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Abstract

dbNSFP is a database developed for functional prediction and annotation of all potential non-

synonymous single-nucleotide variants (nsSNVs) in the human genome. This database

significantly facilitates the process of querying predictions and annotations from different

databases/web-servers for large amounts of nsSNVs discovered in exome-sequencing studies.

Here we report a recent major update of the database to version 2.0. We have rebuilt the SNV

collection based on GENCODE 9 and currently the database includes 87,347,043 nsSNVs and

2,270,742 essential splice site SNVs (an 18% increase compared to dbNSFP v1.0). For each

nsSNV dbNSFP v2.0 has added two prediction scores (MutationAssessor and FATHMM) and two

conservation scores (GERP++ and SiPhy). The original five prediction and conservation scores in

v1.0 (SIFT, Polyphen2, LRT, MutationTaster and PhyloP) have been updated. Rich functional

annotations for SNVs and genes have also been added into the new version, including allele

frequencies observed in the 1000 Genomes Project phase 1 data and the NHLBI Exome

Sequencing Project, various gene IDs from different databases, functional descriptions of genes,

gene expression and gene interaction information, among others.
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Introduction

Exome sequencing has become a popular and effective strategy to identify variants causing

Mendelian diseases or extreme phenotypes. Non-synonymous single nucleotide variants

(nsSNVs) are the major candidate variants in such studies. Typically, exome sequencing will

discover a large number of nsSNVs, among which many are novel (e.g. not reported in

dbSNP). Researchers will rely on various functional predictions and annotations to filter and

prioritize those nsSNVs to shorten the list for further (experimental) validation. To facilitate

this process, we developed dbNSFP v1.0 (Liu et al. 2011).
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Based on the Consensus Coding Sequence (CCDS) version 20090327 (Pruitt et al. 2009),

dbNSFP v1.0 compiled a collection of 75,931,005 nsSNVs in the human genome, including

both previously reported and potentially novel ones. For each nsSNV, four functional

prediction scores: SIFT (Kumar et al. 2009), Polyphen2 (Adzhubei et al. 2010), LRT (Chun

and Fay 2009) and MutationTaster (Schwarz et al. 2010); and one conservation score:

phyloP (Siepel et al. 2006), were collected. Since the publication of dbNSFP v1.0, it has

attracted much attention and been broadly used by human geneticists and sequencing centers

as well. It has been recommended by the Faculty of 1000 and adopted by various software

(e.g. Lindenbaum et al. 2011; Li et al. 2012; San Lucas et al. 2012; Chang and Wang 2012;

Sifrim et al. 2012; Zhang et al. 2013) and databases (e.g. Li et al. 2011).

To fulfill the increasing demand for better functional annotation for SNVs discovered in

exome sequencing studies, we have upgraded the dbNSFP to v2.0. Now the database is

separated into two parts, dbNSFP_variant and dbNSFP_gene. As their names indicate, the

former focuses on variant annotations (including prediction scores and conservation scores),

and the latter focuses on gene annotations. As to variant annotation, the database has

expanded its SNV collections not only based on a more up-to-date GENCODE 9 annotation

(Harrow et al. 2012), but also included all potential essential splice site SNVs (ssSNVs),

which are another type of candidate variants in exome sequencing studies. Its core score

collection has added two more functional prediction scores: MutationAssessor (Reva et al.

2011) and FATHMM (Shihab et al. 2013); and two more conservation scores: GERP++

(Davydov et al. 2010) and SiPhy (Garber et al. 2009; Lindblad-Toh et al. 2011). To facilitate

filtering common SNVs observed in human populations, allele frequencies from the 1000

Genomes Project phase 1 data (Abecasis et al. 2012) and the NHLBI Exome Sequencing

Project data (Fu et al. 2013) were added. As to gene annotation, dbNSFP v2.0 has collected

rich functional annotations for all genes in the database, including various IDs for different

databases, functional descriptions, and gene expression and gene interaction information,

among others. Details of the upgrade and preliminary analyses of the core scores are

reported in the following sections.

New and Updated Functional Annotations

As CCDS might be over-conservative on gene annotation and human reference build

NCBI36/hg18 has been replaced by GRCh37/hg19, we completely rebuilt the backbone

SNVs of dbNSFP based on GENCODE 9. In short, at each coding site and essential splice

site (defined as the first two and last two nucleotide sites of an intron) we arbitrarily

“mutated” the reference allele to the other three alternative alleles and collected them into

the database. The total backbone SNVs now reached 89,617,785 (including 87,347,043

nsSNVs (Table 1) and 2,270,742 ssSNVs), which is an 18% increase compared to dbNSFP

v1.0. Among them, 89,572,881 contain hg18 coordinates, obtained via the liftOver tool from

the UCSC Genome Browser (Meyer et al. 2012), to facilitate queries based on hg18.

Three functional predictions scores and one conservation score of dbNSFP v1.0 (SIFT,

Polyphen2, MutationTaster and PhyloP) have been updated. To avoid confusion, the original

scores from the algorithms (not the re-scaled scores as in v1.0) were used, except LRT, for

which we believe our monotone re-scaled score is easier to interpret than its original score;

Liu et al. Page 2

Hum Mutat. Author manuscript; available in PMC 2014 July 24.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



and missing scores were no longer imputed (as in v1.0) and were presented as a single dot

(“.”). In the dbNSFP v2.0, we collected Polyphen2 version 2.2.2 scores based on both HDIV

and HVAR training sets. As the same nsSNV may have multiple HDIV (or HVAR)

predictions and scores according to different amino acid positions of different transcripts of

the same Uniprot (The UniProt Consortium 2011) gene, all scores were included (separated

by “;”) and their orders corresponded to the Uniprot accession numbers and amino acid

positions in the Uniprot_acc column and the Uniprot_aapos column, respectively. As to

Polyphen2 version 2.2.2, the score thresholds separating “probably damaging”, “possibly

damaging” and “benign” predictions are 0.956 and 0.453 for HDIV, and 0.908 and 0.447 for

HVAR, respectively. Throughout this paper, we regard score 0.5 as the threshold for

Polyphen2's binary predictions (i.e. “deleterious” versus “tolerated”).

Two new functional predictions scores, MutationAssessor and FATHMM, have been added.

Precomputed scores from MutationAssessor release 2 (hg19) were downloaded from http://

mutationassessor.org/. We used its functional impact combined score as our

MutationAssessor score, which ranges from -5.545 to 5.975; the larger the score the more

likely it will be deleterious. MutationAssessor provides four types of predictions (to be

functional): high, medium, low and neutral. To form binary predictions, we treat high and

medium predictions as “deleterious” and low and neutral predictions as “tolerated”.

FATHMM v2.1 database were downloaded from http://fathmm.biocompute.org.uk/ and

installed on our local server, and its default scores (weighted for human inherited-disease

mutations with Disease Ontology) for all the backbone SNVs were then retrieved. These

score ranges from -18.09 to 11.0; the smaller the score the more likely it will be deleterious.

Binary prediction is also provided and the threshold separating “deleterious” and “tolerated”

is -1.5. In case there are more than one FATHMM scores for the same nsSNV due to

isoforms, we took the smallest score (most deleterious) as our FATHMM score.

We have also added two new conservation scores: GERP++ and SiPhy. GERP++ base-wise

scores were downloaded from http://mendel.stanford.edu/SidowLab/downloads/gerp/.

Although GERP RS scores were typically used to measure the conservation of a nucleotide

site in Mendelian disease studies (e.g. Cooper et al. 2010), an alternative measure might be a

scaled RS score with the corresponding neutral rate (NR) of the site (i.e. RS/NR ratio).

Therefore, both NR and RS scores were included in the database. SiPhy scores based on 29

mammalian genomes were downloaded from http://www.broadinstitute.org/mammals/2x/

siphy_hg19/. We used its logOdds scores as our SiPhy scores. We also included the SiPhy

estimated stationary distribution of A, C, G and T of the site (29way_pi) in our database to

facilitate alternative conservation measures. For both the RS and logOdds scores, the larger

the score the more conserved the site.

Additional SNV annotations include: observed alternative allele frequencies in the 1000

Genomes Project phase 1 data; observed alternative allele frequencies in the NHLBI Exome

Sequencing Project ESP6500 data set (from ANNOVAR (Wang et al. 2010)); rs numbers

from a cleaned version of dbSNP build 129 (from UniSNP, http://research.nhgri.nih.gov/

tools/unisnp/); ancestral allele (from the 1000 Genomes Project phase 1 data); reference

amino acid (aaref); alternative amino acid (aaalt); coding sequence strand (+ or -); reference

codon; SNV position in the codon (1, 2, or 3); codon degenerate type (0, 2 or 3); SLR test
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statistic of the codon, which is a measure of natural selection acting on the codon

(Massingham and Goldman 2005); the protein domain(s) the SNV resides on, according to

the InterPro database (Hunter et al. 2012); and amino acid position(s) (aapos) as to Ensembl

transcript(s). If there are multiple amino acid position(s) for the same SNV, the order of the

positions corresponds to the multiple Ensembl transcript IDs in the Ensembl_transcriptid

column. ssSNVs will have missing (“.”) in the aaref and aaalt columns and “-1” in the aapos

column.

To facilitate gene-based SNV prioritization, we have strengthened the functional annotation

of genes and added the following information: gene IDs from multiple databases (HGNC

(Gray et al. 2013), Uniprot, Entrez Gene (Maglott et al. 2011), CCDS, Refseq (Pruitt et al.

2012), UCSC, and MIM (Amberger et al. 2011)); pathway information, function

descriptions, disease descriptions and MIM phenotype IDs from Uniprot; trait association

from the GWAS catalog (Hindorff et al. 2009); eGenetics (Kelso et al. 2003) and GNF/Atlas

(Su et al. 2002) gene expression data from BioMart (Guberman et al. 2011); gene interaction

data from IntAct (Kerrien et al. 2011) and BioGRID (Chatr-aryamontri et al. 2012); and

estimated probability that the gene is haploinsufficient (Huang et al. 2010) and recessive

(MacArthur et al. 2012).

A Summary of Functional Prediction Scores and Conservation Scores

As different functional prediction scores and conservation scores are derived from different

methods using different information (summarized in Table 2), they have different ranges and

distributions. Evenly dividing each score into 100 bins between its minimum and maximum,

Figure 1 shows the frequency of each bin collected in dbNSFP v2.0. SIFT, Polyphen2 (both

HDIV and HVAR) and MutationTaster have U-shape distributions with majority of the

scores close to either 0 or 1. LRT (rescaled) presents an L-shape distribution with majority

of its scores close to 0. FATHMM and GERP++ show skewed unimodal distributions, while

MutationAssessor, PhyloP and SiPhy show complex multimodal distributions.

Understanding the correlation between the scores is important for SNV prioritization.

Typically consensus prediction by multiple scores is considered more reliable than a

prediction by a single score. However, some scores are more correlated than others;

therefore an agreed prediction of two less correlated scores carries more weight than that of

two highly correlated scores. Based on absolute Spearman's rank correlation coefficient

(aRCC), correlation strengths between the scores are mostly low to moderate (0.25-0.65)

(Table 3). Exceptions include high correlations between the two Polyphen2 scores (0.97)

and the three conservation scores (0.78-0.90), and very low correlations between FATHMM

and other scores (0.13-0.21) (Table 3). The pairwise agreement of the binary predictions

between the scores ranges from 42.05% (between FATHMM and Polyphen2-HDIV) to

76.82% (between MutationTaster and LRT), when excluding the 88.97% agreement

between the two Polyphen2 scores (Table 3). Figure 2 shows the UPGMA dendrogram of

the scores when using 1-aRCC as a measure of distance between scores. It is worth notice

that LRT and MutationTaster are more closely related to the conservation scores than other

functional prediction scores. As to LRT, this observation is not surprising because it is based

on the comparison of aligned coding sequences of 32 vertebrate species. As to
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MutationTaster, on the other hand, this observation suggests that conservation information is

heavily weighted in its prediction model. Another interesting observation from Table 3 and

Figure 2 is that FATHMM has low correlation with any other score.

The numbers of missing data in the prediction scores and conservation scores per

chromosome can be derived from Table 1. In general, conservation scores have low missing

data rates (0.07%-1.50%), while prediction scores' missing rates range from 11.17% (SIFT)

to 22.07% (LRT). The missing rates are higher than those of dbNSFP v1.0, partially due to

the fact that the GENCODE annotation of a gene is less stringent than that of CCDS. Figure

3 shows the percentages of dbNSFP v2.0 entries having 0 to 6 (non-missing) prediction

scores, and the percentages of those having 0 to 3 (non-missing) conservation scores.

New Features of the Companion Search Program

The companion search program written in Java (search_dbNSFP) has also been upgraded.

The human reference sequence build GRCh37/hg19 is now the default choice. To search

SNVs based on hg18, users need to use the “-v hg18” option. The search program now

supports vcf format for the input file. If the file name has an extension of “vcf”, the program

will automatically query the database by the “chr pos ref alt” format. Alternatively, users

can also search SNVs by “chr pos” and “chr pos ref alt refAA altAA” formats, by gene

name or various database IDs, and by Uniprot ID/access number and protein position. By

default all columns of dbNSFP2.0_variant and most columns of dbNSFP2.0_gene (except

the first three columns) will be written to a user specified output file. Users can also specify

the columns to output using the new “-w” option. All queries that do not have a match in the

database will be written to an “.err” file. More details can be found in the readme file of the

companion search program included in the database distribution package.

Suggested Usage

The main purpose of the dbNSFP is to facilitate the SNV filtering/prioritizing step in

exome-sequencing based Mendelian disease studies. To filter/prioritize SNVs based on the

contents of the database, we have the following suggestions: (1) filter in (i.e. retain) nsSNVs

and ssSNVs from a list of SNVs discovered through sequencing by searching the dbNSFP

using the companion search program; (2) filter out common nsSNVs and ssSNVs by

removing any SNV with a MAF larger than a curtain threshold (e.g. 5%) in any of the 1000

Genomes Project populations and NHLBI Exome Sequencing Project populations; (3)

prioritize (i.e. rank) SNVs by the number of prediction scores supporting a “deleterious”

prediction (from all Polyphen2 scores, pick one score, e.g. the most deleterious one, to

represent the Polyphen2 score); (4) prioritize SNVs by a conservation score (since the three

conservation scores in the dbNSFP v2.0 are highly correlated); (5) filter out SNVs in genes

that are not expressed in the disease related tissue(s); (6) highlight SNVs in genes that cause

related MIM diseases or are associated with related phenotypes based on GWAS; (7)

highlight SNVs in genes that interact with disease causing genes; and (8) highlight SNVs in

genes that are in disease related pathways. At last, we want to give some friendly warnings

to the users of dbNSFP or other functional prediction tools: all methods have their own

Liu et al. Page 5

Hum Mutat. Author manuscript; available in PMC 2014 July 24.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



limitations; do not blindly trust any single method; using consensus prediction or majority

vote might be a good practice in general but not a silver bullet.
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Figure 1.
Distributions of the prediction and conservation scores.
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Figure 2.
UPGMA dendrogram of the prediction and conservation scores.
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Figure 3.
Percentages of the dbNSFP v2.0 entries having 0 to 6 (non-missing) prediction scores (A),

and the percentages of those having 0 to 3 (non-missing) conservation scores (B).
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Table 2

A summary of functional prediction scores and conservation scores.

Score Training data Information used Prediction model

PolyPhen-2

UniProtKB/UniRef100; PDB/DSSP;
UCSC alignments of 45 vertebrate
genomes

eight sequence-based and three
structure-based predictive
features naive Bayes classifier

SIFT SWISS-PROT/TrEMBL
sequence homology based on
PSI-BLAST position specific scoring matrix

Mutation Taster
UniProt; homologous genes in humans
and 10 other species; dbSNP; HapMap

conservation, splice site, mRNA
features, protein features; naive Bayes classifier

LRT
coding sequences of 32 vertebrate
species sequence homology likelihood ratio test of codon neutrality

Mutation Assessor
homologous sequences from Uniprot
identified by BLAST

sequence homology of protein
families and sub-families within
and between species combinatorial entropy formalism

FATHMM
homologous sequences from
UniRef90, SUPERFAMILY and Pfam sequence homology hidden Markov models

SiPhy genomes of 29 mammals multiple alignments
inferring nucleotide substitution pattern
per site

GERP++ genomes of 34 mammals
multiple alignments and
phylogenetic tree

maximum likelihood evolutionary rate
estimation

PhyloP genomes of 33 placental mammals
multiple alignments and
phylogenetic tree

distributions of the number of
substitutions based on phylogenetic
hidden Markov model
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