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Abstract: E-learning is becoming more and more popular with widespread use of
computers and the Internet in educational instihgi Current e-learning courses are
nearly always developed using course managemetegnyy{CMS), such as WebCT or
Blackboard. Although CMS tools provide support &mme administrative tasks and
enable instructors to provide online instructiomelterial, they offer no deep support for
learning: students have access to on-line matesii@ple multi-choice quizzes and chat
tools, but there is no ability to track student'egress and adapt the learning material and
instructional session to the individual studenttHis paper we present our experiences
with three Web-based intelligent tutoring systemshie area of databases. SQL-Tutor
teaches the SQL query language, NORMIT is a datmalzation tutor, and KERMIT
teaches conceptual database modelling using thiéydRelationship data model. All
three tutors in DB-suite have been used and ewluatthe context of genuine teaching
activities. We present the most important featarfethese systems, as well as evaluation
results. The DB-suite tutors have proved to be edfgctive in supporting deep learning,
and are well liked by students.

Keywords. Web-based intelligent tutoring systems, computafiantelligence in learning and
authoring tools, student modelling in Web-basedcation, evaluation of intelligent
Web-based teaching and learning systems

INTRODUCTION

Intelligent Tutoring Systems (ITS) have been prow@be very effective in domains that
require extensive practice (Corbett et al., 1998edinger et al., 1997; Mitrovic &
Ohlsson, 1999). In this paper, we present DB-suaiiasisting of three Web-enabled ITSs



that teach various database skills to universitidestts. Databases are ubiquitous in
today’s information systems. Our tutors are Welbwd and thus are classroom and
platform independent (Vasilakos et al., 2004). Tiast mature of the three systems is
SQL-Tutor (Mitrovic, 1998a; 1998b; Mitrovic & Ohles, 1999; Mitrovic et al., 2001), an
ITS that teaches the SQL query languagexmIT (Knowledge-based Entity Relationship
Modelling Intelligent Tutor) (Suraweera & Mitrovi€001) teaches conceptual database
modelling, while NORMIT (NORMalization IntelligentTutor) teaches database
normalization (Mitrovic, 2003). All three tutors mprising DB-suite are problem-solving
environments, where the system presents problerssive and offers adaptive problem-
solving support and feedback.

The DB-suite tutors are based on Constraint-Baseitlelihg (CBM) (Ohlsson
1994). The Intelligent Computer Tutoring Group (&)Thas also developed other
constraint-based tutors: for example, CAPIT (Maydl&rovic, 2001) is a MS Windows-
based, standalone tutor that teaches punctuatidrcapitalization rules in English, and
LBITS (Martin & Mitrovic, 2002b) teaches vocabulaskills to elementary school
children. Based on our experiences developing theses, we have also implemented
WETAS (Martin & Mitrovic, 2002a; 2003), an authagishell for developing constraint-
based tutors. WETAS is now being used for develppiaw tutors, including a Web-
enabled version oz xMIT.

We start by briefly describing CBM and our databagers. The following three
sections are devoted to SQL-TuteggMIT and NORMIT respectively. The effectiveness
and the students’ perception of DB-suite tutors ewvewvaluated in several empirical
evaluation studies. We present these studies, wileadmonstrate the effectiveness of the
systems for student’s learning. Finally, we preset conclusions and directions for
future work.

CONSTRAINT-BASED TUTORS

Intelligent tutoring systems are developed with glal of automating one-to-one human
tutoring, which is the most effective mode of teagh(Bloom, 1984). ITS offer greater
flexibility in contrast to non-intelligent softwarkitors since they can adapt to each
individual student. Although ITSs have been provenbe effective in a number of
domains, the number of ITSs used in real coursestilisextremely small (Mitrovic,
Martin & Mayo, 2002). Our goal when developing D#its was twofold: to provide our
students with a flexible learning environment thétl adapt to their needs, and to
develop a powerful methodology for developing caaist-based tutors. Our
methodology is based on Ohlsson’s (1996) theotgarhing from performance errors.
The typical architecture of constraint-based tutsrgiven in Figure 1. The tutors are
developed in AllegroServe Web server, an extenssielerer provided with Allegro
Common Lisp. All student models are kept on theererAt the beginning of interaction,
a student is required to enter his/her name, wkichecessary in order to establish a
session. The session manager requires the studetdler to retrieve the model for the
student, if there is one, or to create a new mdoela new student. DB-suite tutors
identify the students by their login name, whichemmbedded in a hidden tag of HTML
forms. All student actions are sent to the sessianager, to be linked to the appropriate
session and stored in the student’s log. The aditinen sent to the pedagogical module



(PM). If the submitted action is a solution to therrent step, the PM sends it to the
student modeller, which diagnoses the solution atgsithe student model and sends the
result of the diagnosis back to the PM, which gatesr feedback.

SQL-Tutor and NORMIT are Web-enabled tutors witteatralized architecture, with
all tutoring functions performed on the server sitte these two domains, solutions
produced by students are textual, and the amounf@imnation to be sent to the server is
small, so that the centralized architecture isadlét InKzgMIT, students draw diagrams,
and some tutoring functions related to drawing peeformed on the client side. The
tutoring functions are therefore distributed betwdlee server and the Java applet, as
described later.

Domain knowledge consists of a set of constrai@snstraint-Based Modeling
(CBM) (Ohlsson, 1994; Mitrovic & Ohlsson, 1999)astudent modeling approach that is
not interested in the exact sequence of statehi@nptoblem space the student has
traversed, but in what state he/she is in curretdylong as the student never reaches a
state that is known to be wrong, they are freeeidgom whatever actions they please.
The domain model is a collection of state deswimi of the form:If <relevance
condition> is true, then <satisfaction condition>adh better also be true, otherwise
something has gone wrong.

The knowledge base consists of constraints used$ting the student’s solution for
syntax errors and comparing it against the systéae'al solution to find semantic errors.
The knowledge base enables the tutor to identifgiesit solutions that are identical to the
system’s ideal solution. More importantly, this kwiedge also enables the system to
identify valid alternative solutions, i.e. solut®that are correct but not identical to the
system’s solution. Each constraint specifies a dumehtal property of a domain that must

be satisfied by all
solutions. Constraints are
problem-independent and
modular, and therefore
easy to evaluate. They
Internet are written in Lisp, and
can contain  built-in
functions as well as
domain-specific ones.
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One of the advantages of CBM over other studentehiragl approaches (Mitrovic,
Koedinger & Martin, 2003) is its independence frdhe problem-solving strategy
employed by the student. CBM models students’ edade, rather than generative
knowledge and therefore does not attempt to indihee student’'s problem-solving
strategy. CBM does not require an executable domadmlel, and is applicable in
situations in which such a model would be diffidg@itconstruct (such as database design
or SQL query generation). Furthermore, CBM elimitsathe need for bug libraries, i.e.
collections of typical errors made by students.t@:contrary, CBM focuses on correct
knowledge only. If a student performs an incormetion, that action will violate some
constraints. Therefore, a CBM-based tutor can reachisconceptions although it does
not represent them explicitly. A violated consttaineans that student's knowledge is
incomplete/incorrect, and the system can respondemerating an appropriate feedback
message. Feedback messages are attached to thaintsisand they explain the general
principle violated by the student's actions. Fee#tbaan be made very detailed, by
instantiating parts of it according to the studgmition.

The student modeller evaluates the student’s solwdgainst the knowledge base and
updates the student model. The short-term studedehtonsists of a list of violated and
a list of satisfied constraints for the curreneatpt. The long-term model records the
history of usage for each constraint. This infoipratis used to select problems of
appropriate complexity for the student, and to geteefeedback.

All DB-suite tutors contain predefined databasebf@ms. KERMIT and SQL-Tutor
also contain a pre-specified ideal solution forheacoblem, as there are no problem
solvers for these two tutors. NORMIT, on the othand, contains a problem solver, and
is capable of solving both pre-specified problemd the problems entered by students.

The pedagogical module (PM) is the driving engifiche whole system. Its main
tasks are to generate appropriate feedback mesfagtse student and to select new
practice problems. PM individualizes these actimneach student based on their student
model. Unlike ITSs that use model tracing (Andersoral., 1996; Corbett et al., 1998;
Koedinger et al., 1997), constraint-based tutoraatdfollow each student’s solution step-
by-step: a student’s solution is only evaluatedeoités submitted, although the student
may submit a partial solution to get ideas on howrbgress.

The feedback is grouped into six levels accordmghie amount of detaitorrect,
error flag, hint, detailed hintall errors andsolution The first level of feedbackorrect,
simply indicates whether the submitted solutiorcasrect or incorrect. Therror flag
indicates the type of construct (e.g. entity, iefeghip, etc.) that contains the errbiint
and detailed hintoffer a feedback message generated from theviiokited constraint.
Hint is a general message such as “There are attrithaeslo not belong to any entity or
relationship”. On the other handetailed hintprovides a more specific message such as
“The ‘Address’ attribute does not belong to anyitgrir relationship”, where the details
of the erroneous object are given. Not all detalled messages give the details of the
construct in question, since giving details on imigsconstructs would give away
solutions. A list of feedback messages on all weaaconstraints is displayed at tak
errors level. Finally, the complete solution is displaysdhesolutionlevel.

Initially, when the student begins to work on alpeon, the feedback level is set to the
correct level. As a result, the first time a solution igbmitted, a simple message
indicating whether or not the solution is correcgiven. This initial level of feedback is
deliberately low, as to encourage students to sthigegoroblem by themselves. The level
of feedback is incremented with each submissioril tiit feedback level reaches the



detailed hintlevel. Automatically incrementing the levels oééback is terminated at the
detailed hintlevel to encourage to the student to concentnatene error at a time rather
than all the errors in the solution. Moreover, hié tsystem automatically displays the
solution to the student on the sixth attempt, itildadiscourage them from attempting to
solve the problem at all, and may even lead totfatisn. The system also gives the
student the freedom to manually select any levé&edback according to their needs.

When selecting a new problem, the PM firsts decidleat concept is appropriate for
the student on the basis of the student model. cdmeept that contains the greatest
number of violated constraints is targeted. We tehasen this simple problem selection
strategy in order to ensure that students get tb&t practice on the concepts with which
they experience difficulties. In situations whenere is no obvious “best” concept (i.e. a
prominent group of constraints to be targeted),rtéet problem in the list of available
problems, ordered according to increasing comptexis given. We have also
experimented with alternative problem-selectioatsgies, using Bayesian nets (Mayo &
Mitrovic 2000; 2001) and neural networks (Wang &titdvic, 2002).

SQL-TUTOR

SQL-Tutor is our most heavily developed constraiated tutor. The motivation for
developing this tutor came from our teaching exgee. SQL is usually taught in
classrooms, by solving problems on the blackboaamplemented by lab exercises.
Students experience many problems when learning. 89me errors come from the
burden of having to memorize database schemagsatbene from misconceptions in the
student's understanding of the elements of SQLtlaadelational data model in general.
Some of the concepts students find particularlyfiadift to grasp are grouping and
restricting grouping. Join conditions and the difece between aggregate and scalar
functions are another two common sources of coofudturthermore, students find that
it is not easy to learn SQL directly by working wia RDBMS, because error messages
are very often hard to understand, and are lintididtle syntax only.

The Web-enabled version of SQL-Tutor has been usecgular courses at the
University of Canterbury since 1999. For a detailidcussion of the system, see
(Mitrovic, Martin & Mayo, 2002); here we presentlpsome of its features. The system
contains definitions of several databases and afgatoblems and their ideal solutions.
SQL-Tutor contains no problem solver. The interface, illugiain Figure 2, has been
designed to be robust, flexible, and easy to usedlces the memory load by displaying
the database schema and the text of a problemrdwdng the basic structure of the
query, and also by providing explanations of thereints of SQL. The top area contains
the buttons students can use to request a newasai@boblem, see the history of the
current session or their student model, ask fop beld run their query. The middle left
section displays the text of the problem beingeland students can remind themselves
easily of the elements requested in queries. Tlellmieft part also contains the clauses
of the SELECT statement, thus visualizing the gs@licture. Students need not
remember the exact keywords used and the relatiler of clauses. The middle right
part is where the feedback and other help messageslisplayed. The bottom part
displays the schema of the current database. Schisnalization is very important; all
database users are painfully aware of the conged to remember table and attribute
names and the corresponding semantics. Studentgetahe descriptions of databases,
tables or attributes. The motivation here is to eeenfrom the student some of the



cognitive load required for checking the low-legghtax, and to enable the student to
focus on higher-level, query definition problems.

SQL-Tutor checks the student’s solution by compaiirio the correct solution using
domain knowledge represented in the form of moa@ #00 constraints. The student may
select problems in several ways: they may workrtheiy through a series of problems
for each database (ordered by their complexity tlae system to select a problem on the
basis of their student model, select a problem feolist, or select the type of problem
they wish to work on, where the system then seketmdividual problem of that type on
the basis of their student model.
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Schema for the LIBRARY Database

The general description of the database is available here, Clicking on the name of a table brings up the table details.
Primary keys in the attribute list are underlined , foreign keys are in #alics.
Table Name  Attribute List
BOOK  idtitle publisher
BRANCH  branchid branchname address
BOOKCOPIES  pookid branch numcopies
AUTHOR  bookid name

|@ Done '_’_ {5E Local intranet v
Fig 2. A screenshot from SQL-Tutor

KERMIT: A KNOWLEDGE-BASED ER MODELLING TUTOR

Learning how to develop good quality databasesdsra topic in the Computer Science
curriculum. Database design is a process of gengratdatabase schema using a specific
data model. The quality of conceptual schemas isritital importance for database
systems. Most database courses teach conceptuabadat design using the Entity-
Relationship (ER) model, a high-level data modégioally proposed by Chen (1976).
Although the traditional method of learning ER miaatg in a classroom environment
may be sufficient as an introduction to the coneejtdatabase design, students cannot



gain expertise by attending lectures only: likeeotkdesign tasks, extensive practise is
necessaryKzgMIT assists students in this task. The system is wedigp complement
classroom teaching, and therefore assumes thatrggidre already familiar with the
fundamentals of database theorykitgMIT, students construct ER schemas that satisfy a
given set of requirements. The system assists stsideiring problem solving and guides
them towards the correct solution by providingaeed feedback.

The system is designed for individual work. Thedstut is given a textual description
of the requirements of the database, and usesRhmdtlelling notation to construct an
ER schema, as shown in Figurek8xMIT's interface consists of three main components.
The top part contains the controls for the studerdask for a new problem, look at the
history of the current session, explore their stideodel, ask for help or log out. The
middle component is the Java applet, which displdngstext of the problem. It also
provides an ER modeling workspace where studemtaterER diagrams. The lower
window displays feedback from the system in textt@m. The ER diagram is
constructed using the workspace integrated k#gMIT's interface. Whenever a new
object is created, the system asks for it to beauaby highlighting a phrase from the
problem text. This interface has two benefits: $ihedent is forced to think about the
requirements in terms of the original problem textid it is also easier for the tutor to
understand the semantics of the constructs inttlest’s diagram. Once the student has
completed the problem or requires guidance fromstfstem, the solution is evaluated.
Depending on the results of the evaluation, theegysnay either congratulate the student
or offer hints on their errors.
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number, name and an address. For each product, the database should store its number (unique), name and optionally the colour, A product may be offered by
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Almost there - you made 3 mistakes.
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attributes

€] Applet appletl started [2E Local intranst 4

Fig. 3. KegMIT's interface




The Web-enabled version eEzMIT was developed in WETAS (Martin & Mitrovic,
2003). The domain knowledge WERMIT is represented as a set of constraints, which is
used for testing the student’s solution (for syngawors) and comparing it to the ideal
solution. CurrenthkzxMIT's knowledge base consists of 135 constraints. dgstactic
constraints okzgMIT were formulated by analysing the target domaiiRf modelling
through the literature (Elmasri & Navathe, 1994)elto the nature of the domain, the
acquisition of syntactic constraints was not shfigward. Since ER modelling is an ill-
defined domain, descriptions of its syntax in textks are informal. This process was
conducted as an iterative exercise in which théasyoutline was repeatedly refined by
adding new constraints. Semantic constraints ae@ éarder to formulate: we analysed
sample ER diagrams and compared them againstghadtem specifications to derive
the basic semantic constraints.

LEARNING DATA NORMALIZATION IN NORMIT

Database normalization is the process of refininglational database schema in order to
ensure that all tables are of high quality (Elma&iNavathe, 1994). Normalization is
usually taught in introductory database courses series of lectures, and later practised
on paper by looking at specific databases and amplthe definitions. NORMIT is a
problem-solving environment, which complements itiadal classroom instruction. The
emphasis is therefore on problem solving, not awiging information. However, the

/3 NORMIT - Microsoft Internet Explorer i I =] 4
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Problem: Find all candidate keys for the following table with the given Feedback
functional dependencies.
Well done! The answer is correct!

Click the Done button to continue

Enter each candidate key into the space provided (each attribute should be
separated by a comma):

Help

In this task, you need to determine all
the candidate keys for the given
relation.

Feedback Level:

To add a key, type the attributes in

Simple Feedhack v the given space, and then click the

Add button. The new candidate key
will appear on the page, together with
a Delete button that you can click to

m remove the key (if necessary).

Click the { } + button if you wish to
] Done oral intranet

Fig. 4. The interface of NORMIT




system does provide help about the basic domainegts, when there is evidence that
the student does not understand them, or hasudifés applying knowledge.

Database normalization is a procedural task: thdestt goes through a number of
steps to analyze the quality of a database. Weritledcthe tasks NORMIT supports in
detail elsewhere (Mitrovic, 2002; 2003). NORMIT wvégs the student to determine
candidate keys (illustrated in Figure 4), the ctesof a set of attributes, prime attributes,
simplify functional dependencies, determine norfoains, and, if necessary, decompose
the table. The sequence is fixed: the studentamily see a Web page corresponding to
the current task. The student may submit a solwiarquest a new problem at any time.
He/she may also review the history of the sessibexamine their student model.

NORMIT currently contains over 80 problem-indepemdeonstraints that describe
the basic principles of the domain. Some constaitteck the syntax of the solution,
while others check the semantics by comparing tiielest's solution to the ideal
solution, generated by the problem solver. In otderdentify constraints, we studied
material in textbooks, such as (Elmasri & Navatt#94), and also used our own
experience in teaching database normalization.

NORMIT also provides support for self-explanatiame of the most effective
learning strategies. In self-explanation, the sttdelves a problem (or explains a solved
problem) by specifying why a particular action eeded and how it contributes toward
the solution. Existing ITSs that support self-erplgon, such as Geometry Explanation
Tutor (Aleven & Koedinger, 2002) and SE-Coach (Gb&avanLehn, 2000), require the
student to explain every problem-solving step.dadt NORMIT requires an explanation

/2 NORMIT - Microsoft Internet Explorer =lof x|
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Feedback

Help

Since you think this relation is not in 3NF,
a prime atrbute on the ri e you need to specify all functional
dependencies that violate 3NF.

Click the Go back button if you've changed
your mind.

Click the Check button when you want
NORMIT to check your answer. If your
solution is correct, click the Done button
to continue.

@] Done Local intranet

Fig. 5. Asking the student to explain the current action




for actions being performed for ttiest time only For subsequent actions of the same
type, explanation is required only if the actionpsrformed incorrectly. This strategy
reduces the burden on the more able students (bgpsking them to provide the same
explanation every time an action is performed atlyg and at the same time provides
enough situations for students to develop and ingptbeir self-explanation skills. Figure
5 shows a situation when the student has spedfitohctional dependency that violates
the third normal form (3NF) incorrectly. The tutasks the student to specify the reason
for selecting this functional dependency. If thadeint's explanation is incorrect, they
will be given another question, asking them torefhe underlying domain concept. The
purpose of the questions is to require the stuttergélate their problem-solving actions
(generative knowledge) to declarative knowledgas thupporting the acquisition of deep
knowledge.

In addition to the model of the student’s knowleddORMIT also stores
information about the student’s self-explanatioillskFor each constraint, the
student model contains information about the sttisl@xplanations related to that
constraint. The student model stores the historstedient’s explanation of each
domain concept.

EVALUATION OF DB-SUITE TUTORS

We believe that the credibility of an ITS can obky gained by proving its effectiveness
in a classroom environment, with typical studeMgrpvic, Mayo & Martin, 2002). This
section presents the results of several evaluattadies performed on the presented
tutors.

Evaluating SQL-Tutor

The stand-alone version of the system was evaluat&898 (Mitrovic & Ohlsson, 1999),
showing that the system had a significant effectstudents’ knowledge after a single
two-hour session. Here we report on evaluationistugerformed on the Web-enabled
version of SQL-Tutor. General information about #tedies is given in Table 1. In all
studies, students had 4-6 lectures and labs bekirg the system. Their performance
was measured by a pre/ and a post-test. Everynagédormed by a student was logged,
and the logs were later analysed. All studies weaeied out at the University of
Canterbury, with Computer Science students enrafiethtabase courses. Each study had
a specific focus. In this paper, we report on twoeahsions: usability and learning.

Study Timing Students Length Purpose of study
1 May 1999 33 2 hours Feedback evaluation
2 October 1999 34 2 hours Animated pedagogicaltagen
Probabilistic student model
3 Sep-Oct 2000 70 7 weeks Meta-cognitive skills
4 Sep-Oct 2001 77 1 month Open student model
5 Sep-Oct 2002 100 1 month Problem selection

Table 1. Details of the evaluation studies



The first two studies involved a single, 2-hourdaession. We refer the interested
reader to (Mitrovic & Suraweera, 2000) for the dsteof the evaluation of the
pedagogical agent, and to (Mayo & Mitrovic, 2000) the details of the evaluation of the
probabilistic student model. Studies 3, 4 and Sevienger. In each of these studies, SQL-
Tutor was demonstrated in a lecture. The courselved a test on SQL a month and a
half after the system was introduced. The experiserere set up this way so that the
students may use the system over several weeksgddleof study 3 was to analyze
students’ metacognitive skills, and the resultsdegcribed in (Mitrovic, 2001). In study
4, we introduced an open student model, which ptedean overview of student’s
knowledge. The goal of that study was to see whetfie open model supports learning
and self-assessment skills (Mitrovic & Martin, 2p0Zinally, in study 5 we analysed
whether students can learn to select problems(Méifovic & Martin, 2003).

We analyzed the student logs to evaluate how welIL-Jutor supports learning.
Since we represent knowledge of SQL in terms obtramts, we looked at how students
acquire and apply them. In earlier work (Mitrovic @hlsson, 1999), the evaluation of
SQL-Tutor showed that constraints represented psychologiepropriate units of
knowledge; learning followed a smooth curve wheuoitpt in terms of constraints. We
performed the same analysis 89L T-Web. Figure 6 shows the decrease in the number
of violated constraints as a function of the numddetimes each constraint was relevant.
The degree of mastery of a given constraint imatfon of the amount of practice on that
unit. There is not much difference between theetlsident populations, as the graphs
for three evaluation studies are close to eactr.oth®ther words, the students from each
of the three studies tended to acquire constrainépproximately the same rate.
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Fig. 6. Mastery of SQL-Tutor’s constraints

In the third study we compared the performancetadents who used SQL-Tutor
(experimental group) to the rest of the class (@brgroup). These two groups listened to



exactly the same number of lectures and labs, anthe same post-test. The pre-test was
administered on-line, when the students loggedoothé¢ system for the first time. The
results of the experimental group on the postasstigher than the results of the control
group, and the difference is significant (p<0.00%wever, this result is not irrefutable,
as the experiment was not controlled. The experiategroup consisted of volunteers,
who are usually more motivated students.

Group Students Pre-test mean (SP)  Post-test Méan|(S
Experimental 70 4.02 (1.52) 5.01 (1.24)
Control 62 4.3 (1.6)

Table 2. Pre- and post-test results for study 3

The goal of study 4 was to determine the effeca gimple open student model on
students’ learning and self-assessment skills.ukefirst describe the way we visualize
the student model. The student model in SQL-Twgomiplemented as an overlay on top
of the constraint base. There are currently moaa $00 constraints in the system, and
therefore it is not possible to visualize infornoatiabout each constraint. Instead, we
generalized the student model to resemble thetsteiof the SELECT statement: the
student is shown six “skill-ometers”, which shove tetudent model in terms of the six
clauses of the answer. For each clause we finthalfelevant constraints and compute
the coverage(the percentage of constraints that the studentibed) andorrectnesgi.e.
the percentage of all relevant constraints thatsthdent has used correctly). These two
percentages are visualized as shown in Figure 7.

Current Proficiency

green = learned, red = still learning, white = not covered yet

setECT [ ]33% covered 25% leamed
FROM [ |53% covered 49% leamed
WHERE I:I 2% covered 4% learned
GROUPBY [ ] 65% covered 61% leamed
HAVING [ |%covered 4% leamed
ORDEREY [ | 66% covered 45% learnzd

EBased on vour past performance, [ suggest a problem from the ORDER BY clause

What problem type would you like? | ORDERBY I WHERE |

Fig. 7. The visualization of the student model

Study 4 (Mitrovic & Martin, 2002) was ablative: tlegperimental group had access
to the open student model, while the control grbag not. Although we did not see any
significant difference in the post-test scoreshef tontrol and the experimental group, the
less ablestudents from the experimental group have scorguifigantly higher than



comparable students from the control group. Furtttes more able students who had
access to their models abandoned significantlypeslems than their counterparts from
the control group and had stronger opinions on whey should work on next, which
often varied from the system’'s suggestions. Ovetlalse results suggest that the open
model may have improved the performance of lese atidents and boosted the self-
confidence of more able students, such that thapddned fewer problems and judged
their own abilities more readily.

The goal of study 5 (Mitrovic & Martin, 2003) was investigate whether students
can learn how to select problems with the suppdram open student model and
scaffolded problem selection. For this study weeligped three versions of the system,
differing from each other in the problem selectgirategy. We wanted the student to
reflect on their knowledge, in order to identifyettype of problems they have difficulties
with. To support reflection, we open the studentleddo the users in the same way as in
study 4. The three versions of the system usedhenstudy support different problem
selection strategies. In the first version, theesysselects the appropriate type of problem
for the student on the basis of the student mod#ien the student asks for a new
problem, they get a page showing their student ma@ofel a message specifying what
type of problem is selected by the system. In #@sd version, the student is always
asked to select a type of problem. In the lastioersproblem selection is faded. For
novices, the student is asked to select the tygbeoproblem. If the student’s selection
differs from what the system prefers, the studemkeives a new page, showing the
student model and specifying the system’s prefere@nce the student’s level increases
over the threshold, the student is allowed to selectype of problems without system’s
intervention. We hypothesized that this version lMosupport less able students in
acquiring metacognitive skills, by opening the peolt-selection strategy to them and
supporting reflection on their knowledge via theewew of their student model. Once
the type of problem has been determined in ond@fprevious three ways, the system
searches for problems of the appropriate typehhaé not been solved yet. The system
then selects one that is at the appropriate lef/eomplexity for the student’s current
state. Table 3 summarizes the experimental de¥inassessed students’ abilities by a
pre-test. More able students were randomly allac&beversions where problems were

Ability Problem selection
More able System Student N/A
Less able System Student Faded

Table 3. The five groups in study 5

selected by the student or by the system. Lesssabtients were randomly allocated to
one of the three versions of the system. We hypatkd that less able students would do
the best in the faded condition, and worst wheecsielg problems on their own. We
further hypothesized that less able student woulty de able to acquire problem-
selection skills in the faded condition.

Table 4 gives the results on the pre- and postéestudents who have sat both. The
two more able groups achieved higher results optbeest than on the post-test, but the
difference is not significant. In previous studiggh SQL-Tutor, more able students
either improved (Mitrovic & Martin, 2002) or achied slightly lower scores on the post-
test (Mitrovic, 2001). All three less able groupmproved on the post-test, but the
improvement is significant for thiaded group only. This supports our hypothesis that



less able students are not good in problem setectind therefore learn more when they
do not need to select problems by themselves.

Group Students Pre-test mean (SP)  Post-test m&)n|(S
More able - system 6 7.17 (1.17) 5.83 (1.47)
More able - student 6 6.67 (1.03) 5.17 (1.94)
Less able - system 6 3.33 (0.52) 4.67 (1.86)
Less able - student 3 3.67 (1.15) 4(2)

Less able - faded 9 4.22 (0.97) 5.55 (1.51)

Table 4. Pre/post test results

The experimental results did not support our firgpothesis: more able students
appeared to be no better at problem selection tiiigin less able counterparts, wih
students benefiting from system assistance at @nolslelection. However, the resutlisl
highlight the importance of problem selection: st that had system help performed
best on the post-test. It also appears that ateetotoach students in the skill of problem
selection were successful: the students in thedfagleup improved their selection
accuracy, and performed better at selection tharstilidents who were not coached.

Evaluating KERMIT

An evaluation study was carried out at the Univgrsf Canterbury in August 2001. The
study involved sixty-two volunteers from studentsrofled in the Introduction to
Databases course (COSC 226) offered by the Comfatence department. This second-
year course teaches ER modelling as outlined bya&imand Navathe (1994). The
students had learnt ER modelling concepts durirg weeks of lectures and had some
practice during two weeks of tutorials prior to stady.

The evaluation study was conducted in two streante@hour laboratory sessions.
The participants interacted with eithetgmIT (experimental group) or ER-Tutor (control
group), a cut-down version of the system that ptedi no feedback on students’
solutions. The set of problems and the order irctvlthey were presented was identical
for both groups. A total of six problems were omtkrin increasing complexity. Each
session proceeded in four distinct phases. Injtieich student was given a document
that contained a brief description of the study ar@bnsent form. The students sat a pre-
test and then interacted with the system. Findfig, participants were given a post-test
and a questionnaire. The questionnaire containadefen questions. Initially students
were questioned on previous experience in ER madelMost questions asked the
participants to rank their perception on variousués on a Likert scale with five
responses ranging frorery good(5) to very poor (1), and included the amount they
learnt about ER modelling by interacting with tlystem and the enjoyment experienced.
The students were also allowed to give free-forspoases. Finally, suggestions were
requested for enhancing the system.

Table 5 displays a summary of the questionnairpareses. Both groups required
approximately the same time to learn the interfabeught to have learnt the same
amount, and enjoyed the system similarly. The foeet comments from the
experimental group emphasized the importance ofibieek for their learningThe
students who used ER-Tutor rated its interfaceseasiuse in comparison to the students
who usekzgMIT. The difference of 0.46 in favour of ER-Tutor'serface is statistically
significant (p<.01). This result was expected sikegMIT's interface is more complex



than ER-Tutor's. The mean rating for the usefulnefséeedback is significantly higher
for the experimental group (p<.01). These resutsamalogous with our expectations due
to the difference in the information content preéednas feedback from each system.
KeKMIT provides individualised feedback, while the studemho used ER-Tutor only
had the option of viewing the completed solutiore&mh problem. 74% of the students
who used ER-Tutor indicated the need for more ketaielp other than the complete
solution, compared to 61% of the students who ysegaT.

KERMIT ER-Tutor
mean s. d. mean s. d.
Time to learn interface (min.) 1150 11.6811.94 14.81
Amount learnt 3.19 0.65 3.06 0.89
Enjoyment 3.45 0.93 3.42 1.06
Ease of using interface 3.19 0.91 3.65 1.08
Usefulness of feedback 3.42 1.09 2.45 1.12

Table 7. Mean responses from the user questionnaire faxvakiation study

We evaluated how student’'s learnt Km&MIT by analysing the student logs and
identifying each problem-state in which a constraias relevant, the same way as in
SQL-Tutor. The results are shown in Figure 8. Thevgr curve displays a close fit with
an R power-law fit of 0.88. The probability of 0.23 fefolating a constraint at its first
occasion of application has decreased to 0.12sasixteenth occasion of application
displaying a 53% decrease in the probability.

0.3

y = 0.2538x %%
R?=0.8847

X
X X
0.15

0.1

Probability

0.05

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Occasion number

Fig. 8. Probability of violating a constraint as a fuonctiof the occasion when that constraint
was relevant, averaged over all participants irpiled study



The mean scores of the pre- and post-test (ouposaible 22) are shown in Table 6.
The difference in scores on the pre-test is stediy insignificant, confirming that the
two groups are comparable. The experimental gramesed significantly higher score
on the post-test (p<.01). Conversely, the diffeeeirt pre- and post-test scores of the
group who used ER-Tutor is statistically insigrafit. The difference in post-test scores
of the two groups is statistically significant (pS). We can conclude from these results
that students who used:gMIT learnt more than the control group students. Tfexte
size of the experiment is 0.63, which is comparaith the effect sizes of 0.63 published
by Albacete and Vanlehn (2000) and 0.66 publishedMitrovic et al., 2002). Both
published results are also results from experim#rgts spanned a two-hour session. An
effect size of 0.63 with the students interactinthwhe system for approximately an hour
is an excellent result.

Pre-test s d. Post-test s. d.
KzgMIT 16.16 1.82 17.77 1.45
ER-Tutor 16.58 2.86 16.48 3.08

Table 6. Mean pre- and post-test scores for the evaluatiay

The results show that students’ knowledge increagagsing<zgMIT. Students who
interacted withkzgMIT achieved significantly higher scores on the pest;tsuggesting
that they acquired more knowledge in ER modellfgpbjective evaluation shows that the
students in the experimental group felt they leanote than their peers in the control
group. It is surprising to record a high mean ragkof approximately 3 for the control
group, when asked how much they learnt from ER-Tufthis may be due to the typical
student misconception of assuming that they leardt by analysing the complete
solution. The student responses to the questiansilggested that most students
appreciated the feature of being able to view tilmpiete ER model.

Evaluating NORMIT

A preliminary evaluation of NORMIT was performedthre second half of 2002, with the
students enrolled in an introductory database eoatshe University of Canterbury. Our
hypothesis was that self-explanation would haveitipeseffects on both procedural
knowledge (i.e. problem solving skills) and concept knowledge. Prior to the
experiment, all students listened to four lectuwwasdata normalization. The system was
demonstrated in a lecture on October 14, 2002 ridutie last week of the course), and
was open to the students a day later. The accéomssudents were generated before the
study, and randomly allocated to one of the twasiems. The students in the control
group used the basic version of the system, whéeekperimental group used NORMIT-
SE, the version of the system that supports selfegation. The participation was
voluntary, and 29 out of 151 students enrollechandourse used the system. The students
were free to use NORMIT when and for how long theynted. There were 10 students in
the control, and 19 in the experimental group. Jizes of the groups are different, as not
all students who showed interest in participatiagehactually used the system.

When a student logged on to the system for thetfire, he/she was presented with a
pre-test. The post-test was also administeredra-the first time a student logged on to



the system on or after November 1, 2002. The dmtth€ post-test was chosen to be just
one day before the exam. We developed two testghwdonsisted of four multichoice
guestions each. The first two questions requiradestts to identify the correct solution
for a given problem, while for the other two thedsnts needed to identify the correct
definition of a given domain concept. Each studgttone of these two tests randomly as
the pre-test, and the other one as the post-test.

We collected data about each session, includingyie and timing of each action
performed by the student, as well as the feedbatkireed from NORMIT. There were
three students who logged on to the system, bu¢ Imav attempted any problems. We
excluded the logs of these three students fronyaesl The results on the pre- and post-
tests are given in Table 7. The groups are comfggrab there is no significant difference
on the pre-test performance. Only three students the control group sat the post-test,
and we have not analysed their results, as thelsamgs too small. On the other hand, a
paired t-test for the students in the experimegtalip who sat both tests shows that their
performance improved significantly (p=0.08), comfing the first part of our hypothesis.

No of pre-tests| Pre-test % (sd) No of post-testsst-Eest % (sd)
NORMIT 8 65.62 (36.3) 3 79.17 (25)
NORMIT-SE 18 75 (25.88) 13 89.1 (17.8)

Table 7. Pre- and post-test results
To test the second part of our hypothesis, we ardlgtudent’s explanations. Due to
imperfection of the logging mechanism, we do novehall information about self-
explanations that were problem-specific (those lemb have been fixed meanwhile).
From the data we have, it can be seen that sonstramris are much more difficult for
students to learn than others. For example, out
06 of the total of 29 situations when students who
were asked to explain why a set of attributes is a
candidate key, the correct answer was given in
only two cases. However, we do have data about
students’ self-explanations related to domain
concepts. Seven out of 11 concepts NORMIT
tracks have been covered by all students. The
0.2 remaining 4 concepts have been covered only by
. some students, because these concepts do not
y=082% appear in every problem, and the problems
R"=0.7248 students attempted vary significantly. Figure 9
‘ ‘ ‘ ‘ ‘ shows the probability of giving an incorrect
explanation. Please note that students were
Fig. 9. Defining domain concepts ~ asked to explain domain concepts only when
their  problem-specific  explanations were
incorrect (the total of 147 cases). The probabsitof incorrect answers on the first and
subsequent occasions were averaged over all canaeeapt all students. There is a very
good fit to the power curve, which indicates thadents do learn by explaining domain
concepts.
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CONCLUSIONS

The Web has introduced a new paradigm for buildivigely accessible intelligent
educational systems. Web-enabled tutors can beftm®mdany place, and at any time. A
very important aspect of Web-based tutors is ptatfmdependence. This paper has
discussed the design and implementation of thrégbeae tutors. DB-suite consists of
three tutors that teach SQL, data normalization aodceptual data modelling to
university level students. DB-suite tutors are E@e from the ICTG Web server, and
also on the Addison-Wesley's DatabasePlace, a Wehlsupporting several text books
in the area of databases (http://www.aw-bc.comliateplace/). The effectiveness of
DB-suite tutors was evaluated in several experimenhe results demonstrate that the
presented tutors are effective educational todie. Jarticipants who used the full version
of KzgMIT showed significantly better results in both sutij@cand objective analyses in
comparison to the students who practiced ER madgllvith a drawing tool. In
NORMIT, the students who self-explained improvedngicantly both in problem
solving and in answering questions about domainwvkerge. The evaluation studies
performed on SQL-Tutor show that it supports batarhing and the acquisition of
metacognitive skills.

There are several avenues to be explored to fuetheance the presented tutors. We
have already carried out several projects focusimgsupporting meta-cognitive skills,
such as self-explanation (Weerasinghe & MitrovigD2, 2003) and reflection. All DB-
suite tutors present a summary of the student mdhles supporting self-assessment and
deeper understanding of the domain. For detailsvafuating the effects of such open
model, please see (Mitrovic & Martin 2002; 2003rttsy & Mitrovic, 2002). We plan to
add more sophisticated, adaptive support for réfleand self-explanation to all tutors.

As mentioned earlier, we have also developed WETAS,authoring shell for
developing constraint-based tutors (Martin & Mitigv2002a; 2003). For text-based
tutors, WETAS basically requires the author to mtewonly the knowledge base and a set
of problems and their solutions; all other functioare provided by WETAS. For
graphical domains (such &z xMIT), they also need to provide the interface. Althoug
WETAS is a powerful ITS®ngine studies of how novice authors use WETAS to dgvelo
new tutors (Martin & Mitrovic, 2003) indicate thatore support is required for authoring.
We are currently looking at ways to enhance WETAS4ase the authoring process,
including automated knowledge acquisition, supgortstructuring the domain model
into ontologies and tools for assisting the re-afsexisting domain models.
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