good (5) to very poor (1), and included the amount they 
learnt about ER modelling by interacting with the system and the enjoyment experienced. 
The students were also allowed to give free-form responses. Finally, suggestions were 
requested for enhancing the system. 

Table 5 displays a summary of the questionnaire responses. Both groups required 
approximately the same time to learn the interface, thought to have learnt the same 
amount, and enjoyed the system similarly. The free-form comments from the 
experimental group emphasized the importance of feedback for their learning. The 
students who used ER-Tutor rated its interface easier to use in comparison to the students 
who used KERMIT. The difference of 0.46 in favour of ER-Tutor’s interface is statistically 
significant (p<.01). This result was expected since KERMIT’s interface is more complex 

Group Students Pre-test mean (SD) Post-test mean (SD) 
More able - system 6 7.17 (1.17) 5.83 (1.47) 
More able - student 6 6.67 (1.03) 5.17 (1.94) 
Less able - system 6 3.33 (0.52) 4.67 (1.86) 
Less able - student 3 3.67 (1.15) 4 (2) 
Less able - faded 9 4.22 (0.97) 5.55 (1.51) 



 

than ER-Tutor’s. The mean rating for the usefulness of feedback is significantly higher 
for the experimental group (p<.01). These results are analogous with our expectations due 
to the difference in the information content presented as feedback from each system. 
KERMIT provides individualised feedback, while the students who used ER-Tutor only 
had the option of viewing the completed solution to each problem. 74% of the students 
who used ER-Tutor indicated the need for more detailed help other than the complete 
solution, compared to 61% of the students who used KERMIT.  

  KERMIT ER-Tutor  
 mean s. d. mean s. d. 

Time to learn interface (min.) 11.50 11.68 11.94 14.81 
Amount learnt 3.19 0.65 3.06 0.89 
Enjoyment 3.45 0.93 3.42 1.06 
Ease of using interface 3.19 0.91 3.65 1.08 

Usefulness of feedback 3.42 1.09 2.45 1.12 
Table 7. Mean responses from the user questionnaire for the evaluation study 

We evaluated how student’s learnt in KERMIT by analysing the student logs and 
identifying each problem-state in which a constraint was relevant, the same way as in 
SQL-Tutor. The results are shown in Figure 8. The power curve displays a close fit with 
an R2 power-law fit of 0.88. The probability of 0.23 for violating a constraint at its first 
occasion of application has decreased to 0.12 at its sixteenth occasion of application 
displaying a 53% decrease in the probability.  

y = 0.2538x-0.2799

R2 = 0.8847

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Occasion number

P
ro

b
ab

ili
ty

 
Fig. 8. Probability of violating a constraint as a function of the occasion when that constraint 

was relevant, averaged over all participants in the pilot study 



 

The mean scores of the pre- and post-test (out of a possible 22) are shown in Table 6. 
The difference in scores on the pre-test is statistically insignificant, confirming that the 
two groups are comparable. The experimental group achieved significantly higher score 
on the post-test (p<.01). Conversely, the difference in pre- and post-test scores of the 
group who used ER-Tutor is statistically insignificant. The difference in post-test scores 
of the two groups is statistically significant (p<.05). We can conclude from these results 
that students who used KERMIT learnt more than the control group students. The effect 
size of the experiment is 0.63, which is comparable with the effect sizes of 0.63 published 
by Albacete and Vanlehn (2000) and 0.66 published in (Mitrovic et al., 2002). Both 
published results are also results from experiments that spanned a two-hour session. An 
effect size of 0.63 with the students interacting with the system for approximately an hour 
is an excellent result.  

 Pre-test s. d. Post-test s. d. 

KERMIT  16.16 1.82 17.77 1.45 

ER-Tutor 16.58 2.86 16.48 3.08 

Table 6. Mean pre- and post-test scores for the evaluation study  

The results show that students’ knowledge increased by using KERMIT. Students who 
interacted with KERMIT achieved significantly higher scores on the post-test, suggesting 
that they acquired more knowledge in ER modelling. Subjective evaluation shows that the 
students in the experimental group felt they learnt more than their peers in the control 
group. It is surprising to record a high mean ranking of approximately 3 for the control 
group, when asked how much they learnt from ER-Tutor. This may be due to the typical 
student misconception of assuming that they learnt a lot by analysing the complete 
solution. The student responses to the questionnaire suggested that most students 
appreciated the feature of being able to view the complete ER model. 

 

Evaluating NORMIT 

 
A preliminary evaluation of NORMIT was performed in the second half of 2002, with the 
students enrolled in an introductory database course at the University of Canterbury. Our 
hypothesis was that self-explanation would have positive effects on both procedural 
knowledge (i.e. problem solving skills) and conceptual knowledge. Prior to the 
experiment, all students listened to four lectures on data normalization. The system was 
demonstrated in a lecture on October 14, 2002 (during the last week of the course), and 
was open to the students a day later. The accounts for students were generated before the 
study, and randomly allocated to one of the two versions. The students in the control 
group used the basic version of the system, while the experimental group used NORMIT-
SE, the version of the system that supports self-explanation. The participation was 
voluntary, and 29 out of 151 students enrolled in the course used the system. The students 
were free to use NORMIT when and for how long they wanted. There were 10 students in 
the control, and 19 in the experimental group. The sizes of the groups are different, as not 
all students who showed interest in participating have actually used the system. 

When a student logged on to the system for the first time, he/she was presented with a 
pre-test. The post-test was also administered on-line, the first time a student logged on to 



 

the system on or after November 1, 2002. The date for the post-test was chosen to be just 
one day before the exam. We developed two tests, which consisted of four multichoice 
questions each. The first two questions required students to identify the correct solution 
for a given problem, while for the other two the students needed to identify the correct 
definition of a given domain concept. Each student got one of these two tests randomly as 
the pre-test, and the other one as the post-test. 

We collected data about each session, including the type and timing of each action 
performed by the student, as well as the feedback obtained from NORMIT. There were 
three students who logged on to the system, but have not attempted any problems. We 
excluded the logs of these three students from analyses. The results on the pre- and post-
tests are given in Table 7. The groups are comparable, as there is no significant difference 
on the pre-test performance. Only three students from the control group sat the post-test, 
and we have not analysed their results, as the sample was too small. On the other hand, a 
paired t-test for the students in the experimental group who sat both tests shows that their 
performance improved significantly (p=0.08), confirming the first part of our hypothesis.  

 No of pre-tests Pre-test % (sd) No of post-tests Post-test % (sd) 
NORMIT 8 65.62 (36.3) 3 79.17 (25) 

NORMIT-SE 18 75 (25.88) 13 89.1 (17.8) 

Table 7. Pre- and post-test results 
To test the second part of our hypothesis, we analysed student’s explanations. Due to 

imperfection of the logging mechanism, we do not have all information about self-
explanations that were problem-specific (those problems have been fixed meanwhile). 
From the data we have, it can be seen that some constraints are much more difficult for 

students to learn than others. For example, out 
of the total of 29 situations when students who 
were asked to explain why a set of attributes is a 
candidate key, the correct answer was given in 
only two cases. However, we do have data about 
students’ self-explanations related to domain 
concepts. Seven out of 11 concepts NORMIT 
tracks have been covered by all students. The 
remaining 4 concepts have been covered only by 
some students, because these concepts do not 
appear in every problem, and the problems 
students attempted vary significantly. Figure 9 
shows the probability of giving an incorrect 
explanation. Please note that students were 
asked to explain domain concepts only when 
their problem-specific explanations were 

incorrect (the total of 147 cases). The probabilities of incorrect answers on the first and 
subsequent occasions were averaged over all concepts and all students. There is a very 
good fit to the power curve, which indicates that students do learn by explaining domain 
concepts. 

y = 0.823x-1.2417

R2 = 0.7248
0

0.2

0.4

0.6

1 2 3 4 5 6  

Fig. 9. Defining domain concepts 



 

 
CONCLUSIONS 
 
The Web has introduced a new paradigm for building widely accessible intelligent 
educational systems. Web-enabled tutors can be used from any place, and at any time. A 
very important aspect of Web-based tutors is platform-independence. This paper has 
discussed the design and implementation of three database tutors. DB-suite consists of 
three tutors that teach SQL, data normalization and conceptual data modelling to 
university level students. DB-suite tutors are available from the ICTG Web server, and 
also on the Addison-Wesley’s DatabasePlace, a Web portal supporting several text books 
in the area of databases (http://www.aw-bc.com/databaseplace/). The effectiveness of 
DB-suite tutors was evaluated in several experiments. The results demonstrate that the 
presented tutors are effective educational tools. The participants who used the full version 
of KERMIT showed significantly better results in both subjective and objective analyses in 
comparison to the students who practiced ER modelling with a drawing tool. In 
NORMIT, the students who self-explained improved significantly both in problem 
solving and in answering questions about domain knowledge. The evaluation studies 
performed on SQL-Tutor show that it supports both learning and the acquisition of 
metacognitive skills. 

There are several avenues to be explored to further enhance the presented tutors. We 
have already carried out several projects focusing on supporting meta-cognitive skills, 
such as self-explanation (Weerasinghe & Mitrovic, 2002; 2003) and reflection. All DB-
suite tutors present a summary of the student model, thus supporting self-assessment and 
deeper understanding of the domain. For details of evaluating the effects of such open 
model, please see (Mitrovic & Martin 2002; 2003; Hartley & Mitrovic, 2002). We plan to 
add more sophisticated, adaptive support for reflection and self-explanation to all tutors. 

As mentioned earlier, we have also developed WETAS, an authoring shell for 
developing constraint-based tutors (Martin & Mitrovic, 2002a; 2003). For text-based 
tutors, WETAS basically requires the author to provide only the knowledge base and a set 
of problems and their solutions; all other functions are provided by WETAS. For 
graphical domains (such as KERMIT), they also need to provide the interface. Although 
WETAS is a powerful ITS engine, studies of how novice authors use WETAS to develop 
new tutors (Martin & Mitrovic, 2003) indicate that more support is required for authoring. 
We are currently looking at ways to enhance WETAS to ease the authoring process, 
including automated knowledge acquisition, support for structuring the domain model 
into ontologies and tools for assisting the re-use of existing domain models. 

 
Acknowledgements 

This research could not have been done without the support of other past and present members of 
ICTG. The work presented here was supported by the University of Canterbury research grants 
U6430 and U6532. We also thank our students for putting their time and effort into trying out our 
tutors and commenting on them. 
 

References 

Albacete, P. L. & VanLehn, K. (2000) The Conceptual Helper: an Intelligent Tutoring System for 
Teaching Fundamenatal Physics Concepts. In Gauthier, G., Frasson, C. and VanLehn, K. 



 

(eds.). Proc. of 5th International Conference on Intelligent Tutoring Systems, Montreal, 
Springer, pp. 564-573. 

Aleven, V. & Koedinger, K. (2002) An Effective Metacognitive Strategy: Learning by Doing and 
Explaining with a Computer-based Cognitive Tutor. Cognitive Science, 26, pp. 147-179 

Anderson, J. R., Corbett, A., Koedinger, K. & Pelletier, R. (1996) Cognitive Tutors: Lessons 
Learned. Journal of Learning Sciences, 4 (2), pp. 167-207. 

Bloom, B. S. (1984) The 2-sigma problem: The search for methods of group instruction as 
effective as one-to-one tutoring. Educational Researcher, 13, pp. 4-16. 

Chen, P. P. (1976) The Entity Relationship Model - Toward a Unified View of Data. ACM 
Transactions Database Systems, 1 (1), 1976, pp. 9-36. 

Conati, C. & VanLehn, K. (2000) Toward Computer-Based Support of Meta-Cognitive Skills: a 
Computational Framework to Coach Self-Explanation. Int. J. AI in Education, 11, 389-415. 

Corbett, A. T., Trask, H. J., Scarpinatto, K. C. & Hadley, W. S. (1998) A Formative Evaluation of 
the PACT Algebra II Tutor: Support for Simple Hierarchical Reasoning. In Goettl, B. P., 
Halff, H. M., Redfield, C. L. and Shute, V. J. (eds.). Proc. of 4th International Conference on 
Intelligent Tutoring Systems, San Antonio, Texas, pp. 374-383. 

Elmasri, R. & Navathe, S. B. (1994) Fundamentals of Database Systems. Addison Wesley, 2nd 
edition. 

Hartley, D. & Mitrovic, A. (2002) Supporting learning by opening the student model. In Cerri, S.,  
Gouarderes, G. and Paraguacu, F. (eds.) Proc. 6th International. Conference on Intelligent 
Tutoring Systems ITS 2002, Biarritz, France, pp. 453-462. 

Koedinger, K. R., Anderson, J. R., Hadley, W. H. & Mark, M. A. (1997) Intelligent tutoring goes 
to school in the big city. Int. J. AI in Education, 8 (1), pp. 30-43. 

Martin, B. & Mitrovic, A. (2002a) Automatic Problem Generation in Constraint-Based Tutors. In: 
S. Cerri, G. Gouarderes and F. Paraguacu (eds.) Proc. 6th Int. Conf on Intelligent Tutoring 
Systems ITS 2002, Biarritz, France, LCNS 2363, 2002: 388-398. 

Martin, B. & Mitrovic, A. (2002b) Authoring Web-Based Tutoring Systems with WETAS. 
Kinshuk, R. Lewis, K. Akahori, R. Kemp, T. Okamoto, L. Henderson, C-H Lee (eds) Proc. 
Int. Conf. on Computers in Education ICCE 2002, Auckland, pp. 183-187. 

Martin, B. & Mitrovic, A. (2003) Domain Modeling: Art or Science? In: U. Hoppe, F. Verdejo & 
J. Kay (ed) Proc. 11th Int. Conference on Artificial Intelligence in Education AIED 2003, 
IOS Press, pp. 183-190. 

Mayo, M. & Mitrovic, A. (2000) Using a probabilistic student model to control problem difficulty. 
Proc. ITS’2000, G. Gauthier, C. Frasson and K. VanLehn (eds), Springer, pp. 524-533. 

Mayo, M. & Mitrovic, A. (2001) Optimising ITS Behaviour with Bayesian Networks and Decision 
Theory’. Int. Journal on Artificial Intelligence in Education, v12no2, 124-153. 

Mayo, M., Mitrovic, A. & McKenzie, J. (2000) CAPIT: An Intelligent Tutoring System for 
Capitalisation and Punctuation. In Kinshuk, Jesshope, C. and Okamoto, T. (eds.). Proc. of 
Advanced Learning Technology: Design and Development Issues, Los Alamitos, CA, IEEE 
Computer Society, pp. 151-154. 

Mitrovic, A. (1998a) Experiences in Implementing Constraint-Based Modelling in SQL-Tutor. In 
Goettl, B. P., Halff, H. M., Redfield, C. L. and Shute, V. J. (eds.). Proc. of 4th International 
Conference on Intelligent Tutoring Systems, pp. 414-423. 

Mitrovic, A. (1998b) Learning SQL with a Computerised Tutor. In Proc. of 29th ACM SIGCSE 
Technical Symposium, Atlanta, pp. 307-311. 

Mitrovic, A. (2001) Investigating students’ self-assessment skills. In: M. Bauer, P.J.Gmytrasiewicz 
and J. Vassileva (eds.) Proc. 8th Int. Conference on User Modeling UM 2001, Berlin: 
Springer-Verlag LNAI 2109, pp. 247-250. 

Mitrovic, A. (2002) NORMIT, a Web-enabled tutor for database normalization. Kinshuk, R. 
Lewis, K. Akahori, R. Kemp, T. Okamoto, L. Henderson, C-H Lee (eds) Proc. Int. Conf. 
Computers in Education ICCE 2002, Auckland, pp. 1276-1280. 



 

Mitrovic, A. (2003) Supporting Self-Explanation in a Data Normalization Tutor. In: V. Aleven, U. 
Hopppe, J. Kay, R. Mizoguchi, H. Pain, F. Verdejo, K. Yacef (eds) Supplementary 
proceedings, AIED 2003, pp. 565-577. 

Mitrovic, A., Koedinger, K. & Martin, B. (2003) A Comparative Analysis of Cognitive Tutoring 
and Constraint-Based Modelling. P. Brusilovsky, A. Corbett, F. de Rosis (Eds.) Proceedings 
of the Ninth International Conference on User Modeling UM 2003, Springer-Verlag, LNAI 
2702, pp. 313-322. 

Mitrovic, A. & Martin, B. (2002) Evaluating the effects of open student models on learning. In: P. 
de Bra, P. Brusilovsky and R. Conejo (eds) Proc. 2nd Int. Conf on Adaptive Hypermedia and 
Adaptive Web-based Systems AH 2002, Malaga Spain, LCNS 2347, pp. 296-305. 

Mitrovic, A., Martin, B. (2003) Scaffolding and fading problem selection in SQL-Tutor. In: U. 
Hoppe, F. Verdejo & J. Kay (ed) Proc. 11th Int. Conference on Artificial Intelligence in 
Education AIED 2003, IOS Press, pp. 479-481. 

Mitrovic, A., Martin, B. & Mayo, M. (2002) Using Evaluation to Shape ITS Design: Results and 
Experiences with SQL-Tutor. Int. J. User Modeling and User-Adapted Interaction, v12no2-3, 
243-279. 

Mitrovic, A., Mayo, M., Suraweera, P. & Martin, B. (2001) Constraint-based Tutors: a Success 
Story. In Monostori, L., Vancza, J. and Ali, M. (eds.). Proc. of 14th International Conference 
on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems 
(IEA/AIE-2001), Budapest, Springer-Verlag Berlin Heidelberg LNAI 2070, pp. 931-940. 

Mitrovic, A. & Ohlsson, S. (1999) Evaluation of a Constraint-based Tutor for a Database 
Language. International Journal on AIED, 10 (3-4), pp. 238-256. 

Mitrovic, A. & Suraweera, P. (2000) Evaluating an Animated Pedagogical Agent. Proc. ITS’2000, 
G. Gauthier, C. Frasson and K. VanLehn (eds), Springer, pp. 73-82. 

Ohlsson, S. (1994) Constraint-based Student Modelling. In Proc. of Student Modelling: the Key to 
Individualized Knowledge-based Instruction, Springer-Verlag, Berlin, pp. 167-189. 

Ohlsson, S. (1996) Learning from Performance Errors. Psychological Review, 103, pp. 241-262. 
Suraweera, P. & Mitrovic, A. (2001) Designing an Intelligent Tutoring System for Database 

Modelling. In Smith, M. J. and Salvendy, G. (eds.). Proc. of 9th International Conference on 
Human-Computer Interaction (HCII 2001), New Orleans, vol. 2, pp. 745-749. 

Suraweera, P. & Mitrovic, A. (2002) KERMIT: a Constraint-based Tutor for Database Modeling. 
In: S. Cerri, G. Gouarderes and F. Paraguacu (eds.) Proc. 6th Int. Conf on Intelligent Tutoring 
Systems ITS 2002, Biarritz, France, LCNS 2363, pp. 377-387. 

Vasilakos, A., Devedzic, V., Kinshuk, Pedrycz, W. (2004) Computational Intelligence in Web-
based Education: a Tutorial. Interactive Learning Research (this issue). 

Wang, T. & Mitrovic, A. (2002) Using neural networks to predict student’s behaviour. In: 
Kinshuk, R. Lewis, K. Akahori, R. Kemp, T. Okamoto, L. Henderson and C-H Lee (eds.) 
IProc. Int. Conference on Computers in Education ICCE 2002, Los Alamitos, CA: IEEE 
Computer Society, pp.  969-973. 

Weerasinghe, A. & Mitrovic, A. (2002) Enhancing learning through self-explanation. Kinshuk, R. 
Lewis, K. Akahori, R. Kemp, T. Okamoto, L. Henderson, C-H Lee (eds) Proc. ICCE 2002, 
Auckland, pp. 244-248. 

Weerasinghe, A. & Mitrovic, A. (2003) Effects of self-explanation in an open-ended domain. In: 
U. Hoppe, F. Verdejo & J. Kay (ed) Proc. 11th Int. Conference on Artificial Intelligence in 
Education AIED 2003, IOS Press, pp. 512-514. 

 

Formatted: Bullets andNumbering


