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Abstract 

Recent high-performance processors employ 
sophisticated techniques to overlap and 
simultaneously execute multiple computation 
and memory operations. Intuitively, these 
techniques should help database applications, 
which are becoming increasingly compute and 
memory bound. Unfortunately, recent studies 
report that faster processors do not improve 
database system performance to the same extent 
as scientific workloads. Recent work on database 
systems focusing on minimizing memory 
latencies, such as cache-conscious algorithms for 
sorting and data placement, is one step toward 
addressing this problem. However, to best design 
high performance DBMSs we must carefully 
evaluate and understand the processor and 
memory behavior of commercial DBMSs on 
today’s hardware platforms.  

In this paper we answer the question “Where 
does time go when a database system is executed 
on a modern computer platform?”  We examine 
four commercial DBMSs running on an Intel 
Xeon and NT 4.0. We introduce a framework for 
analyzing query execution time on a DBMS 
running on a server with a modern processor and 

memory architecture. To focus on processor and 
memory interactions and exclude effects from 
the I/O subsystem, we use a memory resident 
database. Using simple queries we find that 
database developers should (a) optimize data 
placement for the second level of data cache, and 
not the first, (b) optimize instruction placement 
to reduce first-level instruction cache stalls, but 
(c) not expect the overall execution time to 
decrease significantly without addressing stalls 
related to subtle implementation issues (e.g., 
branch prediction). 

1 Introduction 

Today's database servers are systems with powerful 
processors that overlap and complete instructions and 
memory accesses out of program order. Due to the 
sophisticated techniques used for hiding I/O latency and 
the complexity of modern database applications, DBMSs 
are becoming compute and memory bound. Although 
researchers design and evaluate processors using 
programs much simpler than DBMSs (e.g., SPEC, 
LINPACK), one would hope that more complicated 
programs such as DBMSs would take full advantage of 
the architectural innovations. Unfortunately, recent 
studies on some commercial DBMSs have shown that 
their hardware behavior is suboptimal compared to 
scientific workloads. 

Recently there has been a significant amount of effort 
toward improving the performance of database 
applications on today's processors. The work that focuses 
on optimizing the processor and memory utilization can 
be divided into two categories: evaluation studies and 
cache performance improvement techniques. The first 
category includes a handful of recent studies that 
identified the problem and motivated the community to 
study it further. Each of these studies presents results 
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from experiments with only a single DBMS running a 
TPC benchmark on a specific platform. The second 
category includes papers that propose (a) algorithmic 
improvements for better cache utilization when 
performing popular tasks in a DBMS, such as sorting, and 
(b) data placement techniques for minimizing cache 
related waiting time. 

Although generally the results of these evaluation 
studies corroborate each other, there are no results 
showing the behavior of more than one commercial 
DBMS on the same hardware platform. Such results are 
important in order to identify general trends that hold true 
across database systems and determine what problems we 
must work on to make database systems run faster.  

This is the first paper to analyze the execution time 
breakdown of four commercial DBMSs on the same 
hardware platform (a 6400 PII Xeon/MT Workstation 
running Windows NT v4.0). The workload consists of 
range selections and joins running on a memory resident 
database, in order to isolate basic operations and identify 
common trends across the DBMSs. We conclude that, 
even with these simple queries, almost half of the 
execution time is spent on stalls. Analysis of the 
components of the stall time provides more insight about 
the operation of the cache as the record size and the 
selectivity are varied. The simplicity of the queries helped 
to overcome the lack of access to the DBMS source code. 
The results show that: 

• On the average, half the execution time is spent in 
stalls (implying database designers can improve 
DBMS performance significantly by attacking stalls).   

• In all cases, 90% of the memory stalls are due to: 
• Second-level cache data misses, while first-level 

data stalls are not important (implying data 
placement should focus on the second-level cache), 

and 
• First-level instruction cache misses, while second-

level instruction stalls are not important (implying 
instruction placement should focus on level one 
instruction caches). 

• About 20% of the stalls are caused by subtle 
implementation details (e.g., branch mispredictions) 
(implying that there is no “silver bullet”  for mitigating 
stalls). 

• (A methodological result.) Using simple queries rather 
than full TPC-D workloads provides a methodological 
advantage, because results are simpler to analyze and 
yet are substantially similar to the results obtained 
using full benchmarks. To verify this, we implemented 
and ran the TPC-D benchmark on three of the four 
systems, and the results are substantially similar to the 
results obtained using simpler queries. 

The rest of this paper is organized as follows: Section 2 
presents a summary of recent database workload 

characterization studies and an overview of the cache 
performance improvements proposed. Section 3 describes 
the vendor-independent part of this study: an analytic 
framework for characterizing the breakdown of the 
execution time and the database workload. Section 4 
describes the experimental setup. Section 5 presents our 
results. Section 6 concludes, and Section 7 discusses 
future directions. 

2 Related Work 

Much of the related research has focused on improving 
the query execution time, mainly by minimizing the stalls 
due to memory hierarchy when executing an isolated task. 
There are a variety of algorithms for fast sorting 
techniques [1][12][15] that propose optimal data 
placement into memory and sorting algorithms that 
minimize cache misses and overlap memory-related 
delays. In addition, several cache-conscious techniques 
such as blocking, data partitioning, loop fusion, and data 
clustering were evaluated [17] and found to improve join 
and aggregate queries. Each of these studies is targeted to 
a specific task and concentrate on ways to make it faster.  

The first hardware evaluation of a relational DBMS 
running an on-line transaction processing (OLTP) 
workload [22] concentrated on multiprocessor system 
issues, such as assigning processes to different processors 
to avoid bandwidth bottlenecks. Contrasting scientific and 
commercial workloads [14] using TPC-A and TPC-C on 
another relational DBMS showed that commercial 
workloads exhibit large instruction footprints with 
distinctive branch behavior, typically not found in 
scientific workloads and that they benefit more from large 
first-level caches. Another study [21] showed that, 
although I/O can be a major bottleneck, the processor is 
stalled 50% of the time due to cache misses when running 
OLTP workloads. 

In the past two years, several interesting studies 
evaluated database workloads, mostly on multiprocessor 
platforms. Most of these studies evaluate OLTP 
workloads [4][13][10], a few evaluate decision support 
(DSS) workloads [11] and there are some studies that use 
both [2][16]. All of the studies agree that the DBMS 
behavior depends upon the nature of the workload (DSS 
or OLTP), that DSS workloads benefit more from out-of-
order processors with increased instruction-level 
parallelism than OLTP, and that memory stalls are a 
major bottleneck. Although the list of references 
presented here is not exhaustive, it is representative of the 
work done in evaluating database workloads. Each of 
these studies presents results from a single DBMS 
running a TPC benchmark on a single platform, which 
makes contrasting the DBMSs and identifying common 
characteristics difficult.  
 



3 Query execution on modern processors 

In this section, we describe a framework that describes 
how major hardware components determine execution 
time. The framework analyzes the hardware behavior of 
the DBMS from the moment it receives a query until the 
moment it returns the results. Then, we describe a 
workload that allows us to focus on the basic operations 
of the DBMSs in order to identify the hardware 
components that cause execution bottlenecks. 

3.1 Query execution time: a processor model 

To determine where the time goes during execution of a 
query, we must understand how a processor works. The 
pipeline is the basic module that receives an instruction, 
executes it and stores its results into memory. The 
pipeline works in a number of sequential stages, each of 
which involves a number of functional components. An 
operation at one stage can overlap with operations at other 
stages.  

Figure 3.1 shows a simplified diagram of the major 
pipeline stages of a processor similar to the Pentium II 
[6][8]. First, the FETCH/DECODE unit reads the user 
program instructions from the instruction cache (L1 I-
cache), decodes them and puts them into an instruction 
pool. The DISPATCH/EXECUTE unit schedules 
execution of the instructions in the pool subject to data 
dependencies and resource availability, and temporarily 
stores their results. Finally, the RETIRE unit knows how 
and when to commit (retire) the temporary results into the 
data cache (L1 D-cache). 

In some cases, an operation may not be able to 
complete immediately and delay (“stall” ) the pipeline. 
The processor tries to cover the stall time by doing useful 
work, using the following techniques: 

• Non-blocking caches: Caches do not block when 
servicing requests. For example, if a read request to 
one of the first-level caches fails (misses), the request 
is forwarded to the second-level cache (L2 cache), 
which is usually unified (used for both data and 
instructions). If the request misses in L2 as well, it is 
forwarded to main memory. During the time the 
retrieval is pending, the caches at both levels can 
process other requests. 

• Out-of-order execution: If instruction X stalls, another 
instruction Y that follows X in the program can 
execute before X, provided that Y’s input operands do 
not depend on X’s results. The dispatch/execute unit 
contains multiple functional units to perform out-of-
order execution of instructions. 

• Speculative execution with branch prediction: Instead 
of waiting until a branch instruction’s predicate is 
resolved, an algorithm “guesses”  the predicate and 
fetches the appropriate instruction stream. If the guess 
is correct, the execution continues normally; if it is 
wrong, the pipeline is flushed, the retire unit deletes 
the wrong results and the fetch/decode unit fetches the 
correct instruction stream. Branch mispredictions 
incur both computation overhead (time spent in 
computing the wrong instructions), and stall time. 

Even with these techniques, the stalls cannot be fully 
overlapped with useful computation. Thus, the time to 
execute a query (TQ) includes a useful computation time 
(TC), a stall time because of memory stalls (TM), a branch 
misprediction overhead (TB), and resource-related stalls 
(TR). The latter are due to execution resources not being 
available, such as functional units, buffer space in the 
instruction pool, or registers. As discussed above, some of 
the stall time can be overlapped (TOVL). Thus, the 
following equation holds: 

TQ = TC + TM + TB + TR - TOVL 

FETCH/ 
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UNIT 

DISPATCH/ 
EXECUTE 

UNIT 

RETIRE 
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Figure 3.1: Simplified block diagram of a processor operation 



TC computation time 
TM stall time related to memory hierarchy 

TL1D stall time due to L1 D-cache misses (with hit in L2) 
TL1I stall time due to L1 I-cache misses (with hit in L2) 

TL2D stall time due to L2 data misses TL2 
TL2I stall time due to L2 instruction misses 

TDTLB stall time due to DTLB misses 

 

TITLB stall time due to ITLB misses 
TB branch misprediction penalty 
TR resource stall time 

TFU stall time due to functional unit unavailability 
TDEP stall time due to dependencies among instructions 

 

TMISC stall time due to platform-specific characteristics 

Table 3.1: Execution time components  

 Table 3.1 shows the time breakdown into smaller 
components. The DTLB and ITLB (Data or Instruction 
Translation Lookaside Buffer) are page table caches used 
for translation of data and instruction virtual addresses 
into physical ones. The next section briefly discusses the 
importance of each stall type and how easily it can be 
overlapped using the aforementioned techniques. A 
detailed discussion on hiding stall times can be found 
elsewhere [6]. 

3.2 Significance of the stall components 

Previous work has focused on improving DBMS 
performance by reducing TM, the memory hierarchy stall 
component. In order to be able to use the experimental 
results effectively, it is important to determine the 
contribution each of the different types of stalls makes to 
the overall execution time. Although out-of-order and 
speculative execution help hide some of the stalls, there 
are some stalls that are difficult to overlap, and thus are 
the most critical for performance.  

It is possible to overlap TL1D if the number of L1 D-
cache misses is not too high. Then the processor can fetch 
and execute other instructions until the data is available 
from the second-level cache. The more L1 D-cache 
misses that occur, the more instructions the processor 
must execute to hide the stalls. Stalls related to L2 cache 
data misses can overlap with each other, when there are 
sufficient parallel requests to main memory. TDTLB can be 
overlapped with useful computation as well, but a DTLB 
miss penalty depends on the page table implementation 
for each processor. Processors successfully use 
sophisticated techniques to overlap data stalls with useful 
computation.  

Instruction-related cache stalls, on the other hand, are 
difficult to hide because they cause a serial bottleneck to 
the pipeline. If there are no instructions available, the 
processor must wait. Branch mispredictions also create 
serial bottlenecks; the processor again must wait until the 
correct instruction stream is fetched into the pipeline. The 
Xeon processor exploits spatial locality in the instruction 

stream with special instruction-prefetching hardware. 
Instruction prefetching effectively reduces the number of 
I-cache stalls, but occasionally it can increase the branch 
misprediction penalty.  

Although related to instruction execution, TR (the 
resource stall time) is easier to overlap than TITLB and 
instruction cache misses. The processor can hide TDEP 
depending on the degree of instruction-level parallelism 
of the program, and can overlap TFU with instructions that 
use functional units with less contention. 

3.3 Database workload 

The workload used in this study consists of single-table 
range selections and two table equijoins over a memory 
resident database, running a single command stream. 
Such a workload eliminates dynamic and random 
parameters, such as concurrency control among multiple 
transactions, and isolates basic operations, such as 
sequential access and index selection. In addition, it 
allows examination of the processor and memory 
behavior without I/O interference. Thus, it is possible to 
explain the behavior of the system with reasonable 
assumptions and identify common trends across different 
DBMSs.  

The database contains one basic table, R, defined as 
follows:  

create table R  ( a1 integer not null, 
a2 integer not null, 
a3 integer not null, 
<rest of fields> )  

In this definition, <rest of fields> stands for a list of 
integers that is not used by any of the queries. The 
relation is populated with 1.2 million 100-byte records. 
The values of the field a2 are uniformly distributed 
between 1 and 40,000. The experiments run three basic 
queries on R: 



1. Sequential range selection:  

select avg(a3) 
from R  
where a2 < Hi and a2 > Lo (1)  

The purpose of this query is to study the behavior of the 
DBMS when it executes a sequential scan, and examine 
the effects of record size and query selectivity. Hi and Lo 
define the interval of the qualification attribute, a2. The 
reason for using an aggregate, as opposed to just selecting 
the rows, was twofold. First, it makes the DBMS return a 
minimal number of rows, so that the measurements are 
not affected by client/server communication overhead. 
Storing the results into a temporary relation would affect 
the measurements because of the extra insertion 
operations. Second, the average aggregate is a common 
operation in the TPC-D benchmark. The selectivity used 
was varied from 0% to 100%. Unless otherwise indicated, 
the query selectivity used is 10%. 

2. Indexed range selection: The range selection (1) was 
resubmitted after constructing a non-clustered index on 
R.a2. The same variations on selectivity were used.  

3. Sequential join: To examine the behavior when 
executing an equijoin with no indexes, the database 
schema was augmented by one more relation, S, defined 
the same way as R. The field a1 is a primary key in S. The 
query is as follows: 

select avg(R.a3) 
from R, S 
where R.a2 = S.a1  (2)  

There are 40,000 100-byte records in S, each of which 
joins with 30 records in R. 

4 Experimental Setup 

We used a 6400 PII Xeon/MT Workstation to conduct all 
of the experiments. We use the hardware counters of the 
Pentium II Xeon processor to run the experiments at full 
speed, to avoid any approximations that simulation would 
impose, and to conduct a comparative evaluation of the 
four DBMSs. This section describes the platform-specific 
hardware and software details, and presents the 
experimental methodology. 

4.1 The hardware platform 

The system contains one Pentium II Xeon processor 
running at 400 MHz, with 512 MB of main memory 
connected to the processor chip through a 100 MHz 
system bus. The Pentium II is a powerful server processor 
with an out-of-order engine and speculative instruction 
execution [23]. The X86 instruction set is composed by 
CISC instructions, and they are translated into up to three 
RISC instructions (µops) each at the decode phase of the 
pipeline.  

Characteristic L1 (split) L2 
Cache size 16KB Data 

16KB Instruction 
512KB 

Cache line size 32 bytes 32 bytes 
Associativity 4-way 4-way 
Miss Penalty 4 cycles (w/ L2 

hit) 
Main 
memory 

Non-blocking Yes Yes 
Misses outstanding 4 4 
Write Policy L1-D: Write-back 

L1-I:   Read-only 
Write-back 

Table 4.1: Pentium II Xeon cache characteristics 

There are two levels of non-blocking cache in the 
system. There are separate first-level caches for 
instructions and data, whereas at the second level the 
cache is unified. The cache characteristics are 
summarized in Table 4.1. 

4.2 The software 

Experiments were conducted on four commercial 
DBMSs, the names of which cannot be disclosed here due 
to legal restrictions. Instead, we will refer to them as 
System A, System B, System C, and System D. They 
were installed on Windows NT 4.0 Service Pack 4. 

The DBMSs were configured the same way in order to 
achieve as much consistency as possible. The buffer pool 
size was large enough to fit the datasets for all the queries. 
We used the NT performance-monitoring tool to ensure 
that there was no significant I/O activity during query 
execution, because the objective is to measure pure 
processor and memory performance. In addition, we 
wanted to avoid measuring the I/O subsystem of the OS. 
To define the schema and execute the queries, the exact 
same commands and datasets were used for all the 
DBMSs, with no vendor-specific SQL extensions. 

4.3 Measurement tools and methodology 

The Pentium II processor provides two counters for event 
measurement [8]. We used emon, a tool provided by Intel, 
to control these counters. Emon can set the counters to 
zero, assign event codes to them and read their values 
either after a pre-specified amount of time, or after a 
program has completed execution. For example, the 
following command measures the number of retired 
instructions during execution of the program prog.exe, at 
the user and the kernel level: 

emon –C ( INST_RETIRED:USER, 
    INST_RETIRED:SUP )   prog.exe 

Emon was used to measure 74 event types for the results 
presented in this report. We measured each event type in 
both user and kernel mode. 



Stall time component Description Measurement method 
TC computation time Estimated minimum based on µops retired 

TL1D L1 D-cache stalls #misses * 4 cycles 
TL1I L1 I-cache stalls actual stall time 

TL2D L2 data stalls #misses * measured memory latency TL2 
TL2I L2 instruction stalls #misses * measured memory latency 

TDTLB DTLB stalls Not measured 

TM 

TITLB ITLB stalls #misses * 32 cycles 
TB branch misprediction penalty # branch mispredictions retired * 17 cycles 

TFU functional unit stalls actual stall time 
TDEP dependency stalls actual stall time 

TR 

TILD Instruction-length decoder stalls actual stall time 
TOVL overlap time Not measured 

 

Table 4.2: Method of measuring each of the stall time components 

Before taking measurements for a query, the main 
memory and caches were warmed up with multiple runs 
of this query. In order to distribute and minimize the 
effects of the client/server startup overhead, the unit of 
execution consisted of 10 different queries on the same 
database, with the same selectivity. Each time emon 
executed one such unit, it measured a pair of events. In 
order to increase the confidence intervals, the experiments 
were repeated several times and the final sets of numbers 
exhibit a standard deviation of less than 5 percent. Finally, 
using a set of formulae1, these numbers were transformed 
into meaningful performance metrics. 

Using the counters, we measured each of the stall 
times described in Section 3.1 by measuring each of their 
individual components separately. The application of the 
framework to the experimental setup suffers the following 
caveats: 
• We were not able to measure TDTLB, because the event 

code is not available. 
• The Pentium II event codes allow measuring the 

number of occurrences for each event type (e.g., 
number of L1 instruction cache misses) during query 
execution. In addition, we can measure the actual stall 
time due to certain event types (after any overlaps). 
For the rest, we multiplied the number of occurrences 
by an estimated penalty [18][19]. Table 4.2 shows a 
detailed list of stall time components and the way they 
were measured. Measurements of the memory 
subsystem strongly indicate that the workload is 
latency-bound, rather than bandwidth-bound (it rarely 
uses more than a third of the available memory 
bandwidth). In addition, past experience [18][19] with 
database applications has shown little queuing of 
requests in memory. Consequently, we expect the 

                                                           
1 Seckin Unlu and Andy Glew provided us with 
invaluable help in figuring out the correct formulae, and 
Kim Keeton shared with us the ones used in [10]. 

results that use penalty approximations to be fairly 
accurate.  

• No contention conditions were taken into account. 

TMISC from Table 4.1 (stall time due to platform-specific 
characteristics) has been replaced with TILD (instruction-
length decoder stalls) in Table 4.2. Instruction-length 
decoding is one stage in the process of translating X86 
instructions into µops. 

5 Results 

We executed the workload described in Section 3 on four 
commercial database management systems. In this 
section, we first present an overview of the execution time 
breakdown and discuss some general trends. Then, we 
focus on each of the important stall time components and 
analyze it further to determine the implications from its 
behavior. Finally, we compare the time breakdown of our 
microbenchmarks against a TPC-D and a TPC-C 
workload. Since almost all of the experiments executed in 
user mode more than 85% of the time, all of the 
measurements shown in this section reflect user mode 
execution, unless stated otherwise. 

5.1 Execution time breakdown 

Figure 5.1 shows three graphs, each summarizing the 
average execution time breakdown for one of the queries. 
Each bar shows the contribution of the four components 
(TC, TM, TB, and TR) as a percentage of the total query 
execution time. The middle graph showing the indexed 
range selection only includes systems B, C and D, 
because System A did not use the index to execute this 
query. Although the workload is much simpler than TPC 
benchmarks [5], the computation time is usually less than 
half the execution time; thus, the processor spends most 
of the time stalled. Similar results have been presented for 
OLTP [21][10] and DSS [16] workloads, although none 
of the studies measured more than one DBMS. The high 
processor stall time indicates the importance of further 



analyzing the query execution time. Even as processor 
clocks become faster, stall times are not expected to 
become much smaller because memory access times do 
not decrease as fast. Thus, the computation component 
will become an even smaller fraction of the overall 
execution time.  

The memory stall time contribution varies more across 
different queries and less across different database 
systems. For example, Figure 5.1 shows that when System 
B executes the sequential range selection, it spends 20% 
of the time in memory stalls. When the same system 
executes the indexed range selection, the memory stall 
time contribution becomes 50%. Although the indexed 
range selection accesses fewer records, its memory stall 
component is larger than in the sequential selection, 
probably because the index traversal has less spatial 
locality than the sequential scan. The variation in TM’s 
contribution across DBMSs suggests different levels of 
platform-specific optimizations. However, as discussed in 
Section 5.2, analysis of the memory behavior yields that 
90% of TM is due to L1 I-cache and L2 data misses in all 
of the systems measured. Thus, despite the variation, there 
is common ground for research on improving memory 
stalls without necessarily having to analyze all of the 
DBMSs in detail. 

Minimizing memory stalls has been a major focus of 
database research on performance improvement. 
Although in most cases the memory stall time (TM) 
accounts for most of the overall stall time, the other two 
components are always significant. Even if the memory 
stall time is entirely hidden, the bottleneck will eventually 
shift to the other stalls. In systems B, C, and D, branch 
misprediction stalls account for 10-20% of the execution 
time, and the resource stall time contribution ranges from 
15-30%. System A exhibits the smallest TM and TB of all 
the DBMSs in most queries; however, it has the highest 
percentage of resource stalls (20-40% of the execution 
time). This indicates that optimizing for two kinds of 
stalls may shift the bottleneck to the third kind. Research 
on improving DBMS performance should focus on 

minimizing all three kinds of stalls to effectively decrease 
the execution time.  

5.2 Memory stalls 

In order to optimize performance, a major target of 
database research has been to minimize the stall time due 
to memory hierarchy and disk I/O latencies 
[1][12][15][17]. Several techniques for cache-conscious 
data placement have been proposed [3] to reduce cache 
misses and miss penalties. Although these techniques are 
successful within the context in which they were 
proposed, a closer look at the execution time breakdown 
shows that there is significant room for improvement. 
This section discusses the significance of the memory 
stall components to the query execution time, according to 
the framework discussed in Section 3.2. 

Figure 5.2 shows the breakdown of TM into the 
following stall time components: TL1D (L1 D-cache miss 
stalls), TL1I (L1 I-cache miss stalls), TL2D (L2 cache data 
miss stalls), TL2I (L2 cache instruction miss stalls), and 
TITLB (ITLB miss stalls) for each of the four DBMSs. 
There is one graph for each type of query. Each graph 
shows the memory stall time breakdown for the four 
systems. The selectivity for range selections shown is set 
to 10% and the record size is kept constant at 100 bytes. 

From Figure 5.2, it is clear that L1 D-cache stall time 
is insignificant. In reality its contribution is even lower, 
because our measurements for the L1 D-cache stalls do 
not take into account the overlap factor, i.e., they are 
upper bounds. An L1 D-cache miss that hits on the L2 
cache incurs low latency, which can usually be 
overlapped with other computation. Throughout the 
experiments, the L1 D-cache miss rate (number of misses 
divided by the number of memory references) usually is 
around 2%, and never exceeds 4%. A study on Postgres95 
[11] running TPC-D also reports low L1 D-cache miss 
rates. Further analysis indicates that during query 
execution the DBMS accesses private data structures 
more often than it accesses data in the relations. This 
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Figure 5.1: Query execution time breakdown into the four time components. 



often-accessed portion of data fits into the L1 D-cache, 
and the only misses are due to less often accessed data. 
The L1 D-cache is not a bottleneck for any of the 
commercial DBMSs we evaluated.  

The stall time caused by L2 cache instruction misses 
(TL2I) and ITLB misses (TITLB) is also insignificant in all 
the experiments. TL2I contributes little to the overall 
execution time because the second-level cache misses are 
two to three orders of magnitude less than the first-level 
instruction cache misses. The low TITLB indicates that the 
systems use few instruction pages, and the ITLB is 
enough to store the translations for their addresses. 

The rest of this section discusses the two major 
memory-related stall components, TL2D and TL1I. 

5.2.1 Second-level cache data stalls 

For all of the queries run across the four systems, TL2D 
(the time spent on L2 data stalls) is one of the most 
significant components of the execution time. In three out 
of four DBMSs, the L2 cache data miss rate (number of 
data misses in L2 divided by number of data accesses in 
L2) is typically between 40% and 90%, therefore much 
higher than the L1 D-cache miss rate. The only exception 
is System B, which exhibits optimized data access 
performance at the second cache level as well. In the case 
of the sequential range query, System B exhibits far fewer 
L2 data misses per record than all the other systems (B 
has an L2 data miss rate of only 2%), consequently its 
TL2D is insignificant. 

The stall time due to L2 cache data misses directly 
relates to the position of the accessed data in the records 
and the record size. As the record size increases, TL2D 
increases as well for all four systems (results are not 
shown graphically due to space restrictions). The two 
fields involved in the query, a2 and a3, are always in the 
beginning of each record, and records are stored 
sequentially. For larger record sizes, the fields a2 and a3 
of two subsequent records are located further apart and 
the spatial locality of data in L2 decreases. 

Second-level cache misses are much more expensive 
than the L1 D-cache misses, because the data has to be 
fetched from main memory. Generally, a memory latency 
of 60-70 cycles was observed. As discussed in Section 
3.2, multiple L2 cache misses can overlap with each 
other. Since we measure an upper bound of TL2D (number 
of misses times the main memory latency), this overlap is 
hard to estimate. However, the real TL2D cannot be 
significantly lower than our estimation because memory 
latency, rather than bandwidth, bind the workload (most 
of the time the overall execution uses less than one third 
of the available memory bandwidth). As the gap between 
memory and processor speed increases, one expects data 
access to the L2 cache to become a major bottleneck for 
latency-bound workloads. The size of today’s L2 caches 
has increased to 8 MB, and continues to increase, but 
larger caches usually incur longer latencies. The Pentium 
II Xeon on which the experiments were conducted can 
have an L2 cache up to 2 MB [23] (although the 
experiments were conducted with a 512-KB L2 cache). 

5.2.2 First-level cache instruction stalls 

Stall time due to misses at the first-level instruction cache 
(TL1I) is a major memory stall component for three out of 
four DBMSs. The results in this study reflect the real I-
cache stall time, with no approximations. Although the 
Xeon uses stream buffers for instruction prefetching, L1 I-
misses are still a bottleneck, despite previous results [16] 
that show improvement of TL1I when using stream buffers 
on a shared memory multiprocessor. As explained in 
Section 3.2, TL1I is difficult to overlap, because L1 I-cache 
misses cause a serial bottleneck to the pipeline. The only 
case where TL1I is insignificant (5%) is when System A 
executes the sequential range query. For that query, 
System A retires the lowest number of instructions per 
record of the four systems tested, as shown in Figure 5.3. 
For the other systems TL1I accounts for between 4% and 
40% of the total execution time, depending on the type of 
the query and the DBMS. For all DBMSs, the average 
contribution of TL1I to the execution time is 20%.  

Figure 5.2: Contributions of the five memory components to the memory stall time (TM) 
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There are some techniques to reduce the I-cache stall 
time [6] and use the L1 I-cache more effectively. 
Unfortunately, the first-level cache size is not expected to 
increase at the same rate as the second-level cache size, 
because large L1 caches are not as fast and may slow 
down the processor clock. Some new processors use a 
larger (64-KB) L1 I-cache that is accessed through 
multiple pipeline stages, but the trade-off between size 
and latency still exists. Consequently, the DBMSs must 
improve spatial locality in the instruction stream. Possible 
techniques include storing together frequently accessed 
instructions while pushing instructions that are not used 
that often, like error-handling routines, to different 
locations.  

An additional, somewhat surprising, observation was 
that increasing data record size increases L1 I-cache 
misses (and, of course, L1 D-cache misses). It is natural 

that larger data records would cause both more L1 and L2 
data misses.  Since the L2 cache is unified, the 
interference from more L2 data misses could cause more 
L2 instruction misses.  But how do larger data records 
cause more L1 instruction misses? On certain machines, 
an explanation would be inclusion (i.e., an L1 cache may 
only contain blocks present in an L2 cache). Inclusion is 
often enforced by making L2 cache replacements force L1 
cache replacements. Thus, increased L2 interference could 
lead to more L1 instruction misses. The Xeon processor, 
however, does not enforce inclusion. Another possible 
explanation is interference of the NT operating system 
[19]. NT interrupts the processor periodically for context 
switching, and upon each interrupt the contents of L1 I-
cache are replaced with operating system code. As the 
DBMS resumes execution, it fetches its instructions back 
into the L1 I-cache. As the record size varies between 20 
and 200 bytes, the execution time per record increases by 
a factor of 2.5 to 4, depending on the DBMS. Therefore, 
larger records incur more operating system interrupts and 
this could explain increased L1 I-cache misses. Finally, a 
third explanation is that larger records incur more 
frequent page boundary crossings. Upon each crossing the 
DBMS executes buffer pool management instructions. 
However, more experiments are needed to test these 
hypotheses.  

5.3 Branch mispredictions 

As was explained in Section 3.2, branch mispredictions 
have serious performance implications, because (a) they 
cause a serial bottleneck in the pipeline and (b) they cause 
instruction cache misses, which in turn incur additional 
stalls. Branch instructions account for 20% of the total 
instructions retired in all of the experiments.  

Even with our simple workload, three out of the four 
DBMSs tested suffer significantly from branch 
misprediction stalls. Branch mispredictions depend upon 
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how accurately the branch prediction algorithm predicts 
the instruction stream. The branch misprediction rate 
(number of mispredictions divided by the number of 
retired branch instructions) does not vary significantly 
with record size or selectivity in any of the systems. The 
average rates for all the systems are shown in the left 
graph of Figure 5.4.  

The branch prediction algorithm uses a small buffer, 
called the Branch Target Buffer (BTB) to store the targets 
of the last branches executed. A hit in this buffer activates 
a branch prediction algorithm, which decides which will 
be the target of the branch based on previous history [20]. 
On a BTB miss, the prediction is static (backward branch 
is taken, forward is not taken). In all the experiments the 
BTB misses 40% of the time on the average (this 
corroborates previous results for TPC workloads [10]). 
Consequently, the sophisticated hardware that implements 
the branch prediction algorithm is only used half of the 
time. In addition, as the BTB miss rate increases, the 
branch misprediction rate increases as well. It was shown 
[7] that a larger BTB (up to 16K entries) improves the 
BTB miss rate for OLTP workloads.  

As mentioned in Section 3.2, branch misprediction 
stalls are tightly connected to instruction stalls. For the 
Xeon this connection is tighter, because it uses instruction 
prefetching. In all of the experiments, TL1I follows the 
behavior of TB as a function of variations in the selectivity 
or record size. The right graph of Figure 5.4 illustrates 
this for System D running range selection queries with 
various selectivities. Processors should be able to 
efficiently execute even unoptimized instruction streams, 
so a different prediction mechanism could reduce branch 
misprediction stalls caused by database workloads. 

5.4 Resource stalls 

Resource-related stall time is the time during which the 
processor must wait for a resource to become available. 
Such resources include functional units in the execution 
stage, registers for handling dependencies between 
instructions, and other platform-dependent resources. The 

contribution of resource stalls to the overall execution 
time is fairly stable across the DBMSs. In all cases, 
resource stalls are dominated by dependency and/or 
functional unit stalls.  

Figure 5.5 shows the contributions of TDEP and TFU for 
all systems and queries. Except for System A when 
executing range selection queries, dependency stalls are 
the most important resource stalls. Dependency stalls are 
caused by low instruction-level parallelism opportunity in 
the instruction pool, i.e., an instruction depends on the 
results of multiple other instructions that have not yet 
completed execution. The processor must wait for the 
dependencies to be resolved in order to continue. 
Functional unit availability stalls are caused by bursts of 
instructions that create contention in the execution unit. 
Memory references account for at least half of the 
instructions retired, so it is possible that one of the 
resources causing these stalls is a memory buffer. 
Resource stalls are an artifact of the lowest-level details of 
the hardware. The compiler can produce code that avoids 
resource contention and exploits instruction-level 
parallelism. This is difficult with the X86 instruction set, 
because each CISC instruction is internally translated into 
smaller instructions (µops). Thus, there is no easy way for 
the compiler to see the correlation across multiple X86 
instructions and optimize the instruction stream at the 
processor execution level. 

5.5 Comparison with DSS and OLTP 

We executed a TPC-D workload against three out of four 
of the commercial DBMSs, namely A, B, and D. The 
workload includes the 17 TPC-D selection queries and a 
100-MB database. The results shown represent averages 
from all the TPC-D queries for each system. 

Figure 5.6 shows that the clock-per-instruction 
breakdown for the sequential range selection query (left) 
is similar to the breakdown of TPC-D queries (right). The 
clock-per-instruction (CPI) rate is also similar between 
the two workloads, ranging between 1.2 and 1.8. A closer 
look into the memory breakdown (Figure 5.7) shows that 
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first-level instruction stalls dominate the TPC-D 
workload, indicating that complicated decision-support 
queries will benefit much from instruction cache 
optimizations. 

TPC-C workloads exhibit different behavior than 
decision-support workloads, both in terms of clocks-per-
instruction rates and execution time breakdown. We 
executed a 10-user, 1-warehouse TPC-C workload against 

all four DBMSs (results are not shown here due to space 
restrictions). CPI rates for TPC-C workloads range from 
2.5 to 4.5, and 60%-80% of the time is spent in memory-
related stalls. Resource stalls are significantly higher for 
TPC-C than for the other two workloads. The TPC-C 
memory stalls breakdown shows dominance of the L2 
data and instruction stalls, which indicates that the size 
and architectural characteristics of the second-level cache 
are even more crucial for OLTP workloads. 

6 Conclusions 

Despite the performance optimizations found in today’s 
database systems, they are not able to take full advantage 
of many recent improvements in processor technology. 
All studies that have evaluated database workloads use 
complex TPC benchmarks and consider a single DBMS 
on a single platform. The variation of platforms and 
DBMSs and the complexity of the workloads make it 
difficult to thoroughly understand the hardware behavior 
from the point of view of the database.  

Based on a simple query execution time framework, 
we analyzed the behavior of four commercial DBMSs 
running simple selection and join queries on a modern 
processor and memory architecture. The results from our 
experiments suggest that database developers should pay 
more attention to the data layout at the second level data 
cache, rather than the first, because L2 data stalls are a 
major component of the query execution time, whereas L1 
D-cache stalls are insignificant. In addition, first-level 
instruction cache misses often dominate memory stalls, 
thus there should be more focus on optimizing the critical 
paths for the instruction cache. Performance 
improvements should address all of the stall components 
in order to effectively increase the percentage of 
execution time spent in useful computation. Using simple 
queries rather than full TPC workloads provides a 
methodological advantage, because the results are much 
simpler to analyze. We found that TPC-D execution time 
breakdown is similar to the breakdown of the simpler 
query, while TPC-C workloads incur more second-level 
cache and resource stalls. 

7 Future Work 

Although database applications are becoming increasingly 
compute and memory intensive, one must measure the I/O 
factor as well and determine its effects on the time 
breakdown. Our experiments did not include I/O, but we 
intend to study that in the near future. 

In addition, we intend to compare the behavior of a 
prototype system with commercial DBMSs, using the 
same workloads. With a prototype DBMS we will verify 
the actual cause of major bottlenecks and evaluate 
techniques for improving DBMS performance. 
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