
DB2 with BLU Acceleration:
So Much More than Just a Column Store

Vijayshankar Raman Gopi Attaluri! Ronald Barber Naresh Chainani!
David Kalmuk! Vincent KulandaiSamy! Jens Leenstra! Sam Lightstone!

Shaorong Liu! Guy M. Lohman Tim Malkemus Rene Mueller
Ippokratis Pandis Berni Schiefer! David Sharpe! Richard Sidle

Adam Storm! Liping Zhang!

IBM Research !IBM Software Group !IBM Systems & Technology Group

ABSTRACT
DB2 with BLU Acceleration deeply integrates innovative
new techniques for defining and processing column-organized
tables that speed read-mostly Business Intelligence queries
by 10 to 50 times and improve compression by 3 to 10
times, compared to traditional row-organized tables, with-
out the complexity of defining indexes or materialized views
on those tables. But DB2 BLU is much more than just a col-
umn store. Exploiting frequency-based dictionary compres-
sion and main-memory query processing technology from the
Blink project at IBM Research - Almaden, DB2 BLU per-
forms most SQL operations – predicate application (even
range predicates and IN-lists), joins, and grouping – on
the compressed values, which can be packed bit-aligned so
densely that multiple values fit in a register and can be pro-
cessed simultaneously via SIMD (single-instruction, multiple-
data) instructions. Designed and built from the ground
up to exploit modern multi-core processors, DB2 BLU’s
hardware-conscious algorithms are carefully engineered to
maximize parallelism by using novel data structures that
need little latching, and to minimize data-cache and instruction-
cache misses. Though DB2 BLU is optimized for in-memory
processing, database size is not limited by the size of main
memory. Fine-grained synopses, late materialization, and
a new probabilistic buffer pool protocol for scans minimize
disk I/Os, while aggressive prefetching reduces I/O stalls.
Full integration with DB2 ensures that DB2 with BLU Ac-
celeration benefits from the full functionality and robust
utilities of a mature product, while still enjoying order-of-
magnitude performance gains from revolutionary technology
without even having to change the SQL, and can mix column-
organized and row-organized tables in the same tablespace
and even within the same query.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 11
Copyright 2013 VLDB Endowment 2150-8097/13/09... $ 10.00.

1. INTRODUCTION
As enterprises amass large warehouses of transactional

data, they have increasingly sought to analyze that data for
trends and exceptions that will provide insights leading to
profitable and actionable business decisions. These so-called
Business Intelligence (BI) systems are read-mostly, typically
inserting “cleansed” and standardized rows in bulk from var-
ious transactional systems, and deleting them only when it
becomes unprofitable to keep older data on-line. As the data
warehouse grows, however, the variation in response times to
BI queries grows, depending upon whether the database ad-
ministrator (DBA) anticipates exactly which queries will be
submitted and creates the appropriate indexes and materi-
alized views (or materialized query tables (MQTs)) needed
by traditional database management systems (DBMSs) to
perform well. Response times can vary from seconds - for
those with the optimal indexes and/or MQTs - to hours or
even days for those without that “performance layer”. But
BI queries are inherently ad hoc, in which the formulation of
each query depends upon the results of the previous queries.
So it is almost impossible to anticipate the indexes and
MQTs needed for all possible queries, and hence to achieve
truly interactive querying, with today’s systems.

2. OVERVIEW
This paper describes an innovative new technology for BI

queries called BLU Acceleration, which is part of DB2 for
Linux, UNIX, and Windows (LUW) 10.5 [13] . DB2 with
BLU Acceleration (henceforth called DB2 BLU for brevity)
accelerates read-mostly Business Intelligence queries against
column-organized tables by 10 to 50 times and improves
compression by 3 to 10 times, compared to traditional row-
organized tables. DB2 BLU achieves this with no reliance
on indexes, materialized views, or other forms of “tuning”.
Instead, it exploits order-preserving, frequency-based dictio-
nary compression to perform most SQL operations – predi-
cate application (even range and IN-list predicates), joins,
and grouping – on the compressed values, which can be
packed bit-aligned so densely that multiple values fit in a reg-
ister and can be processed simultaneously via SIMD (single-
instruction, multiple-data) instructions.

BLU incorporates the second generation of Blink technol-
ogy that originated in IBM Research - Almaden in 2006.
[12, 18] . The first generation of Blink [4, 5, 18] , was a
strictly main-memory DBMS that was highly tuned for mod-

1080

ern multi-core hardware. This first generation has already
been incorporated into two IBM main-memory DBMS ac-
celerator products [4] : the IBM Smart Analytics Optimizer
for DB2 for z/OS (the mainframe DB2), which was released
in November 2010, and the Informix Warehouse Accelerator,
released in March 2011.
The second generation builds upon the main-memory effi-

ciencies of the first generation, but isn’t limited to databases
that fit in memory. As in the first generation, DB2 BLU’s
hardware-conscious algorithms are carefully engineered to
maximize parallelism, with novel data structures that re-
quire little latching, and to minimize data-cache and instruction-
cache misses. Join and group-by operate directly on encoded
data, and exploit DB2 BLU’s new columnar data layout to
reduce data movement for tasks such as partitioning. How-
ever, DB2 BLU is not limited to databases that fit in main
memory – tables are stored on disk and intermediate results
may spill to disk. Automatically-created fine-grained syn-
opses, late materialization, and a new probabilistic buffer
pool protocol for scans minimize disk I/Os, while aggressive
pre-fetching reduces I/O stalls. The first generation of Blink
stored data in PAX format [2] , whereas DB2 BLU is a pure
column store by default that stores each column separately
(though it allows storing highly-related columns together in
column groups; for example, NULLable columns can form a
column group in which one column indicates whether each
value is NULL or not). DB2 BLU uses a novel columnar
data layout in which all columns are logically in the same
row order, but within a page the ordering physically clus-
ters values by their compression format, and so may differ
for each column.
DB2 BLU supports UPDATE, INSERT, and DELETE

operations, and adapts to new values not in the initial dic-
tionary for a column by adaptively augmenting it with page-
level dictionaries. Both IBM products that were based upon
the first generation of Blink - the IBM Smart Analytics
Optimizer for DB2 for z/OS and the Informix Warehouse
Accelerator - were main-memory accelerator products that
contained copies of the base data that was stored in a con-
ventional row store. Column-organized tables in DB2 BLU
contain the only instance of the data, eliminating the need to
synchronize the copy in the accelerator with the base copy.
This second generation of Blink has been enhanced and

deeply integrated with DB2 for LUW by a team of devel-
opers from DB2 Development and the IBM Systems Opti-
mization Competency Center, and researchers from IBM
Almaden. Full integration with DB2 ensures that column-
organized tables benefit from the full functionality (includ-
ing sophisticated query rewriting and optimization, prefetch-
ing, buffer pool, etc.) and robust utilities (including Load,
automatic Workload Management, Backup, Recovery, etc.)
of a mature product, while still enjoying order-of-magnitude
performance gains from DB2 BLU’s state-of-the-art run time.
It also facilitates seamless evolution: column-organized and
row-organized tables can co-exist in the same tablespace and
even within the same query, and a new utility eases migra-
tion between the two.
The rest of this paper is organized as follows. Section 3

describes how data is compressed and stored in DB2 BLU.
Then we cover query processing, beginning with an overview
and important infrastructure in Section 4, followed by de-
tails on scans in Section 5, joins in Section 6, and group-
ing in Section 7. Section 8 covers how data is modified

in DB2 BLU, while Section 9 focuses on workload manage-
ment. Section 10 contains a brief evaluation of DB2 BLU’s
performance and compression. We compare DB2 BLU to
related work in Section 11, and conclude with Section 12.

3. DATA LAYOUT AND COMPRESSION
In this section we describe the highly compressed column-

major storage that is implemented in DB2 BLU. All colum-
nar data is stored in traditional DB2 storage spaces, and
cached in DB2 bufferpools, allowing row and columnar ta-
bles to co-exist and share resources.

The compression scheme used in DB2 BLU represents a
careful balance between storage efficiency and query perfor-
mance. The compression encoding enables efficient query
evaluation directly on the compressed data while simulta-
neously exploiting skew in the value distribution and local
clustering in the data to achieve excellent compression.

3.1 Frequency Compression
DB2 BLU employs column-level dictionary compression

that exploits skew in the data distribution by using up to a
few different compressed code sizes per column. The most
frequent values are assigned the smallest codes while less
frequent values are assigned larger codes. The frequency
compression used in DB2 BLU is similar to the Frequency
Partitioning of [18] but adapted to column-major storage.
Example 1 describes a column for which there are three dif-
ferent code sizes.

Example 1: In a DB2 BLU table that contains records
of world economic activity, the compression dictionary for
the CountryCode column, a 16-bit integer, may have the
following partitions:

1. A dictionary containing the values for the two countries
that occur most frequently in the sample data. The com-
pressed code size for this partition is 1 bit.

2. A dictionary containing the next 8 most frequently oc-
curring countries, with a 3-bit compressed code size.

3. An offset-coded partition for the remaining countries of
the sample, with an 8-bit code.

The approximate compression ratio for the 3 partitions is
16X, 5.25X (details in Section 3.3), and 2X respectively. !

A sample of the data in a table is analyzed to deter-
mine the compression scheme that is applied to each of its
columns. The sample is either (a) drawn from the data pro-
vided to the first bulk load into the table or (b) in the case
that the table is populated by SQL INSERT statements,
the sample is the data in the table when the table reaches
a given size threshold. Histograms of the values in each
column are collected from the sample, and a compression
optimizer determines how to best partition the column val-
ues by frequency to maximize compression. A dictionary is
created for each resulting column partition.

Entries of a given dictionary partition are one of (1) full
data values, (2) common bit prefixes of data values, or (3)
base values for offset coding, in which a code for a value is
the value minus the base value. For (1), the code size for the
partition is the number of bits required to record the index
of the dictionary value. For (2) and (3), the code size is the
number of bits required for the dictionary indexes plus the
bits needed to store the suffix in the case of (2) or to store the
offset from the base values in the case of (3). Within each

1081

� �ZĞŐŝŽŶ�ϭ�
�ĂŶŬ�ϭ͗�ϯ�ďŝƚ�ƚƵƉůĞƚƐ�ŝŶ�ϭϮϴͲďŝƚ�
�ǁŽƌĚƐ͕�ǁŝƚŚ�Ϯ�ďŝƚƐ�ŽĨ�ƉĂĚĚŝŶŐ�

�ZĞŐŝŽŶ�Ϯ�
�ĂŶŬ�ϭ͗�ϴ�ďŝƚ�ƚƵƉůĞƚƐ�ŝŶ�ϲϰͲďŝƚ�ǁŽƌĚƐ�;ŶŽ�ƉĂĚĚŝŶŐͿ�

�dƵƉůĞ�DĂƉ��
�ϭϬϭϬϬϭϬϬϬ͙�;ϭƐƚ͕�ϯƌĚ͕�ϲƚŚ�ĞŶƚƌŝĞƐ�ĂƌĞ�ŝŶ�ƌĞŐŝŽŶ�ϭͿ�

�ϭϬϭ�Ϭϭϭ�ϬϬϭ�͙��

Figure 1: Page of CountryCode with two Regions.

partition, the entries are ordered by value so that the com-
pression encoding is fully order-preserving, which enables
arbitrary range predicates to be evaluated directly on the
compressed data. Furthermore, the dictionary partitions of
a column are ordered by increasing code size. Value encod-
ing is prioritized such that a value will be encoded using the
first partition, and with the shortest possible code size, in
which the value may be represented.

3.2 Column Group Storage
Columns of a DB2 BLU table are partitioned into column

groups, wherein each column belongs to exactly one column
group. The DB2 BLU storage layer supports arbitrary num-
bers of columns per column group. Internally, nullability
is in a separate null indicator column, so nullable columns
define a column group containing at least two columns: the
nullable column and its internal null indicator.
Column group data are stored in fixed-size pages. A larger

unit of contiguous storage, called an extent, which contains
a fixed number of pages for a given table, is the unit of
allocation for storage. Each extent contains the data of one
column group only. We call the projection of a row/tuple
onto a column group a Tuplet (a “mini-tuple”). A tuplet
for the column group of a nullable column thus contains at
least two column values. Tuples are stored in the same order
across all column groups. Tuples are identified by a virtual
identifier called a TSN (Tuple Sequence Number), an integer
that may be used to locate a given tuple in all of its column
groups. A page contains a single range of TSNs, as recorded
by a (StartTSN, TupletCount) pair in the page header. A
Page Map records, for each page, the column group to which
it belongs and the StartTSN of that page. The page map is
implemented as a B+tree and is used at query time to find
pages that contain a range of TSNs for a column group.

3.3 Page Format: Regions, Banks, Tuple Map
The cross product of the dictionary partitions of all columns

of a column group determine the possible formats (combina-
tions of column sizes) of the tuplets of a column group. We
call the resultant combinations Cells. In the common case
of a single-column column group, a cell is equivalent to a dic-
tionary partition. All cells may occur in a given page of a
column group, because tuple sequence is determined by the
order in which data are loaded or inserted, which is indepen-
dent of how the tuple is encoded for compression. Within
any page, tuplets that belong to the same cell/partition and
that have the same format are stored together in what is
called a Region. This is a partitioning of the tuplets within

�

ϭϬϭϬϬϭϭϭϬϬϭϭϭϬϬϭϬϬϭϬ͘͘�

WĂŐĞ�
,ĞĂĚĞƌ�

WĂŐĞͲƐƉĞĐŝĨŝĐ�
�ŽŵƉƌĞƐƐŝŽŶ
�ŝĐƚŝŽŶĂƌŝĞƐ�

ZĞŐŝŽŶ &ŝǆĞĚͲǁŝĚƚŚ�
�ĂƚĂ��ĂŶŬƐ�

dƵƉůĞ�
DĂƉ� sĂƌŝĂďůĞͲ

ǁŝĚƚŚ��ĂƚĂ�
�ĂŶŬ�

Figure 2: DB2 BLU’s page format.

the page according to the cells to which they belong. For our
CountryCode column example, if tuplets for its partitions 1
and 2 exist in a given page, then that page will contain two
regions, one containing 1-bit tuplets and the other contain-
ing 3-bit tuplets. Pages containing more than one region will
have a Tuple Map that records to which region each tuple
was assigned by the encoding. The index of the TupleMap
is a page-relative TSN (the row’s TSN - StartTSN for that
page) and the entry is the index of the region to which the
TSN belongs. In a two region page, the TupleMap entries
are 1 bit each. The intra-page partitioning into regions in-
troduces a query processing challenge to return back TSN
order. Section 5 describes this in detail.

Regions are further sub-divided into Banks, which are con-
tiguous areas of the page that contain tuplet values. Each
column of a tuplet may be stored in a separate bank. In the
case of a column group for a nullable column, the column
and its null indicator may be stored in two separate banks
of its regions. Most banks contain fixed-size tuplets. For
compressed values, the encoded tuplets are stored packed
together in 128-bit or 256-bit words with padding to avoid
straddling of tuplets across word boundaries. We call the
128/256-bit word size the width of the bank. For example,
the 3-bit column codes of partition 2 of the CountryCode col-
umn will be stored in a 128-bit wide bank in which each word
contains 42 encoded values, with the remaining 2 bits left
unused as padding bits to prevent straddling word bound-
aries. This is shown in Figure 1, which depicts the content
of a page of the CountryCode column that has regions for
partitions 2 and 3 of its dictionary.

We may need to store uncompressed values that are not
covered by the compression scheme. Fixed-width uncoded
values are also stored in banks of regions where the bank
width is determined by the data type of the columns. Un-
coded variable-width values, for example of VARCHAR columns,
are stored one after another in a separate variable-width
data bank of the page that is outside of the regions. A de-
scriptor column for each variable-length column, comprised
of an (offset, length) pair, is stored in a regular region bank
to record the location of each variable-length data value.

By grouping like-formatted tuplets together into regions,
we end up with long runs of tuplets that have the same
format, which is important to query performance.

1082

3.4 Page Compression
Additional compression is performed at the page level to

exploit local clustering of data values within the table and
to compress values not covered by the column-level compres-
sion scheme. For example, if only 3 of the countries of Coun-
tryCode partition 2 occur in a page, we can reduce the code
size for tuplets of that region to 2 bits from 3 by specializing
the compression scheme to the page. Page compression is
tried for all pages of DB2 BLU tables, and when it is bene-
ficial, mini-dictionaries are stored within the page to record
the page-level compression scheme.
Example types of dictionary specialization that are con-

sidered at the page level include:

1. Reducing the number of dictionary entries to only those
that appear on the page. The smaller dictionary is stored
in the page and contains a mapping from the column-level
codes to those on the page. This page dictionary only
contains the codes of the column-level column dictionary,
not the data values, and as such, the page dictionary
benefits from the column-level compression.

2. Reducing the number of bits required to compute offsets
for offset-coding, given the range of values that occur in
the page.

Figure 2 depicts the DB2 BLU page format. There is a
small page header. Next come the page compression dic-
tionaries if applicable. The regions follow, each of which
contains some number of fixed-width banks. The TupleMap
is next and finally we have the variable-width data bank.

3.5 Synopsis Tables
An internal synopsis table is automatically created and

maintained for every column-organized DB2 BLU table. This
synopsis table reduces scan times of the user-defined table
by enabling page skipping, given predicates on the natural
clustering columns. Besides summary information about the
values in each column, the synopsis contains a (MinTSN,
MaxTSN) pair of columns that specify the range of DB2
BLU table rows represented by each row of the synopsis.
The synopsis tables use the same storage format as regular
DB2 BLU tables and inherit the compression scheme of the
corresponding user-defined table.

3.6 Global Coding
In addition to providing a partition-relative encoding for

each value of a DB2 BLU table, the compression dictionary
of a table also provides a partition-independent encoding
that we call global coding. The size of the global codes for
a column is determined by the sum of the code counts over
all partitions of the column dictionary. A global code G is
computed from a partition-relative code C simply by adding
to C the sum of code counts over all partitions that precede
the partition to which code C belongs. Global codes are
used in join and group by processing on compressed data.

4. QUERY EXECUTION
This section gives an overview of query execution, and

some of the infrastructure that supports it.

4.1 Overview of Query Processing
SQL queries that are submitted to DB2 go through the

usual DB2 query compilation, including optimization that

�

^Ǉ
ŶŽ

ƉƐ
ŝƐ

�

>��&�
ƉƌĞĚƐ͗��

Ͳс͕�ф͕�х͕�фс͕�
хс͕�ŝƐ�;ŶŽƚͿ�
ŶƵůů͕�ũŽŝŶ�
ĨŝůƚĞƌ�

�ŽŵƉůĞǆ�
ƉƌĞĚƐ͕�
:ŽŝŶƐ�

,ĂƐŚ�
'ƌŽƵƉ��Ǉ

�ŐŐƌĞŐĂ
ƚŝŽŶƐ�

EĞƐƚĞĚ�
YƵĞƌŝĞƐ�

Figure 3: Typical operation sequence. Many
operations in DB2 BLU operate on compressed
data, achieving better cache utilization and higher
memory-to-CPU effective bandwidth.

produces a plan tree of operators. As a result DB2 BLU
benefits fully from DB2’s industry-leading, cost-based opti-
mizer and query rewrite engine. The DB2 query optimizer
identifies portions of the query plan that reference column-
organized tables and that can leverage columnar processing,
and prepares a special execution plan for each that is com-
posed of pieces called evaluator chains. Evaluator chains
are chains of DB2 BLU operators, called evaluators, each of
which performs an action such as loading a column’s values,
performing an arithmetic operation, a join, etc.. Roughly,
there is one evaluator chain per single-table query (STQ),
i.e., access to a table, as runtime utilizes a decomposition of
a multi-table query into a sequence of single table queries.
These evaluator chains are prepared by DB2 BLU as follows:

1. Join queries are restructured into a list of STQs.

2. Predicates are restructured to optimize run-time behav-
ior of evaluators. This includes ordering predicates by
cost of evaluation, folding predicates into fewer when pos-
sible without a semantic change, and adding inexpensive
but possibly redundant predicates before more expensive
predicates to attempt a coarse pre-filtration (e.g. adding
min-max predicates before an in-list predicate).

3. Predicates on a column are used to construct predicates
on synopsis columns. The synopsis, discussed below, con-
tains aggregated metadata such as minimum and maxi-
mum values for a range of rows. Transforming predicates
on the original table into additional predicates on the
synopsis table, which is orders of magnitude smaller and
often kept in memory, can be very effective at reducing
data-page accesses during query processing.

4. Scalar sub-queries and common sub-expressions are re-
structured into separate queries whose results are fed to
consuming queries. These sub-queries are then rewritten
to an executable form, as given above.

Figure 3 shows the typical operation sequence of an STQ
in DB2 BLU. A scheduler starts a set of threads to execute
each STQ, each thread running this same evaluator chain.
An STQ typically starts by scanning a “leaf” column in the
plan tree and applying predicates to it. Additional columns
may be fetched, applying any predicates, and the results are
typically piped into an evaluator that builds a hash table.
A subsequent STQ over the join’s outer (fact) table will
probe this hash table (and usually all other dimensions), and
the surviving rows will typically be piped into an evaluator
that builds another hash table to accomplish grouping and
aggregation. This entire sequence can be short-circuited if
joins or grouping are not specified, of course, and it can be
nested for more complex queries.

1083

�

���^��EͲWZ�W� >��& >�K>ŶĂŵĞ� >�K>ǌŝƉ�
�ǆĞĐƵƚŝŽŶ�dŚƌĞĂĚ�

Figure 4: Per-thread evaluation chain that processes
strides of rows introduced by SCAN-PREP.

The evaluators in the chain do not work on a single value
or a single row; they instead operate on a set of rows called a
stride. By processing a stride at a time, DB2 BLU amortizes
the overhead in function calls, avoids cache-line misses, max-
imizes opportunities for loop unrolling, and creates units of
work that can be load balanced among threads by “work
stealing”. A stride typically contains on the order of thou-
sands of rows, but its exact size is chosen so that the evalua-
tor’s working set fits in the processor’s cache, so is dependent
on the query, machine, and available resources.
To illustrate this more concretely, consider a very simple

example, a single-table query asking for the name and zip
code of employees from California:
SELECT name, zip FROM employees WHERE state=‘‘CA’’

The execution of this query requires an evaluator chain
with several steps, illustrated in Figure 4:

1. A SCAN-PREP evaluator, which segments the input ta-
ble, employees, into strides to be processed, applies syn-
opsis predicates to skip ranges of TSNs, and initiates the
processing of each stride into the evaluator chain.

2. A LEAF evaluator, which accesses the page for that stride
of the state column, possibly causing it to be retrieved
from disk, and applies the local predicate on it.

3. Two LCOL (load column) evaluators, each of which re-
trieve the values for the name and zip columns, for only
those rows that qualified the local predicate.

This simple query was chosen to give a flavor of DB2 BLU
and ignores many details, such as the impact of rows intro-
duced by updates (depending upon the isolation level speci-
fied by the query), how page prefetching is performed to hide
I/O latency, the exploitation of in-memory synopses to skip
pages all of whose values are disqualified by a predicate, etc.
The next sections discuss DB2 BLU in more detail, starting
with the common infrastructure.

4.2 Infrastructure for Columnar Processing
To understand query processing in DB2 BLU, it is impor-

tant to define some infrastructure used throughout columnar
processing in DB2 BLU. These are used for holding row se-
lection state as well as holding results.

TSNList. A Tuple Sequence Number (TSN) is a logical row
identifier that DB2 BLU uses to “stitch together” the values
from different columns for a row. The TSN is not explicitly
stored with each entry of a column, but maintained only in
the page map, as discussed in Section 3.2.
Since DB2 BLU processes strides of TSNs, a TSNList is

used to track the TSN values expressed in the set. The im-
plementation of a TSNList, shown in Figure 5 (left), is a
starting TSN value (64-bit unsigned integer) and a bitmap
as long as the stride, with 1 bits for valid TSNs and 0 bits
for invalid TSNs, i.e., TSNs that have been disqualified by a

� d^E>ŝƐƚ�
^ƚĂƌƚd^E͗�ϭϬϬ͕�>ŝƐƚ^ŝǌĞ͗�ϴ�

�ŝƚŵĂƉ�
ϭ�
ϭ�
Ϭ�
ϭ�
Ϭ�
Ϭ�
ϭ�

sĞĐƚŽƌ�
dǇƉĞ�d�ĚĂƚĂ΀E΁͕�^ŝǌĞ͗�ϱ�

EƵůů�/ŶĚ͘�
�ŝƚŵĂƉ�

Ϭ�
Ϭ�
ϭ�
Ϭ�
Ϭ�

dǇƉĞ�d�
�
Ϯϱ�
ϰϮ�
Ϭ�
Ϯ�
ϳ�

Figure 5: A TSNList for 8 rows (TSNs 100 .. 107)
where tuples 102, 104, and 105 have been filtered
out due to predicates; and a Vector, whose size (5)
matches the number of valid TSNs in the TSNList.

previous predicate. Keeping this passing flag in a bitmap al-
lows for quick population-count operations that scan for the
next 1 bit, and improves cache efficiency and avoids memory
movement by not having to rearrange a list of TSNs.

Vector. Most processing in DB2 BLU deals with columns,
of course, so we often need an efficient way to represent sets
of values for a column or result. These sets are stored in
Vectors, as shown in Figure 5 (right). Vectors leverage C++
templates to provide efficient storage for all supported SQL
data types. Vectors also maintain additional metadata: a
bitmap indicating NULL values, so no “out-of-band” value
is required, and a sparse array to record and return to the
client application any warnings or errors that affect any row.

Work Unit. The association of values for particular TSNs
is maintained in a unit of work, or WorkUnit. This struc-
ture is a list of Vectors of values (or codes), along with one
TSNList, and is the smallest work package that passes be-
tween evaluators in an evaluator chain.

Compaction. Vectors in a WorkUnit are self-compacting.
As predicates in the evaluator chain are applied, they dis-
qualify tuples and update the TSNList bitmap with 0-bits.
Vectors that were populated before those predicates were
applied still contain entries for those non-qualifying tuples.
When Vectors are retrieved from a WorkUnit, if the “cur-
rent” filter state differs from the filter state when the Vector
was generated, then the Vector is compacted. Compaction
removes all values for tuples that have been disqualified, so
that the Vector is tightly packed with only values for “valid”
rows.

Evaluator Framework. As stated above, all evaluators
process sets of rows, called strides. Both TSNLists and
WorkUnits correspond to strides. For example, an evalu-
ator that loads a column would take as input just a list of
TSNs but would produce a Vector of values from the column
for the selected TSNs. An evaluator that performs addition
would accept two input Vectors of numeric values and pro-
duce a third output Vector.

Multi-threading in DB2 BLU is achieved by cloning the
evaluator chain once per thread, with the number of threads
being chosen based upon cardinality estimates, system re-
sources, and/or system workload. Each thread requests a
unique stride of TSNs for the table being processed as the

1084

�
ZĞŐŝŽŶ�ϭ� ZĞƐƵůƚ�ďŝƚŵĂƉ�

0000r
1
000r

2
…�

^/D��ƉƌĞĚ͘�
ĞǀĂů͘Ŷ�

ZĞŐŝŽŶ�Ϯ�

�ŽĂůĞƐĐĞ�ƚƵƉůĞƚ�>^�Ɛ�
� r

1
r
2
r
3
…�

ŵƵůƚϭ ŵƵůƚϮ�

ZĞƐƵůƚ�ďŝƚŵĂƉ�
0000s

1
000s

2
…�

^/D��ƉƌĞĚ͘�
ĞǀĂů͘Ŷ�

�ŽĂůĞƐĐĞ�ƚƵƉůĞƚ�>^�Ɛ�
� s

1
s
2
s
3
…�

ŵƵůƚϯ ŵƵůƚϰ�

/ŶƚĞƌůĞĂǀŝŶŐ�
�
�
�
�
�

ŵƵůƚϱ�
r
1
…r

2
…r

3
…�

;ƐƉĂĐĞĚ�ŽƵƚ��
ƌĞŐŝŽŶ�ƌĞƐƵůƚƐͿ�

ŵƵůƚϲ�
s
1
…s

2
…s

3
…�

KZ�

Figure 6: Leaf evaluation on a 2-region page. multi are precomputed multipliers and rj, sk are result bits.

first step in its evaluation chain, and continues requesting
strides until no more TSNs are available.

5. SCANS AND PREDICATE EVALUATION
Columns are accessed via two access methods:

LeafPredicateEvaluator (henceforth, LEAF): A LEAF
applies predicates on one or more columns within a column
group: e.g., (COL3 <5 and COL3 > 2) or COL2=4. In each
invocation, LEAF accepts a TSNList (usually corresponding
to an input stride), and evaluates its predicate over all the
TSNs in its range (not just the valid ones). Nullability is
handled as part of predicate evaluation.

LoadColumnEvaluator (henceforth, LCOL): An LCOL
scans values from a single column, along with its nullability,
in either encoded or unencoded form. It accepts a TSNList
(a range of TSNs and a bitmap indicating which TSNs from
that range need to be loaded), and outputs a Vector holding
values or codes for that column, as desired.

5.1 Leaf Predicates
Recall the page structure from Figure 2. LEAFs are ap-

plied within each region of each page, and only the predicate
output is interleaved across regions. Of course the same
predicate can also be applied by loading the column (via
LCOL) and then applying a comparison evaluator. This dis-
tinction loosely resembles that of SARGable vs non-SARGable
predicates in System R [19] . Predicates are applied via
LEAF as much as possible, because it is more efficient to
apply them on the compressed, tightly packed bank format.
Returning to Example 1, we separately apply the predi-

cate on the 1-bit dictionary coded, 3-bit dictionary coded,
and 8-bit offset-coded regions, whichever are present on a
page. The result from each region is a bitmap saying which
tuples in the region satisfied the predicate, plus a bitmap
for nullability 1. These bitmaps are then interleaved using
the TupleMap to form a bitmap in TSN order, as shown in
Figure 6.

5.1.1 Applying predicates on each region
Evaluation of predicates of the form Column <op> Lit-

eral within each region is amenable to SIMD-ized processing
for many operators: <, >, =, <>, <=, >=, BETWEEN,
small IN-lists, NOT IN-lists, and IS (NOT) NULL. Over
unencoded regions, this is straightforward SIMD processing.
Over encoded regions, we use the technique described in [14]
that takes a bank and produces a result that is also in bank

1 Nullability cannot be folded into the predicate result be-
cause SQL uses 3-value logic for nulls [20]

format, with the least significant bits (LSBs) of each tuplet
denoting whether the predicate was satisfied.

We then “coalesce” these LSB bits and append them to a
bit vector of outputs, using multiplication. For example, to
coalesce from 11-bit tuplets, say:
xxxxxxxxxx1xxxxxxxxxx0xxxxxxxxxx1 (where x stands
for “don’t care”), into 101.... we multiply by 210 + 220 + 230

– this shifts the 1st LSB by 10, the 2nd by 20, etc.

On POWER7TM, we use specialized bit-permutation in-
structions. For example, on a 128-bit bank, we can evaluate
Literal1 ≤ Column ≤ Literal2 predicates in about 12 instruc-
tions, irrespective of how many tuplets fit into the bank.

Longer IN-lists, Bloom filters, and LIKE predicates are
also often evaluated as LEAFs. They are generally not
evaluated in an SIMD fashion. Instead, we look up each
(encoded) value in precomputed hash tables. We generally
apply these complex predicates over the values in the dictio-
nary and identify the qualifying codes, which we enter into
a hash table. Predicates over multiple columns within a
column-group, as well as complex single-column predicates,
e.g. (Column > 5 OR Column IN list), can also be done
as LEAFs.

5.1.2 Interleaving results across regions
After applying predicates on each region, we need to in-

terleave the bitmap results using the TupleMap. For ex-
ample, suppose that a page has two regions, and the re-
sult from the regions are 01001001001 and 10101110111 ,
and that TSNs alternate between the regions (i.e., the Tu-
pleMap is 01010101010). Then the desired interleaved result
is 0110010011010110010111. The straightforward imple-
mentation would be to perform this one TSN at a time,
paying for a branch per TSN.

An alternative scheme that we have found to be efficient is
to multiply the result from each region by two precomputed
multipliers, and then do a bitwise OR. For example, suppose
that the TupleMap is 10101010..., and the predicate result
from the first region is b1b2b3b4. We perform two multipli-
cations: the first converts b1b2b3b4 into
b1xxxxxxx xb2xxxxxx xxb3xxxxx xxxb4xxxx. We form
the multiplier by summing the left-shift (multiplication) needed
on each bi. The second multiplication converts this result
into b10b20b30b40. Nullability is also interleaved similarly.

5.2 Load Column
LCOL is the main data access operator. It loads either

column values or column global codes. The latter is used for
key columns of joins and for group-by columns, because both
are done over encoded values. The former is used for loading
columns used in complex expressions (e.g., COL2 + 5), ag-
gregation, etc.. The output of LCOL is always compacted,

1085

� ZĞŐŝŽŶ�ϭ�
ďŝƚŵĂƉ�

/ŶƚĞƌƐĞĐƚ�Θ�ĨŝŶĚ�
ŵŽǀĞ�ŝŶĚĞǆĞƐ� �ǆƚƌĂĐƚ�ŶĞĞĚĞĚ�

ŝŶĚĞǆĞƐ�Žƌ�ƵŶƉĂĐŬ�Ăůů�
ĂŶĚ�ĐŽŵƉĂĐƚ�

ZĞŐŝŽŶ�Ϯ�
ǀĂůŝĚd^EƐ�
ďŝƚŵĂƉ�

Figure 7: Load column evaluation (per region).

i.e., it has only entries corresponding to valid TSNs of the
TSNList, those that satisfy previous predicates. As with
LEAF, LCOL also loads one region at a time, and then in-
terleaves the results, as outlined in Figure 7.

5.2.1 Loading within each region
Within a region, LCOL involves extracting codes at de-

sired offsets from packed banks, and decoding them if needed.
When loading a small subset of the bank, we directly do
masks and shifts to extract the codes. Converting from tu-
plet index in a bank to a bit position involves an integer
division (by the number of tuplets per bank), but we pre-
compute a modular inverse and do a multiplication with it
instead. When loading most of the bank, we use templa-
tized logic to unpack the entire bank into a word-aligned
array, and then extract the needed codes.

5.2.2 Interleaving across regions
Interleaving of LCOL is more challenging than for LEAF

because we are interleaving bigger quantities. We combine
interleaving with compaction. This involves two bitmaps:
RegionBits: bitmap of tuples in TSN order that fall into this
region (e.g., 10101.. if alternate tuples go to a region).
ValidBits: bitmap of tuples that have qualified all previous
predicates and need to be loaded.
Using the TupleMap, we form a bitmap of the TSNs (on

the page) that belong to each region. Then we use this
bitmap along with the valid TSNs bitmap to directly move
codes or values from the per-region result into the output
Vector. Returning to the previous example, with a two-
region page, suppose the TupleMap is 01010101010, and
that the validTSNs bitmap is 00100100111, i.e., we need to
load the 3rd, 6th,7th, 8th, and 9th tuple within the page (in
TSN order). The only values that we need to move out of
the result from the second region are the ones in the inter-
section of these bitmaps, shown in bold italics: we need to
move the 3rd entry from the region result to the 2nd posi-
tion in the output, and the 5th entry from the region result
to the 4th position in the output. These move indexes are
calculated efficiently by repeatedly accessing all bits up to
the right-most 1-bit in the intersection (via n XOR (n− 1)),
and using population count instructions thereafter.

6. JOINS
DB2 BLU supports a wide range of joins: inner joins,

outer joins (left, right, full), and early joins (where the first
match is returned for each row of the join outer). We also
support anti-joins (inner, left, and right), which are joins
with a not-equals predicate. There is no restriction that joins
should be N:1 and no assumption that referential integrity
or even key constraints have been specified on join columns.

Tables being joined need not fit in memory and will be spilled
to disk as they exceed available memory heap space.

We employ a novel cache- and multicore-optimized hash
join that exploits large memories when available, but grace-
fully spills to disk if needed. We use partitioning heavily –
for latch-free parallelism, for improving cache locality, and
for spilling to disk. Unlike traditional row-stores, DB2 BLU
partitions only the join columns, leading to significant re-
duction in data movement, but requiring more sophisticated
book-keeping of which payloads correspond to each key.

6.1 Build phase
We use a simple two-table join to illustrate the join al-

gorithm. The query optimizer presents the runtime with a
join operator that specifies one side as the build (inner) side
of the hash join, and the other as the probe (outer). This
choice is made according to a cost model, and generally fa-
vors smaller tables on the inner side, as well as N:1 joins
over N:M joins, if known or deduced.

As Figure 8 shows, in the build phase we first scan and
partition the join key columns and the join payloads from the
inner table (usually a base table, but can be intermediate re-
sults) 2. Each thread scans and partitions a separate subset
of the inner rows. After partitioning, each thread takes own-
ership of a partition to build a hash table mapping each join
key to its join payloads. The only cross-thread synchroniza-
tion during this inner scan occurs between the partitioning
and build phases. This inner scan employs late materializa-
tion and compaction, as with any regular scan. The number
of partitions is chosen carefully so that each partition fits
in a suitable level of the memory hierarchy, whichever is
feasible.

Joins are performed over encoded data – both join keys
and join payloads. This keeps the hash tables compact and
fitting into low levels of on-chip cache. Join keys are encoded
using the encoding dictionary (global code) of the outer’s
join column(s) (the foreign key columns). This means we
convert the join columns from the inner into the encoding
space of the outer during the scan of the inner. We choose
this over the encoding space of the inner because inners gen-
erally have smaller cardinality than outers. At the same
time, we also build Bloom filters on these foreign key col-
umn values, called join filters, for use during the probe phase.
Join payloads are encoded using the dictionary of the pay-
load columns when possible, and using a dynamically con-
structed dictionary for any values that were not encoded at
load time.

DB2 BLU uses a novel compact hash table that uses an
indirection bitmap to almost completely avoid hash table
collisions while having no empty buckets. When possible,
we also make the hash table completely collision-free by ex-
ploiting the encoded nature of the join keys.

6.2 Probe phase
For the probe phase, shown in Figure 9, the join columns

are scanned and first passed through the join filters derived
in the build phase. When an outer table is joined with mul-
tiple inner tables, join filters from all inners are first applied,
compacting as we go, before any joins are performed. So
the foreign keys that enter join operators have already been

2 We use the term join key, but do not rely on uniqueness
constraints; we infer uniqueness at runtime, after local
predicates are applied.

1086

�

>�K>�ŽŶ�
�͘Ŭ�

WĂƌƚŝƚŝŽŶ>��&�
ƉƌĞĚƐ�

dŚƌĞĂĚ�ϭ�
>�K>�Θ�Kd&�
ŽŶ��͘ĂƵǆ�

>�K>�ŽŶ�
�͘Ŭ�

WĂƌƚŝƚŝŽŶ>��&�
ƉƌĞĚƐ�

>�K>�Θ�Kd&�
ŽŶ��͘ĂƵǆ�

dŚƌĞĂĚ�Ϯ�

WϮ

Wϯ

Wϰ�

Wϭ�
dŚƌĞĂĚ���

,d�ϭ�

dŚƌĞĂĚ���
,d�Ϯ�

dŚƌĞĂĚ��
,d�ϯ�

dŚƌĞĂĚ��
,d�ϰ�

Figure 8: Evaluator sequence for build of join with 4 partitions.

�

>�K>�ŽŶ�
&͘ĨŬϭ�

>��&�
ƉƌĞĚƐ�

>�K>�ŽŶ�
&͘ĨŬϮ�

:&>d�ŽŶ�
&͘ĨŬϭ�

Wϭ� >ŽŽŬƵƉ�
,d�ϭ�

:&>d�ŽŶ�
&͘ĨŬϮ�

WĂƌƚŝƚŝŽŶ�Ă�
ƐƚƌŝĚĞ�ŽĨ�&͘ĨŬϭ�

WϮ� >ŽŽŬƵƉ� ,d�Ϯ�

Wϯ� >ŽŽŬƵƉ� ,d�ϯ�

Wϰ� >ŽŽŬƵƉ�
,d�ϰ�

�ĞƉĂƌƚŝƚŝŽŶ�
�ŝŵϭ�WĂǇůŽĂĚ�

:ŽŝŶ�ǁŝƚŚ�
�ŝŵϮ�

ZĞƐƵůƚ��
ƉĂǇůŽĂĚƐ�

Figure 9: Evaluator sequence for probe of join. JFLT stands for join filter. Observe that join filters of all
dimensions are applied before any joins are performed.

filtered with the combined selectivity of all join (and local)
predicates, so we do not need deferred materialization of join
payloads, as done in [1] .
Foreign keys surviving the join filters next enter the join

operators, where they are partitioned to probe against the
partitioned hash tables from the inner. This partitioning is
done in a pipelined fashion, and only the join columns are
partitioned. A stride of join columns are scanned and parti-
tioned. Then the foreign keys in each partition are probed
against the corresponding inner hash table, and finally the
result payloads are departitioned to bring them back into the
original (TSN) order. By paying for the departitioning, we
avoid having to partition (and early materializing) non-join
columns such as measures.

6.3 Join Filters and Semi-join
We employ a hierarchy of join filters on the outer scan (on

the concatenated foreign key columns) to reduce the number
of rows that have to go through join processing. We also
use min-max filters on the individual foreign key columns to
exploit any clustering there may be between local predicates
and key values. Sometimes the inner is very large, making
the hash table build expensive and possibly causing it to
spill to disk. When we detect this situation, we adopt a
semi-join plan in which we do an extra scan on the foreign
key column of the outer to determine if that (after applying
predicates from other dimensions) can be used to filter rows
of the large inner. If so, we build a Bloom filter on these

qualifying foreign keys, and use this to filter rows of the large
inner before they are built into its join hash table.

6.4 Spilling
When all partitions of the inner will not fit in the available

assigned memory, we employ one of two kinds of spilling
to disk. One approach is to spill some partitions of both
inner and outer, as in hybrid hash join [9] . An alternative
approach picked in many cases (via a cost model) is to spill
only the inner. Even though these partitions may have to be
spilled to disk and brought back to memory once per stride
of the outer, this helps to avoid early materialization of non-
join columns from the outer, and allows us to easily adapt
to changing memory availability during join execution.

7. GROUPING AND AGGREGATION
In general, DB2 BLU employs a partitioned hash-based

implementation of grouping and aggregation. It supports
the usual aggregation operations and handles DISTINCT.
The design of the grouping and aggregation component is
dictated by two main challenges. The first challenge is the
very wide spectrum of number of groups for the queries DB2
BLU has to deal with. Even from a single customer we
get queries whose grouping output varies from less than ten
to hundreds of millions of groups. Thus, the first require-
ment was robustness with respect to the number of output
groups. The second challenge is the hierarchical configura-
tion of modern multicore multisocket database servers that
provide multiple levels in the memory hierarchy and expose

1087

Thread Encoded keys
Unenc. keys

WorkUnit(s)

Global lists of OBs
(1 per partition) [Phase 2] Final partition merging

Gl
ob

al

pa
rt

iti
on

ed
 H

Ts

Local HT, fixed size
(1 per thread)

[Phase 1] Local HT probes and appends to OBs

Local overflow buckets (OBs) [P1] Probe local HT

Figure 10: Overview of GROUP BY processing in DB2 BLU with two phases of local and global processing.

non-uniform memory access (NUMA) effects [3, 16] . Thus,
the second requirement was robustness to, and exploitation
of, the multi-level memories of modern hardware.
For queries that output a small number of groups, we want

the majority of the processing to take place in thread-local
data structures that reside in on-chip caches. For queries
that output a large number of groups, we want to be able
to combine the groups generated by all threads in a fashion
that incurs minimal, if any, synchronization.

7.1 Overview
At a high level, and as shown in Figure 10, the grouping

operation in DB2 BLU takes place in two phases: initially
each thread performs a local grouping on local hash tables
of fixed size, buffering to overflow buckets all groups that
do not fit in the local hash tables; then, in a second phase,
each thread picks a partition and merges the corresponding
entries of each local hash table and all the overflow buckets
for this partition.
The main data structure used is a hash table that uses

linear probing. In queries that output a small number of
groups, the majority of processing takes place in updating
the local hash tables that are of fixed size and fit in on-chip
caches. In queries that output a large number of groups, the
majority of the time is spent in merging to the global hash
tables. Both operations require no synchronization and are
thread-local. This design achieves good performance irre-
spective of the number of groups in the query (first require-
ment). At the same time, it exhibits good memory locality
that exploits modern memory hierarchies (second require-
ment).

7.2 Normal (local) processing
In the first phase, all threads operate on thread-local hash

tables of fixed size. Each thread acts independently, updat-
ing its local hash table, updating or inserting new groups.
The size of the local hash tables is determined by the size
of the caches, the number of threads working on the query,
as well as the width of both the (compressed) grouping keys
and payloads.
When the local hash tables get full, any new groups that

do not already exist in the local hash table are appended to a
set of buffers called overflow buckets. Each thread appends
to as many overflow buckets as the number of partitions.
The number of partitions depends on the number of threads

working on the query and the available memory. The over-
flow buckets have fixed size. When they get full, the thread
publishes them by appending them into a global linked list
of overflow buckets for that partition. In order to increase
the hit ratio of the local hash tables and reduce the number
of overflow buckets, each thread maintains statistics for each
local hash table and performs a reorganization by dumping
the least frequent groups or periodically dumping all the
contents of the local hash table so that new, possibly more
frequent, groups enter the local hash tables.

At the end of the first phase, each thread publishes any
not full overflow buckets and its local hash table. The entire
processing of the first phase requires no synchronization.

7.3 Merging to global hash tables
In the second phase, each thread reserves, by atomically

increasing a counter, a partition to merge. Then it merges
all the entries of all local hash tables that belong to that
partition plus all the overflow buckets. The thread contin-
ues this process until there are no other partitions to be
merged. All the groups of a partition are merged to a global
partitioned hash table, which is allocated to a socket local to
the merging thread and, in contrast to the local hash tables,
does not have fixed size. In order for a merging thread to
identify the entries of each local hash table that belong to
a specific partition, we store with each local hash table a
packed array of partition identifiers. All the processing in
the second phase is again done in a latch-free fashion.

As all the incoming grouping keys are touched once for
the needs of the local processing in the first phase, we col-
lect statistics that can facilitate the processing of the second
phase. Such statistics include an estimation of the num-
ber of distinct groups of each partition, so that we allocate
appropriately-sized global hash tables for each partition. If
the free space in the global hash table gets low and there
are still overflow buckets for this partition that need to be
merged, we allocate a new hash table of bigger size and
transfer the contents of the previous table. Because of the
overhead of this operation, we try to estimate as accurately
as possible the final size of a global hash table.

7.4 Early Merging & Spilling
If during the normal (local) processing the system runs

low on memory, for example, because it has created many
overflow buckets, then some threads stop their normal pro-

1088

cessing and pick a partition to early merge. When a thread
early merges a partition, it marks the partition as being
early merged, and processes all the overflow buckets for that
partition that have been published up to that point. Early
merging frees up space from the overflow buckets processed
thus far. If even with early merging the overflow buckets
do not fit in the available memory for the grouping, then we
must spill them to disk. We pick chains of published overflow
buckets and spill them to disk, marking the corresponding
partition as less desirable to be early merged, because early
merging that partition would require bringing its overflow
buckets from disk, incurring additional I/O. Early merging
and spilling occur in queries with a very large number of
groups. This design allows DB2 BLU to robustly process
even customer queries that output several hundreds of mil-
lions of groups with wide grouping keys and payloads.

8. INSERTS/DELETES/UPDATES
In addition to having a high performance bulk data load

utility, DB2 BLU fully supports SQL INSERT, DELETE,
and UPDATE statements, as well as the multi-threaded con-
tinuous INGEST utility. DB2 BLU is a multi-versioned data
store in which deletes are logical operations that retain the
old version rows and updates create new versions. Multi-
versioning enables DB2 BLU to support standard SQL isola-
tion levels with minimal row locking. Furthermore, update-
in-place is infeasible in any highly compressed data store
(such as DB2 BLU). Write-ahead logging is performed for
all modifications to column-organized tables and DB2 BLU
leverages the existing robust facilities of DB2 for database
resiliency and recovery.

8.1 Inserts: Buffering and Parallelism
Achieving good performance for inserts and updates in a

column-store system is challenging because a page for each
column must be modified for each row insert. The two major
costs are (1) latching in the buffer pool a page for each col-
umn and (2) logging the changes to each of these pages. In
DB2 BLU, we have focused on providing good performance
for large insert transactions, which for example, insert on the
order of 1000 rows each. Such transactions are the norm in
the data warehouse systems initially targeted by DB2 BLU.
Inserts in DB2 BLU are buffered to amortize the main

costs over many rows. A mirror copy of the last, partially-
filled page of each column group is maintained in memory
outside of the buffer pool. Inserts of a transaction are ap-
plied to these buffers, but these changes are not reflected
in the buffer pool or log stream until either (a) the buffer
page becomes full or (b) the transaction commits. At these
events, the buffer is flushed, causing its new entries to be
logged and copied back to the buffer pool page. Physical
logging is performed for the changes and, for large trans-
actions, the resulting log records will be large, containing
many values. This effectively amortizes the per-page log
record header overhead that can dominate log space in the
presence of small insert transactions.
The insert buffers have the same format as DB2 BLU

pages, which enables queries to operate directly on the buffers,
as needed such that transactions are able to query their own
uncommitted changes.
DB2 BLU supports a high degree of insert and update

parallelism by dividing the TSN space of a table into many
non-overlapping partitions called Insert Ranges. On per-

forming its first insert, a transaction locks an insert range
of the target table, obtaining exclusive access to the range.
From that point on, the transaction is fully free, without
any further synchronization, to consume TSNs of the insert
range and insert rows into the tail pages of the insert range.

8.2 Deletes, Updates, Space Reclamation
DB2 BLU tables contain a 2-bit wide internal TupleState

column that records the current state of each row. A row is
in the Inserted state when first created by a LOAD, INSERT,
or UPDATE operation. Deleting a row simply updates its
state to PendingDelete. The change to the TupleState col-
umn is logged and multiple deletes to the same page from
a single transaction are recorded in one log record. Pend-
ingDelete state rows are cleaned in a lazy fashion to the
Delete state, which indicates that the delete is committed.
A REORG utility is provided to free up pages for reuse at
the extent level for those extents in which all rows are in
the Delete state. The REORG utility can be invoked by the
user directly, or it can be set to run automatically using the
automatic reorganization feature.

Updates are processed internally by DB2 BLU as a com-
bination of a delete of the qualifying rows and insert of the
new versions of these rows that result from their update.
DB2 BLU tables contain a second internal column, called
PrevRowTSN, that links a new version row resulting from
an update back to the original, root version of the row by
TSN. Compression eliminates the storage of this column for
rows that are created by inserts, so PrevRowTSN is only
materialized in the case of updates. The new version rows
that are created by an update are inserted into the insert
range that is locked by the transaction, so that parallelism
is supported for both updates and inserts.

8.3 Locking and Concurrency
DB2 BLU supports both the Uncommitted Read and Cur-

sor Stability isolation levels, in which readers do not block
writers and writers do not block readers. A full description
of how this is implemented is beyond the scope of this paper,
but a few of the main ideas are introduced here. Row locking
is performed for those rows modified by INSERT, DELETE,
and UPDATE transactions. Multi-versioning enables DB2
BLU to minimize locking for queries. A high-water mark
TSN (HWM) is maintained for each insert range that records
the TSN up to which all inserts are committed. The HWM
enables queries to bypass locking for all Inserted state rows
that are below the HWM. Locking is also not required for
any rows in the Deleted state, and standard CommitLSN
tricks are used to avoid locks in pages known to contain
only committed data [17] . Finally, the PrevRowTSN col-
umn is used to ensure that queries return a single version of
each qualifying row.

9. AUTOMATIC WORKLOAD MANAGEMENT
Another consideration for the DB2 BLU technology is

how it deals with the division of machine resources when
faced with multiple queries of varying degrees of complexity
submitted simultaneously. BLU queries can execute signif-
icantly faster if they are processed completely in-memory
without the need to spill partial results to disk. The num-
ber of queries that DB2 BLU attempts to process in parallel
is one of the key determinants of whether query execution
can proceed completely in memory.

1089

Table 1: Speedups using DB2 BLU against an opti-
mized row-organized system with optimal indexing.

Workload Speedup with DB2 BLU
Analytic ISV 37.4x

Large European Bank 21.8x
BI Vendor (reporting) 124x
BI Vendor (aggregate) 6.1x
Food manufacturer 9.2x
Investment Bank 36.9x

In order to exploit the fact that better overall performance
can be achieved by subdividing machine resources between
fewer queries at a time, DB2 BLU incorporates an admission
control mechanism to limit the number of queries that are
allowed to execute concurrently on the database server. Any
read-only queries submitted to the system are categorized
based on the query cost estimate generated by DB2’s cost-
based optimizer into a managed and unmanaged query class.
Lightweight queries that are below a defined cost floor (and
non read-only activities) are categorized as unmanaged and
are allowed to enter the system with no admission control.
This avoids a common problem with queueing approaches in
which the response time of small tasks that require modest
resources can suffer disproportionately when queued behind
larger, more expensive tasks.
For heavyweight queries above the cost floor, we catego-

rize these as managed, and apply an admission control al-
gorithm that operates based on the CPU parallelism of the
underlying hardware. Based on the hardware, once a certain
number of managed queries are executing on the server, fur-
ther submitted queries will be forced to queue and wait to
begin execution until one of the currently executing queries
has completed and exits the system. This is done completely
transparently to the user, who only sees the resulting per-
formance benefit from a reduction in spilling and resource
contention amongst queries.

10. RESULTS
While the improvements in performance provided by DB2

BLU vary by server, workload, and data characteristics, speed-
ups of one or up to two orders of magnitude over optimized
row-store systems are common. Table 1 shows the perfor-
mance speed-up of DB2 BLU’s code for a set of customer
workloads compared on the same server against traditional
row-organized processing with optimal indexing. Speedups
between a modest 6.1x and more impressive 124x can be
achieved for some workloads. What is really exciting is that
no tuning was required to achieve these results.
Overall performance is often skewed by outliers, those few

queries that seem to run much longer than all the others.
DB2 BLU actually provides the biggest speed boost to these
queries having the longest execution times. We found that
DB2 BLU’s performance is commonly at least three times
more consistent (less variable) than traditional BI systems,
because access plans for column-organized tables are sim-
plified. In addition, although DB2 BLU is in-memory opti-
mized, it is not main memory-limited, and performance does
not fall over a cliff as data size grows beyond RAM.
DB2 BLU also dramatically reduces storage requirements,

not only because it does not use secondary indexes or MQTs,
but also because of its order-preserving compression. Figure 11

�
Ϭ
ϱϬ
ϭϬϬ
ϭϱϬ
ϮϬϬ
ϮϱϬ
ϯϬϬ
ϯϱϬ

/ŶǀĞƐƚŵĞŶƚ��ĂŶŬ DĂũŽƌ�/^s DĂŶƵĨĂĐƚƵƌĞƌ

�Ă
ƚĂ
ďĂ
ƐĞ
�^
ŝǌĞ
�;'
�Ϳ

ZŽǁͲǁŝƐĞ�ƵŶĐŽŵƉƌĞƐƐĞĚ
ZŽǁͲǁŝƐĞ�ŽƉƚŝŵĂů�ĐŽŵƉƌĞƐƐŝŽŶ
�>h

Figure 11: DB2 BLU dramatically reduces storage
requirements for analytics databases, typically by
10x compared to uncompressed data in traditional
(row-organized) databases.

shows the storage requirements for storing the databases of
three different customers when in uncompressed row-organized,
compressed row-organized, and DB2 BLU’s column-organized
formats. While storage savings are data dependent, we have
observed savings over uncompressed data averaging around
10x for most customer workloads.

The overall result is a system that simultaneously has the
full functionality and robustness of a mature product (DB2
LUW) while being in-memory optimized, CPU-optimized,
and I/O-optimized; having less storage requirements; and
requiring virtually no tuning to achieve all these.

11. RELATED WORK
Column-organized tables date from 1985 [8] , and prod-

ucts that organize data this way are also not new. Sybase
IQ has been around since 1994, and since 1997 the EVI fea-
ture of DB2 for i5/OS [6] allows some columns to be stored
column-major and dictionary encoded. Indexes and index-
only access are also long established, although every index is
stored in a different order, making them impractical for the
scans of BI queries that need to touch many columns. But
the MonetDB [7, 23] and later the C-store [21] research
prototypes revived research interest in column stores for BI
workloads, with an emphasis on columnar query execution,
not just storage. They led to a flurry of new columnar start-
up products, including the Vertica product, now marketed
by HP, that was derived from C-Store. One feature that dis-
tinguishes Vertica is the ability to define projections, which,
like indexes in row stores, contain copies of the base data
that are in domain order, rather than the default order in
which rows were initially loaded. While projections can bene-
fit performance for queries requiring ordering, they consume
additional storage and complicate both database design and
the re-assembly of rows during query execution. Actian’s
Vectorwise was spawned from the MonetDB research proto-
type. Like DB2 BLU, both Vectorwise and SAP HANA [10]
store each column separately as a vector, with the value for
the Nth row stored in the Nth entry in compressed form.
HANA packs encoded values so densely that they may span
registers, requiring complex shifting operations to isolate in-
dividual values [22] . In contrast, DB2 BLU pads bit-aligned
values to register boundaries, so that it can operate on mul-
tiple values simultaneously in SIMD fashion without need-
ing to do bit shifting [14] . And unlike HANA and Vertica,
which temporarily stage INSERTs in row-organized tables,

1090

DB2 BLU has no staging tables for INSERTed rows, sim-
plifying concurrent query processing. Main-memory column
stores such as Exasol are limited to what data can be cost-
effectively stored in main memory, whereas DB2 BLU can
store any amount of data cost-effectively on disk and cache
the active portions in memory.
DB2 BLU is fully integrated into a full-function, mature

DBMS (DB2) that permits storing data in either row- or
column-organized tables in the same database, and referenc-
ing both in the same query, as Teradata’s column store and
EMC’s Greenplum do. However, Teradata and Greenplum
only store the columns separately, re-assembling them into
rows for query processing 3. In contrast, DB2 BLU keeps the
columns separate and compressed during query processing,
performing major operations such as predicate evaluation,
joins, and grouping on the compressed values. SQL Server
evaluates predicates directly on the compressed data for scan
operators, but it’s unclear whether it can perform other op-
erations such as joins and grouping on compressed data, and
no mention is made of SIMD operations [15] .

12. CONCLUSIONS
Decades after the invention, prototyping, and initial prod-

ucts of relational DBMSs, the basics of relational DBMS
technology are still in flux today. Databases are of course
much, much larger than they were in the 1970s, and new
data-intensive applications such as large-scale data analy-
sis and program-driven trading are only further stressing
DBMSs. But the main reason DBMSs have to keep chang-
ing is major changes in hardware. Our problems are so data
intensive that they are chronically impacted by evolution
in processors and memory hierarchies, and continually play-
ing catch-up; that core ideas have lasted this long is itself a
testament to the quality of the original designs.
DB2 BLU proves that one need not build a completely new

database system from scratch to adapt to today’s hardware
or to achieve revolutionary improvements in performance
and compression, that the extensibility built into DB2 LUW
with the Starburst technology 20 years ago [11] can be lever-
aged to evolve and exploit the investment in mature prod-
ucts like DB2. This revolution through evolution concept al-
lows for the non-disruptive and seamless introduction of rad-
ically new technology like BLU Acceleration into customer
environments, while preserving full functionality.

Acknowledgments
DB2 BLU is the result of a very big collaborative effort, and
naming all the people that contributed is difficult. How-
ever, we would like to give special thanks to contributors to
the early prototypes, especially Dan Behman, Eduard Diner,
Chris Drexelius, Jing Fang, Ville Hakulinen, Jana Jonas,
Min-Soo Kim, Nela Krawez, Alexander Krotov, Michael Kwok,
Tina Lee, Yu Ming Li, Antti-Pekka Liedes, Serge Limoges,
Steven Luk, Marko Milek, Lauri Ojantakanen, Hamid Pi-
rahesh, Lin Qiao, Eugene Shekita, Tam Minh Tran, Ioana
Ursu, Preethi Vishwanath, Jussi Vuorento, Steven Xue and
Huaxin Zhang.

3 http://dbmsmusings.blogspot.com/2009/10/greenplum-
announces-column-oriented.html

References
[1] D. J. Abadi, D. S. Myers, D. J. DeWitt, and S. R. Madden.

Materialization strategies in a column-oriented DBMS. In
ICDE, 2007.

[2] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis.
Weaving relations for cache performance. In VLDB, 2001.

[3] M.-C. Albutiu, A. Kemper, and T. Neumann. Massively par-
allel sort-merge joins in main memory multi-core database
systems. PVLDB, 5(10), 2012.

[4] R. Barber, P. Bendel, M. Czech, O. Draese, F. Ho, N. Hrle,
S. Idreos, M.-S. Kim, O. Koeth, J.-G. Lee, T. T. Li, G. M.
Lohman, K. Morfonios, R. Mueller, K. Murthy, I. Pandis,
L. Qiao, V. Raman, R. Sidle, K. Stolze, and S. Szabo. Blink:
Not your father’s database! In BIRTE, 2011.

[5] R. Barber, P. Bendel, M. Czech, O. Draese, F. Ho, N. Hrle,
S. Idreos, M.-S. Kim, O. Koeth, J.-G. Lee, T. T. Li, G. M.
Lohman, K. Morfonios, R. Mueller, K. Murthy, I. Pandis,
L. Qiao, V. Raman, R. Sidle, K. Stolze, and S. Szabo. Busi-
ness analytics in (a) blink. IEEE Data Eng. Bull., 2012.

[6] R. Bestgen and T. McKinley. Taming the business-
intelligence monster. IBM Systems Magazine, 2007.

[7] P. A. Boncz, M. L. Kersten, and S. Manegold. Breaking the
memory wall in MonetDB. Commun. ACM, 51, 2008.

[8] G. P. Copeland and S. N. Khoshafian. A decomposition
storage model. In SIGMOD, 1985.

[9] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R.
Stonebraker, and D. A. Wood. Implementation techniques
for main memory database systems. In SIGMOD, 1984.

[10] F. Färber, N. May, W. Lehner, P. Große, I. Müller, H. Rauhe,
and J. Dees. The SAP HANA database – an architecture
overview. IEEE Data Eng. Bull., 35(1), 2012.

[11] L. M. Haas, W. Chang, G. M. Lohman, J. McPherson, P. F.
Wilms, G. Lapis, B. Lindsay, H. Pirahesh, M. J. Carey, and
E. Shekita. Starburst mid-flight: As the dust clears. IEEE
TKDE, 2(1), 1990.

[12] A. L. Holloway, V. Raman, G. Swart, and D. J. DeWitt.
How to barter bits for chronons: compression and bandwidth
trade offs for database scans. In SIGMOD, 2007.

[13] IBM. DB2 with BLU acceleration. Available at http://www-
01.ibm.com/software/data/db2/linux-unix-windows/db2-
blu-acceleration/.

[14] R. Johnson, V. Raman, R. Sidle, and G. Swart. Row-wise
parallel predicate evaluation. PVLDB, 1, 2008.

[15] P.-A. Larson, C. Clinciu, C. Fraser, E. N. Hanson,
M. Mokhtar, M. Nowakiewicz, V. Papadimos, S. L. Price,
S. Rangarajan, R. Rusanu, and M. Saubhasik. Enhance-
ments to SQL server column stores. In SIGMOD, 2013.

[16] Y. Li, I. Pandis, R. Mueller, V. Raman, and G. Lohman.
NUMA-aware algorithms: the case of data shuffling. In
CIDR, 2013.

[17] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. ARIES: A transaction recovery method sup-
porting fine-granularity locking and partial rollbacks using
write-ahead logging. ACM TODS, 17(1), 1992.

[18] V. Raman, G. Swart, L. Qiao, F. Reiss, V. Dialani, D. Koss-
mann, I. Narang, and R. Sidle. Constant-time query process-
ing. In ICDE, 2008.

[19] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.
Lorie, and T. G. Price. Access path selection in a relational
database management system. In SIGMOD, 1979.

[20] K. Stolze, V. Raman, R. Sidle, and O. Draese. Bringing
BLINK closer to the full power of SQL. In BTW, 2009.

[21] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cher-
niack, M. Ferreira, E. Lau, A. Lin, S. Madden, E. O’Neil,
P. O’Neil, A. Rasin, N. Tran, and S. Zdonik. C-store: a
column-oriented DBMS. In VLDB, 2005.

[22] T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner, A. Zeier,
and J. Schaffner. SIMD-scan: ultra fast in-memory table
scan using on-chip vector processing units. PVLDB, 2, 2009.

[23] M. Zukowski and P. A. Boncz. Vectorwise: Beyond column
stores. IEEE Data Eng. Bull., 35(1), 2012.

1091

