
DBMSs On A Modern Processor: Where Does Time Go?

Anastassia Ailamaki David J. DeWitt Mark D. Hill David A. Wood

University of Wisconsin-Madison
Computer Science Dept.

1210 W. Dayton St.
Madison, WI 53706

U.S.A.
{ natassa,dewitt,markhill,david} @cs.wisc.edu

Abstract

Recent high-performance processors employ
sophisticated techniques to overlap and
simultaneously execute multiple computation
and memory operations. Intuitively, these
techniques should help database applications,
which are becoming increasingly compute and
memory bound. Unfortunately, recent studies
report that faster processors do not improve
database system performance to the same extent
as scientific workloads. Recent work on database
systems focusing on minimizing memory
latencies, such as cache-conscious algorithms for
sorting and data placement, is one step toward
addressing this problem. However, to best design
high performance DBMSs we must carefully
evaluate and understand the processor and
memory behavior of commercial DBMSs on
today’s hardware platforms.

In this paper we answer the question “Where
does time go when a database system is executed
on a modern computer platform?” We examine
four commercial DBMSs running on an Intel
Xeon and NT 4.0. We introduce a framework for
analyzing query execution time on a DBMS
running on a server with a modern processor and

memory architecture. To focus on processor and
memory interactions and exclude effects from
the I/O subsystem, we use a memory resident
database. Using simple queries we find that
database developers should (a) optimize data
placement for the second level of data cache, and
not the first, (b) optimize instruction placement
to reduce first-level instruction cache stalls, but
(c) not expect the overall execution time to
decrease significantly without addressing stalls
related to subtle implementation issues (e.g.,
branch prediction).

1 Introduction

Today's database servers are systems with powerful
processors that overlap and complete instructions and
memory accesses out of program order. Due to the
sophisticated techniques used for hiding I/O latency and
the complexity of modern database applications, DBMSs
are becoming compute and memory bound. Although
researchers design and evaluate processors using
programs much simpler than DBMSs (e.g., SPEC,
LINPACK), one would hope that more complicated
programs such as DBMSs would take full advantage of
the architectural innovations. Unfortunately, recent
studies on some commercial DBMSs have shown that
their hardware behavior is suboptimal compared to
scientific workloads.

Recently there has been a significant amount of effort
toward improving the performance of database
applications on today's processors. The work that focuses
on optimizing the processor and memory utilization can
be divided into two categories: evaluation studies and
cache performance improvement techniques. The first
category includes a handful of recent studies that
identified the problem and motivated the community to
study it further. Each of these studies presents results

Permission to copy without fee all or part of this material
is granted provided that the copies are not made or
distributed for direct commercial advantage, the VLDB
copyright notice and the title of the publication and its
date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To
copy otherwise, or to republish, requires a fee and/or
special permission from the Endowment.
Proceedings of the 25th VLDB Conference,
Edinburgh, Scotland, 1999.

from experiments with only a single DBMS running a
TPC benchmark on a specific platform. The second
category includes papers that propose (a) algorithmic
improvements for better cache utilization when
performing popular tasks in a DBMS, such as sorting, and
(b) data placement techniques for minimizing cache
related waiting time.

Although generally the results of these evaluation
studies corroborate each other, there are no results
showing the behavior of more than one commercial
DBMS on the same hardware platform. Such results are
important in order to identify general trends that hold true
across database systems and determine what problems we
must work on to make database systems run faster.

This is the first paper to analyze the execution time
breakdown of four commercial DBMSs on the same
hardware platform (a 6400 PII Xeon/MT Workstation
running Windows NT v4.0). The workload consists of
range selections and joins running on a memory resident
database, in order to isolate basic operations and identify
common trends across the DBMSs. We conclude that,
even with these simple queries, almost half of the
execution time is spent on stalls. Analysis of the
components of the stall time provides more insight about
the operation of the cache as the record size and the
selectivity are varied. The simplicity of the queries helped
to overcome the lack of access to the DBMS source code.
The results show that:

• On the average, half the execution time is spent in
stalls (implying database designers can improve
DBMS performance significantly by attacking stalls).

• In all cases, 90% of the memory stalls are due to:
• Second-level cache data misses, while first-level

data stalls are not important (implying data
placement should focus on the second-level cache),

and
• First-level instruction cache misses, while second-

level instruction stalls are not important (implying
instruction placement should focus on level one
instruction caches).

• About 20% of the stalls are caused by subtle
implementation details (e.g., branch mispredictions)
(implying that there is no “silver bullet” for mitigating
stalls).

• (A methodological result.) Using simple queries rather
than full TPC-D workloads provides a methodological
advantage, because results are simpler to analyze and
yet are substantially similar to the results obtained
using full benchmarks. To verify this, we implemented
and ran the TPC-D benchmark on three of the four
systems, and the results are substantially similar to the
results obtained using simpler queries.

The rest of this paper is organized as follows: Section 2
presents a summary of recent database workload

characterization studies and an overview of the cache
performance improvements proposed. Section 3 describes
the vendor-independent part of this study: an analytic
framework for characterizing the breakdown of the
execution time and the database workload. Section 4
describes the experimental setup. Section 5 presents our
results. Section 6 concludes, and Section 7 discusses
future directions.

2 Related Work

Much of the related research has focused on improving
the query execution time, mainly by minimizing the stalls
due to memory hierarchy when executing an isolated task.
There are a variety of algorithms for fast sorting
techniques [1][12][15] that propose optimal data
placement into memory and sorting algorithms that
minimize cache misses and overlap memory-related
delays. In addition, several cache-conscious techniques
such as blocking, data partitioning, loop fusion, and data
clustering were evaluated [17] and found to improve join
and aggregate queries. Each of these studies is targeted to
a specific task and concentrate on ways to make it faster.

The first hardware evaluation of a relational DBMS
running an on-line transaction processing (OLTP)
workload [22] concentrated on multiprocessor system
issues, such as assigning processes to different processors
to avoid bandwidth bottlenecks. Contrasting scientific and
commercial workloads [14] using TPC-A and TPC-C on
another relational DBMS showed that commercial
workloads exhibit large instruction footprints with
distinctive branch behavior, typically not found in
scientific workloads and that they benefit more from large
first-level caches. Another study [21] showed that,
although I/O can be a major bottleneck, the processor is
stalled 50% of the time due to cache misses when running
OLTP workloads.

In the past two years, several interesting studies
evaluated database workloads, mostly on multiprocessor
platforms. Most of these studies evaluate OLTP
workloads [4][13][10], a few evaluate decision support
(DSS) workloads [11] and there are some studies that use
both [2][16]. All of the studies agree that the DBMS
behavior depends upon the nature of the workload (DSS
or OLTP), that DSS workloads benefit more from out-of-
order processors with increased instruction-level
parallelism than OLTP, and that memory stalls are a
major bottleneck. Although the list of references
presented here is not exhaustive, it is representative of the
work done in evaluating database workloads. Each of
these studies presents results from a single DBMS
running a TPC benchmark on a single platform, which
makes contrasting the DBMSs and identifying common
characteristics difficult.

3 Query execution on modern processors

In this section, we describe a framework that describes
how major hardware components determine execution
time. The framework analyzes the hardware behavior of
the DBMS from the moment it receives a query until the
moment it returns the results. Then, we describe a
workload that allows us to focus on the basic operations
of the DBMSs in order to identify the hardware
components that cause execution bottlenecks.

3.1 Query execution time: a processor model

To determine where the time goes during execution of a
query, we must understand how a processor works. The
pipeline is the basic module that receives an instruction,
executes it and stores its results into memory. The
pipeline works in a number of sequential stages, each of
which involves a number of functional components. An
operation at one stage can overlap with operations at other
stages.

Figure 3.1 shows a simplified diagram of the major
pipeline stages of a processor similar to the Pentium II
[6][8]. First, the FETCH/DECODE unit reads the user
program instructions from the instruction cache (L1 I-
cache), decodes them and puts them into an instruction
pool. The DISPATCH/EXECUTE unit schedules
execution of the instructions in the pool subject to data
dependencies and resource availability, and temporarily
stores their results. Finally, the RETIRE unit knows how
and when to commit (retire) the temporary results into the
data cache (L1 D-cache).

In some cases, an operation may not be able to
complete immediately and delay (“stall”) the pipeline.
The processor tries to cover the stall time by doing useful
work, using the following techniques:

• Non-blocking caches: Caches do not block when
servicing requests. For example, if a read request to
one of the first-level caches fails (misses), the request
is forwarded to the second-level cache (L2 cache),
which is usually unified (used for both data and
instructions). If the request misses in L2 as well, it is
forwarded to main memory. During the time the
retrieval is pending, the caches at both levels can
process other requests.

• Out-of-order execution: If instruction X stalls, another
instruction Y that follows X in the program can
execute before X, provided that Y’s input operands do
not depend on X’s results. The dispatch/execute unit
contains multiple functional units to perform out-of-
order execution of instructions.

• Speculative execution with branch prediction: Instead
of waiting until a branch instruction’s predicate is
resolved, an algorithm “guesses” the predicate and
fetches the appropriate instruction stream. If the guess
is correct, the execution continues normally; if it is
wrong, the pipeline is flushed, the retire unit deletes
the wrong results and the fetch/decode unit fetches the
correct instruction stream. Branch mispredictions
incur both computation overhead (time spent in
computing the wrong instructions), and stall time.

Even with these techniques, the stalls cannot be fully
overlapped with useful computation. Thus, the time to
execute a query (TQ) includes a useful computation time
(TC), a stall time because of memory stalls (TM), a branch
misprediction overhead (TB), and resource-related stalls
(TR). The latter are due to execution resources not being
available, such as functional units, buffer space in the
instruction pool, or registers. As discussed above, some of
the stall time can be overlapped (TOVL). Thus, the
following equation holds:

TQ = TC + TM + TB + TR - TOVL

FETCH/
DECODE

UNIT

DISPATCH/
EXECUTE

UNIT

RETIRE
UNIT

INSTRUCTION
POOL

L1 I-CACHE L1 D-CACHE

L2 CACHE
TM

TC + TB + TR

Figure 3.1: Simplified block diagram of a processor operation

TC computation time
TM stall time related to memory hierarchy

TL1D stall time due to L1 D-cache misses (with hit in L2)
TL1I stall time due to L1 I-cache misses (with hit in L2)

TL2D stall time due to L2 data misses TL2
TL2I stall time due to L2 instruction misses

TDTLB stall time due to DTLB misses

TITLB stall time due to ITLB misses
TB branch misprediction penalty
TR resource stall time

TFU stall time due to functional unit unavailability
TDEP stall time due to dependencies among instructions

TMISC stall time due to platform-specific characteristics

Table 3.1: Execution time components

 Table 3.1 shows the time breakdown into smaller
components. The DTLB and ITLB (Data or Instruction
Translation Lookaside Buffer) are page table caches used
for translation of data and instruction virtual addresses
into physical ones. The next section briefly discusses the
importance of each stall type and how easily it can be
overlapped using the aforementioned techniques. A
detailed discussion on hiding stall times can be found
elsewhere [6].

3.2 Significance of the stall components

Previous work has focused on improving DBMS
performance by reducing TM, the memory hierarchy stall
component. In order to be able to use the experimental
results effectively, it is important to determine the
contribution each of the different types of stalls makes to
the overall execution time. Although out-of-order and
speculative execution help hide some of the stalls, there
are some stalls that are difficult to overlap, and thus are
the most critical for performance.

It is possible to overlap TL1D if the number of L1 D-
cache misses is not too high. Then the processor can fetch
and execute other instructions until the data is available
from the second-level cache. The more L1 D-cache
misses that occur, the more instructions the processor
must execute to hide the stalls. Stalls related to L2 cache
data misses can overlap with each other, when there are
sufficient parallel requests to main memory. TDTLB can be
overlapped with useful computation as well, but a DTLB
miss penalty depends on the page table implementation
for each processor. Processors successfully use
sophisticated techniques to overlap data stalls with useful
computation.

Instruction-related cache stalls, on the other hand, are
difficult to hide because they cause a serial bottleneck to
the pipeline. If there are no instructions available, the
processor must wait. Branch mispredictions also create
serial bottlenecks; the processor again must wait until the
correct instruction stream is fetched into the pipeline. The
Xeon processor exploits spatial locality in the instruction

stream with special instruction-prefetching hardware.
Instruction prefetching effectively reduces the number of
I-cache stalls, but occasionally it can increase the branch
misprediction penalty.

Although related to instruction execution, TR (the
resource stall time) is easier to overlap than TITLB and
instruction cache misses. The processor can hide TDEP
depending on the degree of instruction-level parallelism
of the program, and can overlap TFU with instructions that
use functional units with less contention.

3.3 Database workload

The workload used in this study consists of single-table
range selections and two table equijoins over a memory
resident database, running a single command stream.
Such a workload eliminates dynamic and random
parameters, such as concurrency control among multiple
transactions, and isolates basic operations, such as
sequential access and index selection. In addition, it
allows examination of the processor and memory
behavior without I/O interference. Thus, it is possible to
explain the behavior of the system with reasonable
assumptions and identify common trends across different
DBMSs.

The database contains one basic table, R, defined as
follows:

create table R (a1 integer not null,
a2 integer not null,
a3 integer not null,
<rest of fields>)

In this definition, <rest of fields> stands for a list of
integers that is not used by any of the queries. The
relation is populated with 1.2 million 100-byte records.
The values of the field a2 are uniformly distributed
between 1 and 40,000. The experiments run three basic
queries on R:

1. Sequential range selection:

select avg(a3)
from R
where a2 < Hi and a2 > Lo (1)

The purpose of this query is to study the behavior of the
DBMS when it executes a sequential scan, and examine
the effects of record size and query selectivity. Hi and Lo
define the interval of the qualification attribute, a2. The
reason for using an aggregate, as opposed to just selecting
the rows, was twofold. First, it makes the DBMS return a
minimal number of rows, so that the measurements are
not affected by client/server communication overhead.
Storing the results into a temporary relation would affect
the measurements because of the extra insertion
operations. Second, the average aggregate is a common
operation in the TPC-D benchmark. The selectivity used
was varied from 0% to 100%. Unless otherwise indicated,
the query selectivity used is 10%.

2. Indexed range selection: The range selection (1) was
resubmitted after constructing a non-clustered index on
R.a2. The same variations on selectivity were used.

3. Sequential join: To examine the behavior when
executing an equijoin with no indexes, the database
schema was augmented by one more relation, S, defined
the same way as R. The field a1 is a primary key in S. The
query is as follows:

select avg(R.a3)
from R, S
where R.a2 = S.a1 (2)

There are 40,000 100-byte records in S, each of which
joins with 30 records in R.

4 Experimental Setup

We used a 6400 PII Xeon/MT Workstation to conduct all
of the experiments. We use the hardware counters of the
Pentium II Xeon processor to run the experiments at full
speed, to avoid any approximations that simulation would
impose, and to conduct a comparative evaluation of the
four DBMSs. This section describes the platform-specific
hardware and software details, and presents the
experimental methodology.

4.1 The hardware platform

The system contains one Pentium II Xeon processor
running at 400 MHz, with 512 MB of main memory
connected to the processor chip through a 100 MHz
system bus. The Pentium II is a powerful server processor
with an out-of-order engine and speculative instruction
execution [23]. The X86 instruction set is composed by
CISC instructions, and they are translated into up to three
RISC instructions (µops) each at the decode phase of the
pipeline.

Characteristic L1 (split) L2
Cache size 16KB Data

16KB Instruction
512KB

Cache line size 32 bytes 32 bytes
Associativity 4-way 4-way
Miss Penalty 4 cycles (w/ L2

hit)
Main
memory

Non-blocking Yes Yes
Misses outstanding 4 4
Write Policy L1-D: Write-back

L1-I: Read-only
Write-back

Table 4.1: Pentium II Xeon cache characteristics

There are two levels of non-blocking cache in the
system. There are separate first-level caches for
instructions and data, whereas at the second level the
cache is unified. The cache characteristics are
summarized in Table 4.1.

4.2 The software

Experiments were conducted on four commercial
DBMSs, the names of which cannot be disclosed here due
to legal restrictions. Instead, we will refer to them as
System A, System B, System C, and System D. They
were installed on Windows NT 4.0 Service Pack 4.

The DBMSs were configured the same way in order to
achieve as much consistency as possible. The buffer pool
size was large enough to fit the datasets for all the queries.
We used the NT performance-monitoring tool to ensure
that there was no significant I/O activity during query
execution, because the objective is to measure pure
processor and memory performance. In addition, we
wanted to avoid measuring the I/O subsystem of the OS.
To define the schema and execute the queries, the exact
same commands and datasets were used for all the
DBMSs, with no vendor-specific SQL extensions.

4.3 Measurement tools and methodology

The Pentium II processor provides two counters for event
measurement [8]. We used emon, a tool provided by Intel,
to control these counters. Emon can set the counters to
zero, assign event codes to them and read their values
either after a pre-specified amount of time, or after a
program has completed execution. For example, the
following command measures the number of retired
instructions during execution of the program prog.exe, at
the user and the kernel level:

emon –C (INST_RETIRED:USER,
 INST_RETIRED:SUP) prog.exe

Emon was used to measure 74 event types for the results
presented in this report. We measured each event type in
both user and kernel mode.

Stall time component Description Measurement method
TC computation time Estimated minimum based on µops retired

TL1D L1 D-cache stalls #misses * 4 cycles
TL1I L1 I-cache stalls actual stall time

TL2D L2 data stalls #misses * measured memory latency TL2
TL2I L2 instruction stalls #misses * measured memory latency

TDTLB DTLB stalls Not measured

TM

TITLB ITLB stalls #misses * 32 cycles
TB branch misprediction penalty # branch mispredictions retired * 17 cycles

TFU functional unit stalls actual stall time
TDEP dependency stalls actual stall time

TR

TILD Instruction-length decoder stalls actual stall time
TOVL overlap time Not measured

Table 4.2: Method of measuring each of the stall time components

Before taking measurements for a query, the main
memory and caches were warmed up with multiple runs
of this query. In order to distribute and minimize the
effects of the client/server startup overhead, the unit of
execution consisted of 10 different queries on the same
database, with the same selectivity. Each time emon
executed one such unit, it measured a pair of events. In
order to increase the confidence intervals, the experiments
were repeated several times and the final sets of numbers
exhibit a standard deviation of less than 5 percent. Finally,
using a set of formulae1, these numbers were transformed
into meaningful performance metrics.

Using the counters, we measured each of the stall
times described in Section 3.1 by measuring each of their
individual components separately. The application of the
framework to the experimental setup suffers the following
caveats:
• We were not able to measure TDTLB, because the event

code is not available.
• The Pentium II event codes allow measuring the

number of occurrences for each event type (e.g.,
number of L1 instruction cache misses) during query
execution. In addition, we can measure the actual stall
time due to certain event types (after any overlaps).
For the rest, we multiplied the number of occurrences
by an estimated penalty [18][19]. Table 4.2 shows a
detailed list of stall time components and the way they
were measured. Measurements of the memory
subsystem strongly indicate that the workload is
latency-bound, rather than bandwidth-bound (it rarely
uses more than a third of the available memory
bandwidth). In addition, past experience [18][19] with
database applications has shown little queuing of
requests in memory. Consequently, we expect the

1 Seckin Unlu and Andy Glew provided us with
invaluable help in figuring out the correct formulae, and
Kim Keeton shared with us the ones used in [10].

results that use penalty approximations to be fairly
accurate.

• No contention conditions were taken into account.

TMISC from Table 4.1 (stall time due to platform-specific
characteristics) has been replaced with TILD (instruction-
length decoder stalls) in Table 4.2. Instruction-length
decoding is one stage in the process of translating X86
instructions into µops.

5 Results

We executed the workload described in Section 3 on four
commercial database management systems. In this
section, we first present an overview of the execution time
breakdown and discuss some general trends. Then, we
focus on each of the important stall time components and
analyze it further to determine the implications from its
behavior. Finally, we compare the time breakdown of our
microbenchmarks against a TPC-D and a TPC-C
workload. Since almost all of the experiments executed in
user mode more than 85% of the time, all of the
measurements shown in this section reflect user mode
execution, unless stated otherwise.

5.1 Execution time breakdown

Figure 5.1 shows three graphs, each summarizing the
average execution time breakdown for one of the queries.
Each bar shows the contribution of the four components
(TC, TM, TB, and TR) as a percentage of the total query
execution time. The middle graph showing the indexed
range selection only includes systems B, C and D,
because System A did not use the index to execute this
query. Although the workload is much simpler than TPC
benchmarks [5], the computation time is usually less than
half the execution time; thus, the processor spends most
of the time stalled. Similar results have been presented for
OLTP [21][10] and DSS [16] workloads, although none
of the studies measured more than one DBMS. The high
processor stall time indicates the importance of further

analyzing the query execution time. Even as processor
clocks become faster, stall times are not expected to
become much smaller because memory access times do
not decrease as fast. Thus, the computation component
will become an even smaller fraction of the overall
execution time.

The memory stall time contribution varies more across
different queries and less across different database
systems. For example, Figure 5.1 shows that when System
B executes the sequential range selection, it spends 20%
of the time in memory stalls. When the same system
executes the indexed range selection, the memory stall
time contribution becomes 50%. Although the indexed
range selection accesses fewer records, its memory stall
component is larger than in the sequential selection,
probably because the index traversal has less spatial
locality than the sequential scan. The variation in TM’s
contribution across DBMSs suggests different levels of
platform-specific optimizations. However, as discussed in
Section 5.2, analysis of the memory behavior yields that
90% of TM is due to L1 I-cache and L2 data misses in all
of the systems measured. Thus, despite the variation, there
is common ground for research on improving memory
stalls without necessarily having to analyze all of the
DBMSs in detail.

Minimizing memory stalls has been a major focus of
database research on performance improvement.
Although in most cases the memory stall time (TM)
accounts for most of the overall stall time, the other two
components are always significant. Even if the memory
stall time is entirely hidden, the bottleneck will eventually
shift to the other stalls. In systems B, C, and D, branch
misprediction stalls account for 10-20% of the execution
time, and the resource stall time contribution ranges from
15-30%. System A exhibits the smallest TM and TB of all
the DBMSs in most queries; however, it has the highest
percentage of resource stalls (20-40% of the execution
time). This indicates that optimizing for two kinds of
stalls may shift the bottleneck to the third kind. Research
on improving DBMS performance should focus on

minimizing all three kinds of stalls to effectively decrease
the execution time.

5.2 Memory stalls

In order to optimize performance, a major target of
database research has been to minimize the stall time due
to memory hierarchy and disk I/O latencies
[1][12][15][17]. Several techniques for cache-conscious
data placement have been proposed [3] to reduce cache
misses and miss penalties. Although these techniques are
successful within the context in which they were
proposed, a closer look at the execution time breakdown
shows that there is significant room for improvement.
This section discusses the significance of the memory
stall components to the query execution time, according to
the framework discussed in Section 3.2.

Figure 5.2 shows the breakdown of TM into the
following stall time components: TL1D (L1 D-cache miss
stalls), TL1I (L1 I-cache miss stalls), TL2D (L2 cache data
miss stalls), TL2I (L2 cache instruction miss stalls), and
TITLB (ITLB miss stalls) for each of the four DBMSs.
There is one graph for each type of query. Each graph
shows the memory stall time breakdown for the four
systems. The selectivity for range selections shown is set
to 10% and the record size is kept constant at 100 bytes.

From Figure 5.2, it is clear that L1 D-cache stall time
is insignificant. In reality its contribution is even lower,
because our measurements for the L1 D-cache stalls do
not take into account the overlap factor, i.e., they are
upper bounds. An L1 D-cache miss that hits on the L2
cache incurs low latency, which can usually be
overlapped with other computation. Throughout the
experiments, the L1 D-cache miss rate (number of misses
divided by the number of memory references) usually is
around 2%, and never exceeds 4%. A study on Postgres95
[11] running TPC-D also reports low L1 D-cache miss
rates. Further analysis indicates that during query
execution the DBMS accesses private data structures
more often than it accesses data in the relations. This

10% Indexed Range Selection

0%

20%

40%

60%

80%

100%

B C D

Computation Memory stalls Branch mispredictions Resource stalls

10% Sequential Range Selection

0%

20%

40%

60%

80%

100%

A B C D

Q
u

er
y

ex
ec

u
ti

o
n

 t
im

e
Join

0%

20%

40%

60%

80%

100%

A B C D

Figure 5.1: Query execution time breakdown into the four time components.

often-accessed portion of data fits into the L1 D-cache,
and the only misses are due to less often accessed data.
The L1 D-cache is not a bottleneck for any of the
commercial DBMSs we evaluated.

The stall time caused by L2 cache instruction misses
(TL2I) and ITLB misses (TITLB) is also insignificant in all
the experiments. TL2I contributes little to the overall
execution time because the second-level cache misses are
two to three orders of magnitude less than the first-level
instruction cache misses. The low TITLB indicates that the
systems use few instruction pages, and the ITLB is
enough to store the translations for their addresses.

The rest of this section discusses the two major
memory-related stall components, TL2D and TL1I.

5.2.1 Second-level cache data stalls

For all of the queries run across the four systems, TL2D
(the time spent on L2 data stalls) is one of the most
significant components of the execution time. In three out
of four DBMSs, the L2 cache data miss rate (number of
data misses in L2 divided by number of data accesses in
L2) is typically between 40% and 90%, therefore much
higher than the L1 D-cache miss rate. The only exception
is System B, which exhibits optimized data access
performance at the second cache level as well. In the case
of the sequential range query, System B exhibits far fewer
L2 data misses per record than all the other systems (B
has an L2 data miss rate of only 2%), consequently its
TL2D is insignificant.

The stall time due to L2 cache data misses directly
relates to the position of the accessed data in the records
and the record size. As the record size increases, TL2D
increases as well for all four systems (results are not
shown graphically due to space restrictions). The two
fields involved in the query, a2 and a3, are always in the
beginning of each record, and records are stored
sequentially. For larger record sizes, the fields a2 and a3
of two subsequent records are located further apart and
the spatial locality of data in L2 decreases.

Second-level cache misses are much more expensive
than the L1 D-cache misses, because the data has to be
fetched from main memory. Generally, a memory latency
of 60-70 cycles was observed. As discussed in Section
3.2, multiple L2 cache misses can overlap with each
other. Since we measure an upper bound of TL2D (number
of misses times the main memory latency), this overlap is
hard to estimate. However, the real TL2D cannot be
significantly lower than our estimation because memory
latency, rather than bandwidth, bind the workload (most
of the time the overall execution uses less than one third
of the available memory bandwidth). As the gap between
memory and processor speed increases, one expects data
access to the L2 cache to become a major bottleneck for
latency-bound workloads. The size of today’s L2 caches
has increased to 8 MB, and continues to increase, but
larger caches usually incur longer latencies. The Pentium
II Xeon on which the experiments were conducted can
have an L2 cache up to 2 MB [23] (although the
experiments were conducted with a 512-KB L2 cache).

5.2.2 First-level cache instruction stalls

Stall time due to misses at the first-level instruction cache
(TL1I) is a major memory stall component for three out of
four DBMSs. The results in this study reflect the real I-
cache stall time, with no approximations. Although the
Xeon uses stream buffers for instruction prefetching, L1 I-
misses are still a bottleneck, despite previous results [16]
that show improvement of TL1I when using stream buffers
on a shared memory multiprocessor. As explained in
Section 3.2, TL1I is difficult to overlap, because L1 I-cache
misses cause a serial bottleneck to the pipeline. The only
case where TL1I is insignificant (5%) is when System A
executes the sequential range query. For that query,
System A retires the lowest number of instructions per
record of the four systems tested, as shown in Figure 5.3.
For the other systems TL1I accounts for between 4% and
40% of the total execution time, depending on the type of
the query and the DBMS. For all DBMSs, the average
contribution of TL1I to the execution time is 20%.

Figure 5.2: Contributions of the five memory components to the memory stall time (TM)

10% Indexed Range Selection

0%

20%

40%

60%

80%

100%

B C D

L1 D-stalls (bottom) L1 I-stalls L2 D-stalls L2 I-stalls ITLB stalls (top)

10% Sequential Range Selection

0%

20%

40%

60%

80%

100%

A B C D

M
em

o
ry

 s
ta

ll
ti

m
e

Join

0%

20%

40%

60%

80%

100%

A B C D

There are some techniques to reduce the I-cache stall
time [6] and use the L1 I-cache more effectively.
Unfortunately, the first-level cache size is not expected to
increase at the same rate as the second-level cache size,
because large L1 caches are not as fast and may slow
down the processor clock. Some new processors use a
larger (64-KB) L1 I-cache that is accessed through
multiple pipeline stages, but the trade-off between size
and latency still exists. Consequently, the DBMSs must
improve spatial locality in the instruction stream. Possible
techniques include storing together frequently accessed
instructions while pushing instructions that are not used
that often, like error-handling routines, to different
locations.

An additional, somewhat surprising, observation was
that increasing data record size increases L1 I-cache
misses (and, of course, L1 D-cache misses). It is natural

that larger data records would cause both more L1 and L2
data misses. Since the L2 cache is unified, the
interference from more L2 data misses could cause more
L2 instruction misses. But how do larger data records
cause more L1 instruction misses? On certain machines,
an explanation would be inclusion (i.e., an L1 cache may
only contain blocks present in an L2 cache). Inclusion is
often enforced by making L2 cache replacements force L1
cache replacements. Thus, increased L2 interference could
lead to more L1 instruction misses. The Xeon processor,
however, does not enforce inclusion. Another possible
explanation is interference of the NT operating system
[19]. NT interrupts the processor periodically for context
switching, and upon each interrupt the contents of L1 I-
cache are replaced with operating system code. As the
DBMS resumes execution, it fetches its instructions back
into the L1 I-cache. As the record size varies between 20
and 200 bytes, the execution time per record increases by
a factor of 2.5 to 4, depending on the DBMS. Therefore,
larger records incur more operating system interrupts and
this could explain increased L1 I-cache misses. Finally, a
third explanation is that larger records incur more
frequent page boundary crossings. Upon each crossing the
DBMS executes buffer pool management instructions.
However, more experiments are needed to test these
hypotheses.

5.3 Branch mispredictions

As was explained in Section 3.2, branch mispredictions
have serious performance implications, because (a) they
cause a serial bottleneck in the pipeline and (b) they cause
instruction cache misses, which in turn incur additional
stalls. Branch instructions account for 20% of the total
instructions retired in all of the experiments.

Even with our simple workload, three out of the four
DBMSs tested suffer significantly from branch
misprediction stalls. Branch mispredictions depend upon

0%

5%

10%

15%

20%

0% 1% 5% 10% 50% 100%
Query selectivity

%
 o

f
q

u
er

y
ex

ec
u

ti
o

n
 t

im
e

Branch mispred. stalls L1 I-cache stalls

0%

5%

10%

15%

20%

25%

A B C D
DBMS

B
ra

n
ch

 m
is

p
re

d
ic

ti
o

n
 r

at
es

SRS IRS SJ

Figure 5.4: Left: Branch misprediction rates. SRS: sequential selection, IRS: indexed selection, SJ:
join. Right: System D running a sequential selection. TB and TL1I both increase as a function of an
increase in the selectivity.

0

4000

8000

12000

16000

A B C D

In
st

ru
ct

io
n

s
re

ti
re

d
/r

ec
o

rd

SRS IRS SJ

Figure 5.3: Number of instructions retired per record
for all four DBMSs. SRS: sequential selection
(instructions/number of records in R), IRS:
indexed selection (instructions/number of selected
records), SJ: join (instructions/number of records
in R)

how accurately the branch prediction algorithm predicts
the instruction stream. The branch misprediction rate
(number of mispredictions divided by the number of
retired branch instructions) does not vary significantly
with record size or selectivity in any of the systems. The
average rates for all the systems are shown in the left
graph of Figure 5.4.

The branch prediction algorithm uses a small buffer,
called the Branch Target Buffer (BTB) to store the targets
of the last branches executed. A hit in this buffer activates
a branch prediction algorithm, which decides which will
be the target of the branch based on previous history [20].
On a BTB miss, the prediction is static (backward branch
is taken, forward is not taken). In all the experiments the
BTB misses 40% of the time on the average (this
corroborates previous results for TPC workloads [10]).
Consequently, the sophisticated hardware that implements
the branch prediction algorithm is only used half of the
time. In addition, as the BTB miss rate increases, the
branch misprediction rate increases as well. It was shown
[7] that a larger BTB (up to 16K entries) improves the
BTB miss rate for OLTP workloads.

As mentioned in Section 3.2, branch misprediction
stalls are tightly connected to instruction stalls. For the
Xeon this connection is tighter, because it uses instruction
prefetching. In all of the experiments, TL1I follows the
behavior of TB as a function of variations in the selectivity
or record size. The right graph of Figure 5.4 illustrates
this for System D running range selection queries with
various selectivities. Processors should be able to
efficiently execute even unoptimized instruction streams,
so a different prediction mechanism could reduce branch
misprediction stalls caused by database workloads.

5.4 Resource stalls

Resource-related stall time is the time during which the
processor must wait for a resource to become available.
Such resources include functional units in the execution
stage, registers for handling dependencies between
instructions, and other platform-dependent resources. The

contribution of resource stalls to the overall execution
time is fairly stable across the DBMSs. In all cases,
resource stalls are dominated by dependency and/or
functional unit stalls.

Figure 5.5 shows the contributions of TDEP and TFU for
all systems and queries. Except for System A when
executing range selection queries, dependency stalls are
the most important resource stalls. Dependency stalls are
caused by low instruction-level parallelism opportunity in
the instruction pool, i.e., an instruction depends on the
results of multiple other instructions that have not yet
completed execution. The processor must wait for the
dependencies to be resolved in order to continue.
Functional unit availability stalls are caused by bursts of
instructions that create contention in the execution unit.
Memory references account for at least half of the
instructions retired, so it is possible that one of the
resources causing these stalls is a memory buffer.
Resource stalls are an artifact of the lowest-level details of
the hardware. The compiler can produce code that avoids
resource contention and exploits instruction-level
parallelism. This is difficult with the X86 instruction set,
because each CISC instruction is internally translated into
smaller instructions (µops). Thus, there is no easy way for
the compiler to see the correlation across multiple X86
instructions and optimize the instruction stream at the
processor execution level.

5.5 Comparison with DSS and OLTP

We executed a TPC-D workload against three out of four
of the commercial DBMSs, namely A, B, and D. The
workload includes the 17 TPC-D selection queries and a
100-MB database. The results shown represent averages
from all the TPC-D queries for each system.

Figure 5.6 shows that the clock-per-instruction
breakdown for the sequential range selection query (left)
is similar to the breakdown of TPC-D queries (right). The
clock-per-instruction (CPI) rate is also similar between
the two workloads, ranging between 1.2 and 1.8. A closer
look into the memory breakdown (Figure 5.7) shows that

0%

5%

10%

15%

20%

25%

A B C D%
 o

f
q

u
er

y
ex

ec
u

ti
o

n
 t

im
e

SRS IRS SJ

Figure 5.5: TDEP and TFU contributions to the overall execution time for four DBMSs. SRS: sequential
selection, IRS: indexed selection, SJ: join. System A did not use the index in the IRS, therefore this
query is excluded from system A’s results.

0%

5%

10%

15%

20%

25%

A B C D

SRS IRS SJ

TDEP TFU

first-level instruction stalls dominate the TPC-D
workload, indicating that complicated decision-support
queries will benefit much from instruction cache
optimizations.

TPC-C workloads exhibit different behavior than
decision-support workloads, both in terms of clocks-per-
instruction rates and execution time breakdown. We
executed a 10-user, 1-warehouse TPC-C workload against

all four DBMSs (results are not shown here due to space
restrictions). CPI rates for TPC-C workloads range from
2.5 to 4.5, and 60%-80% of the time is spent in memory-
related stalls. Resource stalls are significantly higher for
TPC-C than for the other two workloads. The TPC-C
memory stalls breakdown shows dominance of the L2
data and instruction stalls, which indicates that the size
and architectural characteristics of the second-level cache
are even more crucial for OLTP workloads.

6 Conclusions

Despite the performance optimizations found in today’s
database systems, they are not able to take full advantage
of many recent improvements in processor technology.
All studies that have evaluated database workloads use
complex TPC benchmarks and consider a single DBMS
on a single platform. The variation of platforms and
DBMSs and the complexity of the workloads make it
difficult to thoroughly understand the hardware behavior
from the point of view of the database.

Based on a simple query execution time framework,
we analyzed the behavior of four commercial DBMSs
running simple selection and join queries on a modern
processor and memory architecture. The results from our
experiments suggest that database developers should pay
more attention to the data layout at the second level data
cache, rather than the first, because L2 data stalls are a
major component of the query execution time, whereas L1
D-cache stalls are insignificant. In addition, first-level
instruction cache misses often dominate memory stalls,
thus there should be more focus on optimizing the critical
paths for the instruction cache. Performance
improvements should address all of the stall components
in order to effectively increase the percentage of
execution time spent in useful computation. Using simple
queries rather than full TPC workloads provides a
methodological advantage, because the results are much
simpler to analyze. We found that TPC-D execution time
breakdown is similar to the breakdown of the simpler
query, while TPC-C workloads incur more second-level
cache and resource stalls.

7 Future Work

Although database applications are becoming increasingly
compute and memory intensive, one must measure the I/O
factor as well and determine its effects on the time
breakdown. Our experiments did not include I/O, but we
intend to study that in the near future.

In addition, we intend to compare the behavior of a
prototype system with commercial DBMSs, using the
same workloads. With a prototype DBMS we will verify
the actual cause of major bottlenecks and evaluate
techniques for improving DBMS performance.

8 Acknowledgements

We would like to thank NCR for funding this research
through a graduate student fellowship, Intel and Microsoft
for donating the hardware and the operating system on
which we conducted the experiments for this study. This
work is supported in part by the National Science
Foundation (MIPS-9625558) and Wisconsin Romnes
Fellowships. We would also like to thank Seckin Unlu
and Andy Glew for their help with the Pentium II
counters and microarchitecture, Kim Keeton for her

Figure 5.7: Breakdown of cache-related stall time for A,
B, and D, running the sequential range selection
(left) and TPC-D queries (right).

100 MB TPC-D

A B D

L1 D-stalls L1 I-stalls

L2 D-stalls L2 I-stalls

10% Sequential Range Selection

0%

20%

40%

60%

80%

100%

A B D

C
ac

h
e-

re
la

te
d

 s
ta

ll
ti

m
e

Figure 5.6: Clocks-per-instruction (CPI) breakdown for
A, B, and D running sequential range selection (left)
and TPC-D queries (right).

100 MB TPC-D

A B D
Computation Mem ory stalls

Branch m ispredictions Resource stalls

10% Sequential Range Selection

0.0

0.5

1.0

1.5

2.0

A B D

C
lo

ck
s

p
er

 In
st

ru
ct

io
n

collaboration on the formulae, Babak Falsafi for his
invaluable feedback on the paper, and Miron Livny for his
suggestions on how to design high-confidence
experiments. Last but not least, we thank Jim Gray,
Yannis Ioannidis, Hal Kossman, Paul Larson, Bruce
Lindsay, Mikko Lipasti, Michael Parkes, and Don Slutz
for their useful comments.

9 References

[1] A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, D. E.
Culler, J. M. Hellerstein, and D. A. Patterson. High-
performance sorting on networks of workstations. In
Proceedings of 1997 ACM SIGMOD Conference,
May 1997.

[2] L.A. Barroso, K. Gharachorloo, and E.D. Bugnion.
Memory system characterization of commercial
workloads. In Proceedings of the 25th Annual
International Symposium on Computer Architecture,
pages 3-14, June 1998.

[3] T. M. Chilimbi, M. D. Hill, and J. R. Larus. Cache-
conscious structure layout. In Proceedings of
Programming Languages Design and Implementation
’99 (PLDI), May 1999.

[4] R. J. Eickemeyer, R. E. Johnson, S. R. Kunkel, M. S.
Squillante, and S. Liu. Evaluation of multithreaded
uniprocessors for commercial application
environments.
In Proceedings of the 23rd Annual International
Symposium on Computer Architecture, May 1996.

[5] J. Gray. The benchmark handbook for transaction
processing systems. Morgan-Kaufmann Publishers,
Inc., 2nd edition, 1993.

[6] J. L. Hennessy and D. A. Patterson. Computer
Architecture: A Quantitative Approach. Morgan
Kaufman Publishers, Inc., 1996, 2ond edition.

[7] R. B. Hilgendorf and G. J. Heim. Evaluating branch
prediction methods for an S390 processor using
traces from commercial application workloads.
Presented at CAECW’98, in conjunction with HPCA-
4, February 1998.

[8] Intel Corporation. Pentium® II processor developer’s
manual. Intel Corporation, Order number 243502-
001, October 1997.

[9] K. Keeton. Personal communication, December 1998.
[10] K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael,

and W. E. Baker. Performance characterization of a
quad Pentium pro SMP using OLTP workloads. In
Proceedings of the 25th International Symposium on
Computer Architecture, pages 15-26, Barcelona,
Spain, June 1998.

[11] P. Trancoso, J.L. Larriba-Pey, Z. Zhang, and J.
Torellas. The memory performance of DSS
commercial workloads in shared-memory
multiprocessors. In Proceedings of the HPCA
conference, 1997.

[12] P. Å. Larson, and G. Graefe. Memory management
during run generation in external sorting. In
Proceedings of the 1998 ACM SIGMOD Conference,
June 1998.

[13] J. L. Lo, L. A. Barroso, S. J. Eggers, K.
Gharachorloo, H. M. Levy, and S. S. Parekh. An
analysis of database workload performance on
simultaneous multithreaded processors. In
Proceedings of the 25th Annual International
Symposium on Computer Architecture, pages 39-50,
June 1998.

[14] A. M. G. Maynard, C. M. Donelly, and B. R.
Olszewski. Contrasting characteristics and cache
performance of technical and multi-user commercial
workloads. In Proceedings of the 6th International
Conference on Architectural Support for
Programming Languages and Operating Systems,
San Jose, California, October 1994.

[15] C. Nyberg, T. Barklay, Z. Cvetatonic, J. Gray, and D.
Lomet. Alphasort: A RISC Machine Sort. In
Proceedings of 1994 ACM SIGMOD Conference,
May 1994.

[16] P. Ranganathan, K. Gharachorloo, S. Adve, and L.
Barroso. Performance of database workloads on
shared-memory systems with out-of-order processors.
In Proceedings of the 8th International Conference
on Architectural Support for Programming
Languages and Operating Systems, San Jose,
California, October 1998.

[17] A. Shatdal, C. Kant, and J. F. Naughton. Cache
conscious algorithms for relational query processing.
In Proceedings of the 20th VLDB Conference,
Santiago, Chile, 1994.

[18] S. Unlu. Personal communication, September 1998.
[19] A. Glew. Personal communication, September 1998.
[20] T. Yeh and Y. Patt. Two-level adaptive training

branch prediction. In Proceedings of IEEE Micro-24,
pages 51-61, November 1991.

[21] M. Rosenblum, E. Bugnion, S. A. Herrod, E.
Witchel, and A. Gupta. The impact of architectural
trends on operating system performance. In
Proceedings of the 15th ACM Symposium on
Operating System Principles, pages 285-298,
December 1995.

[22] S. S. Thakkar and M. Sweiger. Performance of an
OLTP Application on Symmetry Multiprocessor
System. In Proceedings of the International
Symposium on Computer Architecture, 1990.

[23] K. Diefendorff. Xeon Replaces PentiumPro. In The
Microprocessor Report 12(9), July 1998.

