
dbrec — Music Recommendations Using
DBpedia?

Alexandre Passant

Digital Enterprise Research Institute,
National University of Ireland, Galway

alexandre.passant@deri.org

Abstract. This paper describes the theoretical background and the im-
plementation of dbrec, a music recommendation system built on top of
DBpedia, offering recommendations for more than 39,000 bands and solo
artists. We discuss the various challenges and lessons learnt while build-
ing it, providing relevant insights for people developing applications con-
suming Linked Data. Furthermore, we provide a user-centric evaluation
of the system, notably by comparing it to last.fm.

Key words: Semantic Web Applications, Linked Data, Recommenda-
tion Systems, Semantic Distance, DBpedia

1 Introduction

Since its first steps in 2007, the Linking Open Data (LOD) cloud has grown
considerably, as shown in Fig. 11. However, besides recent initiatives outreaching
how to build applications using it [5] [7], there is still room for more end-user
applications (i.e. not semantic search engines nor APIs) that consume Linked
Data. While we can argue that the data itself is the most valuable component,
building innovative applications would lead to a virtuous circle enriching the
value of this global network, by analogy with Metcalfe’s law [11].

In this paper, we describe dbrec — http://dbrec.net —, a music recom-
mendation system based on Linked Data (in particular on DBpedia) offering
recommendations for more that 39,000 bands and solo artists. In addition, a core
component of dbrec is its explanation feature, provided as a side effect of us-
ing Linked Data for computing the recommendations. We provide a user-centric
evaluation of the system in order to identify how it compares to existing sys-
tems, in particular with last.fm2, and how users rate its novel recommendations.
Furthermore, besides presenting the theoretical background and the architecture
of the system, we also discuss some lessons learnt when building it, in terms of

? The work presented in this paper has been funded by Science Foundation Ireland
under Grant No. SFI/08/CE/I1380 (Ĺıon-2).

1 Based on [2] and http://richard.cyganiak.de/2007/10/lod/
2 http://last.fm



2 Alexandre Passant

01.07.07 01.10.07 01.01.08 01.04.08 01.07.08 01.10.08 01.01.09 01.04.09 01.07.09
Time

20

40

60

80

100

D
at
as
et
s

Fig. 1. The growth of datasets in the Linking Open Data cloud

data quality, architecture considerations as well as query patterns and scalabil-
ity. Thus, our aim is to provide a set of insights and best practices that can be
re-used when building end-user applications that consume Linked Data.

The rest of the paper is organised as follows. In Section 2, we briefly de-
scribe the LDSD algorithm — Linked Data Semantic Distance —, used as a
basis of our recommendation engine. In addition, we detail its related ontology,
used to represent these distances and their explanations in RDF. In Section 3,
we discuss the dbrec architecture, explaining how the previous algorithm has
been applied to DBpedia to compute recommendations for more than 39,000
resources. Section 4 describes the evaluation of the system, including compar-
ison with last.fm, evaluation of the novel recommendations and of the system
as a whole. Then, in Section 5, we discuss three particular lessons learnt when
building dbrec, which are however relevant in the broader Linked Data context:
(1) data quality; (2) architecture considerations; and (3) SPARQL query pat-
terns and scalability. We then discuss related work in Section 6 before concluding
the paper with an overview of future challenges for dbrec.

2 Linked Data Semantic Distance

2.1 Motivation

Our main motivation was to identify how semantic distance [21] measures could
be applied to resources published on the Web as Linked Data [1]. Specifically,
and while semantic distance have been studied over time in various contexts [21]
[3] [6], our goal was to identify and to apply such measures by considering some
of the main characteristics of Linked Data:

– relying only on links — i.e. not taking into account literal values and their
linguistic proximity;



dbrec — Music Recommendations Using DBpedia 3

– relying only on instance data — i.e. not taking into account ontologies used
to describe resources, since LOD is more oriented towards publishing instance
data than using formal ontologies;

– considering dereferencable URIs — so that distances can be computed simply
by accessing URIs and retrieving corresponding RDF data.

Our aim was then to identify the usefulness of the Linked Data principles for
computing semantic distance between particular resources.

2.2 A Conceptual Model for Linked Data

While Linked Data is generally introduced using its four publishing principles
[1] — which make sense from a programmatic point of view — there is a need
to ground it into a theoretical framework to define algorithms using it. We thus
provide the following definition of a Linked Data dataset, whether it is centralised
or distributed on the Web — and we can then consider LOD =

⋃
i Gi.

Definition 1 A dataset following the Linked Data principles is a graph G such
as G = (R,L, I) in which R = {r1, r2, ..., rn} is a set of resources — identified by
their URI —, L = {l1, l2, ..., ln} is a set of typed links — identified by their URI
— and I = {i1, i2, ..., in} is a set of instances of these links between resources,
such as ii = 〈lj , ra, rb〉.

This definition voluntary excludes literals, as we focused only on the URI-
linking aspect of Linked Data, as discussed in [1]: “The simplest way to make
linked data is to use, in one file, a URI which points into another”.

2.3 LDSD — Linked Data Semantic Distance

Based on this definition, we defined a Linked Data Semantic Distance (LDSD)
measure to compute the distance between two resources published as Linked
Data3, normalised in the [0, 1] interval. So far, our measure considers only re-
sources linked either directly or through a third resource, and recursive patterns
such as SimRank [15] may be used in the future. Since LDSD — and some of
its initial variants — has already been discussed in [19], we will not present it in
too many details. At a glance, for two resources ra and rb, LDSD identifies four
dimensions (direct and indirect links, both incoming and outcoming) to compute
their distance, using the following definitions.

Definition 2 Cd is a function that computes the number of direct and distinct
links between resources in a graph G. Cd(li, ra, rb) equals 1 if there is an in-
stance of li from resource ra to resource rb, 0 if not. By extension Cd can be
used to compute (1) the total number of direct and distinct links from ra to rb
(Cd(n, ra, rb)) as well as (2) the total number of distinct instances of the link li
from ra to any node (Cd(li, ra, n)).

3 Note that we use the term distance while the measure may actually not be symmetric.



4 Alexandre Passant

Definition 3 Cio and Cii are functions that compute the number of indirect
and distinct links, both outcoming and incoming, between resources in a graph
G. Cio(li, ra, rb) equals 1 if there is a resource n that satisfy both 〈li, ra, n〉 and
〈li, rb, n〉, 0 if not. Cii(li, ra, rb) equals 1 if there is a resource n that satisfy
both 〈li, n, ra〉 and 〈li, n, rb〉, 0 if not. By extension Cio and Cii can be used to
compute (1) the total number of indirect and distinct links between ra and rb
(Cio(n, ra, rb) and Cii(n, ra, rb), respectively outcoming and incoming) as well as
(2) the total number of resources n linked indirectly to ra via li (Cio(li, ra, n)
and Cii(li, ra, n), respectively outcoming and incoming)

LDSD(ra, rb) =

1

1 +
∑

i
Cd(li,ra,rb)

1+log(Cd(li,ra,n))
+

∑
i

Cd(li,rb,ra)
1+log(Cd(li,rb,n))

+
∑

i
Cii(li,ra,rb)

1+log(Cii(li,ra,n))
+

∑
i

Cio(li,ra,rb)
1+log(Cio(li,ra,n))

Fig. 2. The LDSD measure

2.4 The LDSD Ontology

In addition to the measure itself, and since we focus on a Linked Data approach,
our aim was to provide the output of such measures also available on the Web
as Linked Data. We thus designed a lightweight LDSD ontology4, accompanying
the previous measure and containing two main classes:

– ldsd:Distance, in order to represent the distance between two resources
(using ldsd:from and ldsd:to) and its value (ldsd:value5)

– ldsd:Explanation (and four subclasses: ldsd:DirectIn, ldsd:DirectOut,
ldsd:IndirectIn and ldsd:IndirectOut), in order to store the links and
the property-value pairs (ldsd:property and ldsd:node) used to measure
the distance, and how much similar links appear in the dataset (ldsd:total).

Here lies one of the first advantages of using Linked Data to compute seman-
tic distance. The links that are traversed by the algorithm are all typed, and
this is consequently easy to know how the distance has been computed, as we
will show when presenting dbrec’s user-interface (Section 3.4). As an example,
the following snippet of code (Listing 1.1) represents that Elvis Presley is at
a distance of 0.09 from Johnny Cash, because (among others) both have the
same value for their rdf:type property (http://dbpedia.org/class/yago/
SunRecordsArtists), shared only by 19 artists in the http://dbpedia.org

dataset.
4 Available at http://dbrec.net/ldsd/ns#
5 rdf:value was not used due to its lack of formalism — http://www.w3.org/TR/

rdf-schema/#ch_value



dbrec — Music Recommendations Using DBpedia 5

@prefix ldsd: <http :// dbrec.net/ldsd/ns#> .

<http :// dbrec.net/distance /774 a32aa -dede -11de -84a3

-0011251 e3563 > a ldsd:Distance ;

ldsd:from <http :// dbpedia.org/resource/Johnny_Cash > ;

ldsd:to <http :// dbpedia.org/resource/Elvis_Presley > ;

ldsd:value "0.0977874534544" .

<http :// dbrec.net/distance /774 a32aa -dede -11de -84a3

-0011251 e3563 > ldsd:explain [

a ldsd:IndirectOut ;

ldsd:property <http :// www.w3.org /1999/02/22 -rdf -syntax -

ns#type > ;

ldsd:node <http :// dbpedia.org/class/yago/

SunRecordsArtists > ;

ldsd:total "19" ] .

Listing 1.1. Representing distance between Johnny Cash and Elvis Presley.

3 The dbrec Recommendation System

3.1 System Architecture

Based on our previous findings, we implemented a music recommendation system
in order to demonstrate the usability of the LDSD measure for an end-user
application. To do so, we computed semantic distance for all artists referenced
in DBpedia. While it does not involve cross-datasets recommendations, which are
possible using our algorithm, it however offers two main advantages. First, there
are more than 39,000 artists available in DBpedia for which recommendations
can be built. Second, DBpedia also provides pictures and description of artists
that can be used to build the system’s user interface.

In order to build the system, we followed four steps (Fig. 3): (1) identify the
relevant subset from DBpedia; (2) reduce the dataset for query optimisation;
(3) compute distances using the LDSD algorithm and represent them using its
ontology; (4) build a user-interface for browsing recommendations.

RDF Data RDF Data

(1) Dataset 
identification

(2) Dataset reducing

(3) LDSD 
computation

(4) User 
interface

Fig. 3. The dbrec architecture



6 Alexandre Passant

3.2 Identifying the Relevant Dataset from DBpedia

While the LDSD algorithm can be simply translated to SPARQL queries and
applied to any public endpoint, this approach has some drawbacks. Indeed, DB-
pedia’s public endpoint is limited to a certain number of answers per query, so
each query must be split in sub-queries, and results must then be recomposed.

Consequently, we setup our own replica of the dataset to compute the rec-
ommendations locally. Instead of relying on a complete DBpedia dump, and
as we aim at building music recommendations only, we limited ourselves to
all instances of dbpedia:MusicalArtist and dbpedia:Band from DBpedia. In
addition, according to the LDSD algorithm, we needed both incoming and out-
coming links for each artist. Fortunately, each data file in DBpedia (retrieved
when dereferencing the resource URI with the proper HTTP header) provides
this information, for both incoming and outcoming links. This also means that
the distance could be measured live, by dereferencing URIs of relevant resources,
while it would obviously be more time consuming.

The original dataset, including more than 39,000 resources, included 3,004,351
triples. We then cleaned it to get a smaller and more accurate dataset, for
two main reasons. On the one hand, we wanted to remove datatype proper-
ties, as they are not relevant for our experiment6. Removing them lead to a
dataset containing 2,247,019 triples, thus reducing the original one from about
25.2% — implying that 1/4 of DBpedia assertions, in our dataset, involve lit-
erals. On the other hand, we identified lots of redundancy and inconsistencies
in our DBpedia subset7. Especially, many links between resources are defined
redundantly as http://dbpedia.org/ontology/xxx and at the same time as
http://dbpedia.org/property/xxx. We then removed duplicates, leading to
1,675,711 triples, i.e. only 55.7% of the original dataset.

We also analysed the dataset to identify how artists are related to each other
(by direct links) in DBpedia (Fig. 4). We observed that 21,211 of them (more
than 50%) are not linked to any artists, and 9,555 are linked to three of them,
the maximum being 14 links from one artist to 14 others. Then, by using indi-
rect links for computing semantic distance with LDSD, we are able to provide
recommendations for these 21,211 isolated artists.

3.3 Cleaning and Reducing the Dataset

While being optimised in the previous step, the computation time was still far
from optimum. Even for a recommendation time of 40 seconds per artist (see
Section 5), it would have taken 15 days to compute the whole recommendations
dataset. We then focused on further optimisations not at the query-engine level,
but at the dataset level, analysing it more deeply, and we identified that: (1) 188
distinct properties are used to link artists together directly; (2) 578 distinct

6 We agree that using and comparing literals may help in the distance measurement,
but our focus was to consider only a link-based approach.

7 We relied on DBpedia 3.3.



dbrec — Music Recommendations Using DBpedia 7

0 20 40 60 80 100 120 140 160
Properties linking to other artists

1

10

100

1000

10000

Ar
tis

ts

Fig. 4. Distribution of properties between artists in DBpedia

properties are used to link an artist to any resource (including artists) ; (3) 767
distinct properties are used to link any resource (including artists) to an artist.
We then focused on data curation: (1) on the one hand to remove properties and
property-values that are useless for computing the LDSD measures, and (2) on
the other hand, to solve some data quality issues in DBpedia.

From the 188 properties linking two artists, we identified that 18 were used
as links between artists while it was not their main purpose8, such as the
property dbprop:notableInstruments — used to link an artist to its instru-
ment(s) — or dbprop:nationalAnthem — linking a country to its anthem.
Moreover, we identified 35 properties that were wrongly defined — while how-
ever used two times of less —, such as http://dbpedia.org/property/extra18
and http://dbpedia.org/property/klfsgProperty. Then, from the 578 prop-
erties used to link artists to resources, 183 were used only one time and were
consequently useless for our recommendations, since it imply there is no more
than one artist using on. In addition, 36 of these properties were wrongly defined.
Furthermore, we identified 11 useless property-value combinations to compute
our recommendations, by being too generic such as rdf:type foaf:Agent. Fi-
nally, from the 767 properties used to link any resource to an artist, 336 were
removed as used only to link to a single artist, and 115 were wrongly written.

We then cleaned-up the dataset and reduced it to a total of 1,073,077 triples.
We eventually ran LDSD on this dataset. The computation time took a total of
9,797 minutes9, and resulted in 50,753,494 new triples describing the recommen-
dations (and the explanations) modelled using the previous LDSD ontology. The

8 At least from what their general usage on DBpedia can tell, since they do not have
any domain or range.

9 On a 2 x AMD Opteron 250 with 4GB memory running Ubuntu 8.10/x86 64.



8 Alexandre Passant

time to compute the recommendation for a single resource obviously depended
on the artist and related properties, as one can see in Fig. 510. In addition,
Fig. 6 displays the result of the computation (distance only, 10 first results) for
dbpedia:Johnny_Cash.

Artist Time (sec.)

Ramones 25.20

Johnny Cash 61.16

U2 50.06

The Clash 43.34

Bar Religion 34.98

The Aggrolites 7.35

Janis Joplin 23.12

Fig. 5. Computation time
of recommendations for
various artists

Artist Distance

Elvis Presley 0.0977874534544

June Carter Cash 0.105646049225

Willie Nelson 0.13221654708

Kris Kristofferson 0.140717564665

Bob Dylan 0.146635674481

Marty Robbins 0.167300943904

Rosanne Cash 0.17826142135

Charlie McCoy 0.183656756953

Gene Autry 0.191014026051

Carl Smith 0.198003626307

Fig. 6. 10 first recommen-
dations for Johnny Cash
using LDSD

3.4 User-interface

Thanks to the use of Linked Open Data, building the user-interface was quite
straightforward. As each artist and band is identified by a reference URI, ab-
stracts and pictures can be obtained by simply dereferencing it. We then build a
front-end providing recommendation (ranked by distance) for any of the 39,000
artists and bands of our dataset, including related pictures and abstracts. Rec-
ommendation pages are rendered via SPARQL queries ran over the computed
LDSD data, and pages also provide links to YouTube videos, Twitter messages
and last.fm profiles in order to enhance the browsing experience and let users
listen to related songs. In addition, in order to let developers build third-party
applications on top of dbrec, recommendations are also available as RDFa using
the LDSD ontology.

Explanation are provided on demand, through a “Why are they related?” link
that opens a pop-up launching another query to retrieve the explanations. These
explanations are provided using human-readable labels of the property and their
values, as seen in Fig. 7, explaining the recommendation of Elvis Presley for one
user browsing the page about Johnny Cash.

10 Average time of 5 consecutive runs.



dbrec — Music Recommendations Using DBpedia 9

Fig. 7. Example of dbrec explanations

4 Evaluation

4.1 Context of the Evaluation

In order to evaluate dbrec, we focused on standard user evaluations protocols
for recommender systems, both off-line an on-line [12]. We interviewed 10 par-
ticipants: 2 women and 8 men, ages ranging from 24 to 34. Interviews were
conducted face to face (besides one that has to be done by phone) and last be-
tween 35 and 55 minutes. Before the evaluation, we asked users to submit a list
of 10 to 15 bands they listen to and appreciate, from which we randomly selected
10 bands (ensuring that all belong to the dbrec dataset).

Then, the interviews involved two main steps. First, an off-line evaluation:
for five (randomly chosen) bands from the previous list, we provided users with
two sets of ten recommendations each. One was generated from dbrec, the other
one from last.fm. Users were not aware of this and were just given the two lists
randomly, simply telling them they came from different systems. We asked inter-
viewees to rate to each recommendation (from 1 — poor — to 5 — excellent —)
or to mention if that was an unknown recommendation. Note that we asked them
to rank the relevance of the recommendations, not if they like that particular
band or artist.

Then, we conducted an on-line evaluation for the five remaining bands. Users
sat in front of the system and were asked to browse the recommendation list and
to rate the first 10 recommendations. However, as opposed to the first part, when
a band was unknown, users could read the description of each recommended
artist and check the explanations provided by dbrec. We also told users that



10 Alexandre Passant

checking the explanations was not mandatory, as we wanted to observe how
often they use it or not11.

4.2 dbrec versus Last.fm

Regarding the off-line evaluation, the average mark for dbrec recommendations
was 3.37(±1.19) (and 3.44(±1.25) when combined with the results from the on-
line part), while the average mark for last.fm was 3.69(±1.01). We also evaluated
the precision of both recommendations, considering the number of relevant items
provided in both lists. To do so, we considered different threshold in the multi-
point scale used to evaluate the recommendations. Table 1 shows the different
values for both dbrec and last.fm (t=x means that we consider a recommendation
as being relevant it it is ranked x or higher). In spite of a slight advantage for
last.fm, dbrec achieves a reasonable score, especially considering that it does
not use any collaborative filtering approach, and relies only on links between
resources. Measuring the recall of recommendation was however not possible, as
it would have implied users to know and check all bands of the dbrec dataset.

dbrec (off-line only) dbrec (off-line and on-line) last.fm

t=2 92.05 90.59 98.32

t=3 76.63 77.72 87.91

t=4 49.06 51.23 58.05

t=5 20.09 25 25.165
Table 1. Precision of recommendations: dbrec versus last.fm

4.3 Evaluating Novel Recommendations

An interesting outcome of the evaluation was that many recommendations were
unknown to users: 62% for dbrec (59.6% when combining off-line and on-line
parts) and 40.4% for last.fm. However, as argued by [4]: “novel recommendations
are sometimes necessary in order to improve the users experience and discovery
in the recommendation workflow”. To that end, we used the on-line setup to eval-
uate quality of the novel recommendations provided by dbrec. For that on-line
part, 310 recommendations (on a total of 50012) were identified as unknown, i.e.
being novel. Among these 310, 274 have been evaluated. One user justified that,
without listening to the music and even with the explanations, he was not able
to provide any mark for them, while other users were able to do so, judging the
recommendations by reading descriptions and explanations. Among these 274
remaining recommendations, the average rate for novel recommendations was

11 For the phone interview, we asked the user to tell us if he was using them, since we
were not able to setup a screen-sharing teleconference

12 10 users× 5 bands× 10 recommendations.



dbrec — Music Recommendations Using DBpedia 11

3.05(± 1.09). In [4], the authors also showed that, based on user-centric evalua-
tion, the average mark for novel recommendations was less than 313 and argued
“this probably emphasises the need for adding more context when recommending
unknown music. Users might want to understand why a song was recommended”.
We hence believe than the features provided by dbrec, namely the description of
each recommendation and most of all its explanation, made users better under-
stand and appreciate the recommendations — and consequently put this average
mark higher.

Furthermore, we also evaluated the precision of these recommendations, con-
sidering various thresholds as previously (Table 2). We the observed than even
with a threshold of 3 (i.e. only good, very good or excellent recommendation),
the precision is more than 70%, while still more than 37% considering only very
good or excellent ones.

Precision

t=2 t=3 t=4 t=5

89.42 70.80 37.59 7.3
Table 2. Precision for novel recommendations on dbrec

Overall, in terms of recommendations, dbrec achieves respectable perfor-
mances comparable to last.fm and to other systems. However, instead of relying
on collaborative-filtering algorithms (based on proprietary data from million of
users), it only requires a set of publicly available open-data. This clearly shows
the advantage of the Linking Open Data initiative for building such recommender
systems.

4.4 Evaluating the UI and the Explanations

Finally, in addition to the recommendations themselves, we asked users to agree
(or not) on a set of adjectives describing (1) the system and its user-interface
in general, and (2) the explanations in particular. As results show (Table 3),
all users positively acknowledged both the system and its explanations. There
are however efforts to be made regarding the explanations and their related
presentation, still considered as “Too geeky” by six users.

Furthermore, we observed that users relied on explanations for 198 of the 310
unknown recommendations. In addition, they relied on it for 24 of the 190 known
recommendations, wanting to understand the reason of the recommendation, as
discussed in [16].

13 Respectively 3.03(±1.19) for Collaborative Filtering, 2.77(±1.20) for Hybrid and
2.57(±1.19) for Audio Content-Based recommendations.



12 Alexandre Passant

User-interface Explanations

Enjoyable 9 7

Useful 9 9

Enriching 8 10

Easy to use 10 9

Confusing 0 2

Complicated 0 2

Too geeky 1 6
Table 3. User-feedback on the overall dbrec system

5 Lessons Learns and Discussions

5.1 Data Quality

A first lesson learnt concerns the data quality within the LOD cloud, which is far
from perfect to build applications using it. As exposed in Section 3.3, we had to
rely on (manual) curation of the dataset, and identified issues with the underlying
data model, such as similar properties defines at both /property and /ontology

URLs in DBpedia, or many having neither domain nor range, making difficult to
identify inconsistencies. While we focused only on the DBpedia dataset, similar
observations have been identified more globally on the Web, implying a need for
more data curation in the LOD cloud [13].

5.2 Use, but Replicate

Then, while data is openly available on the Web, and while some services provide
public SPARQL endpoints (such as DBpedia), local mirroring is required to
ensure scalability and efficiency in the development process. For example, due to
results restrictions on the public DBpedia endpoint, simply retrieving all bands
and artists from DBpedia implies to (1) get the number n of results satisfying
that pattern (which furthermore relies on COUNT, not supported by SPARQL 1.0);
(2) split the query into d n/5000 e queries using the LIMIT and OFFSET clauses;
(3) run the queries and recompose the results, while also taking care of network
issues that may break that loop. Then, we had to replicate data in a local store,
which conforms to what [10] discussed, by proposing a reference architecture
for Semantic Web applications based on empirical analysis of existing services.
Such solutions however raise the issue of synchronising datasets between original
services and local repositories, but also shows business opportunities for Linking
Open Data services providers that could deploy commercial SPARQL capabilities
with enhanced quality of service.

5.3 SPARQL: Be Quick or be Neat

Another lesson learnt concerns the use of SPARQL, where we observed that
decomposing queries provides much faster answering time than running single
queries covering complex paths.



dbrec — Music Recommendations Using DBpedia 13

For example, in order to translate LDSD to SPARQL queries, one of our
need was to identify, from a resource ri, all resources rj that are linked to
a third resource rx through the same path as ri is linked to rx — that is
〈li, ri, rx〉, 〈lj , rj , rx〉 — looking for resource sharing a common property-value.
In addition, we had to ensure that rx was also either a band or a solo artists. To
do so, we considered three different options:

1. running a single query covering the full pattern, thus retrieving at the same
time all the property-value pairs, as well as the corresponding resources;

2. running a first SPARQL query to identify all the property associated to
ri, and then identifying all resources sharing a property (plus its value)
(Property-slicing);

3. running a first SPARQL query to identify all the property-values related
to ri, and then identifying all resources sharing that property-value pair
(Complete-slicing).

As Table 4 shows, while up to 135 queries were needed when we initially
needed only one, the computation time was up to 75% shorter when using the
complete-slicing approach14. This means that optimisation must be done by the
query authors, as writing extensive queries for a complex graph-matching is
not yet the best solution regarding scalability. Further work should probably to
be done to optimise complex SPARQL query processing and decomposition of
patterns [23], so that developers could write single queries instead of relying on
decomposition and recomposition of results through external scripts.

Direct-SPARQL Property-Slicing Complete-Slicing
queries time queries time queries time

Ramones 1 139.97 20 109.51 66 37.84

Johnny Cash 1 257.81 30 152.60 135 75.35

U2 1 155.53 22 122.91 70 44.03

The Clash 1 146.43 20 110.84 79 42.61

Bad Religion 1 104.08 23 86.49 97 47.35

The Aggrolites 1 145.92 13 114.52 28 28.33

Janis Joplin 1 230.88 27 151.00 98 62.81
Table 4. Comparing strategies to identify indirectly related artists

6 Related Work

In the realm of large-scale Semantic Web based recommender systems, the most
know approach is probably the FOAFing-the-music project [18], that uses the

14 While we ran these tests only with our local endpoint, using 4store, we observed
that the initial full-query time-outs on the public DBpedia endpoint while other
strategies ran properly, albeit the query limit that we mentioned earlier, and similar
timing issues.



14 Alexandre Passant

distributed social networking capabilities of FOAF to provide music recommen-
dations based on users’ and friends’ tastes. Focusing on a similar idea of cross-
social-networking recommendations, [20] presented some ways to use FOAF,
SIOC and MOAT to compute recommendations and also discussed some first
steps on using Linked Data to build explanatory recommender systems. More
recently, [9] followed a similar idea by developing a first prototype applied to
cross-sites collaborative filtering using Linked Data. However, as discussed in
introduction, our motivation was to rely on Linked Data from a resource-centric
point of view, not considering social aspects but only links between resources.
In that context, LODations recently focused on LOD-based music recommenda-
tions15, while using a simpler approach not ranking the recommendations nor
combining multiple features automatically. Furthermore, [17] also focused on the
use of ontologies for recommender systems.

Regarding ontologies and data modelling, extensive work has been done
around the Music Ontology [22]. This also includes MuSim16 — The Music Simi-
larity Ontology [14] — that could be mapped to our LDSD ontology in the future.
More recently, a Recommendation Ontology has also been proposed17, and we
may also consider alignment with our model and SCOVO — the Statistical Core
Vocabulary [8] — to represent statistic information about the explanations of
the recommendations.

7 Future Work

In terms of future work, we first plan to investigate additional criteria to tune the
distance measurement. It could include using the transitivity of genres, defined as
skos:Concepts and hierarchically ordered in DBpedia. We may also investigate
link propagation and recursivity, as done by SimRank, in order to recommend
artists that are more than one node away of the seed one.

Moreover, feature selection is also an issue that needs to be tackled. Indeed,
we identified that geolocation properties are often used for recommendation,
but not always relevant. This is especially a problem for bands having a poor
description in DBpedia, especially non-international ones where often, the only
property besides their genre is their location. Then, it makes recommendation
based mostly on the genre and location, which is often not relevant enough. We
could have imagined excluding or weighting geolocation properties, but the issue
is actually more complex. For instance, for a pop-band, being from Washington
or San Francisco is probably not relevant. However, for a punk-hardcore one, this
makes a lot of sense since the two scenes are radically different, and someone
enjoying east-cost punk-hardcore may not listen to west-coast one. However, this
would probably require manual classification of such graph patterns, in order to
identify their relevance or not in certain contexts.

15 http://lodations.heroku.com/
16 http://grasstunes.net/ontology/musim/musim.html
17 http://smiy.sourceforge.net/rec/spec/recommendationontology.html



dbrec — Music Recommendations Using DBpedia 15

In addition, while currently limited to DBpedia, we aim at integration fur-
ther sources of information (Freebase, MusicBrainz, etc.) to compute the recom-
mendations, making the system targeted towards a wider Linking Open Data
perspective.

8 Conclusion

In this paper, we discussed how semantic distance measures can be applied to
Linked Data, and how they can be used to build music recommendation systems.
We provided an algorithm to enable such measures on any Linked Data dataset,
and an ontology to represent the distances and their explanations.

In addition, we have build dbrec, a recommendation system using DBpedia
and providing open and explanatory recommendations for more than 39,000
bands and solo artists. The system was evaluated with use-centric evaluation,
both off-line and on-line. We showed how it competes with last.fm, in addition
of providing relevant novel recommendations, while relying only on public and
open data, and not of listening behaviours of a large user set.

Finally, more than the distance measurement and the application, we dis-
cussed some set of lessons learnt from building the system, in terms of data qual-
ity, architectures for Semantic Web applications and optimisation of SPARQL
queries. We hope that such lessons could be useful for implementers and provide
some useful insights for anyone building applications consuming Linked Data
circa’2010.

References

1. Tim Berners-Lee. Linked Data. Design Issues for the World Wide Web, World Wide
Web Consortium, 2006. http://www.w3.org/DesignIssues/LinkedData.html.

2. Chris Bizer, Tom Heath, Danny Ayers, and Yves Raimond. Interlinking Open Data
on the Web. In Poster proceedings of the 4th European Semantic Web Conference
(ESWC2007), 2007.

3. Er Budanitsky and Graeme Hirst. Semantic distance in wordnet: An experimental,
application-oriented evaluation of five measures. In Proceedings of the NAACL 2001
Workshop on WordNet and other lexical resources, 2001.

4. Òscar Celma and Perfecto Herrera. A new approach to evaluating novel recommen-
dations. In RecSys ’08: Proceedings of the 2008 ACM conference on Recommender
systems, pages 179–186, New York, NY, USA, 2008. ACM.

5. Stéphane Corlosquet, Renaud Delbru, Tim Clark, Axel Polleres, and Stefan Decker.
Produce and Consume Linked Data with Drupal! In Proceedings of the 8th Inter-
national Semantic Web Conference (ISWC2009), volume 5823 of Lecture Notes in
Computer Science, pages 763–778. Springer, 2009.

6. Jérome Euzenat and Pavel Shvaiko. Ontology Matching. Springer-Verlag, Berlin-
Heidelberg, 2007.

7. Michael Hausenblas. Exploiting linked data to build web applications. IEEE
Internet Computing, 13(4):68–73, 2009.



16 Alexandre Passant

8. Michael Hausenblas, Wolfgang Halb, Yves Raimond, Lee Feigenbaum, and Danny
Ayers. SCOVO: Using Statistics on the Web of Data. In Proceedings of the 6th
European Semantic Web Conference (ESWC2009), volume 5554 of Lecture Notes
in Computer Science, pages 708–722. Springer, 2009.

9. Benjamin Heitmann and Conor Hayes. Using Linked Data to build open, collab-
orative recommender systems. In Linked AI: AAAI Spring Symposium ”Linked
Data Meets Artificial Intelligence”. AIII, 2010.

10. Benjamin Heitmann, Sheila Kinsella, Conor Hayes, and Stefan Decker. Implement-
ing Semantic Web applications: reference architecture and challenges. In Proceed-
ings of the 5th Workshop on Semantic Web Enabled Software Engineering, volume
524 of CEUR Workshop Proceedings. CEUR-ws.org, 2009.

11. James A. Hendler and Jenifer Golbeck. Metcalfe’s law, Web 2.0, and the Semantic
Web. Journal of Web Semantics, 6(1):14–20, 2008.

12. Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John T. Riedl.
Evaluating Collaborative Filtering Recommender Systems. ACM Transactions on
Information Systems (TOIS), 22(1):5–53, 2004.

13. Aidan Hogan, Andreas Harth, Alexandre Passant, Stefan Decker, and Axel
Polleres. Weaving the Pedantic Web. In 3rd International Workshop on Linked
Data on the Web (LDOW2010) at WWW2010, volume 628 of CEUR Workshop
Proceedings. CEUR-ws.org, 2010.

14. Kurt Jacobson, Yves Raimond, and Mark Sandler. An Ecosystem for Transpar-
ent Music Similarity in an Open World. In International Symposium on Music
Information Retrieval, 2009.

15. Glen Jeh and Jennifer Widom. Simrank: a measure of structural-context similarity.
In KDD ’02: Proceedings of the 8th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 538–543. ACM, 2002.

16. David McSherry. Explanation in Recommender Systems. Artificial Intelligence
Review, 24(2):179–197, 2005.

17. Stuart E. Middleton, Harith Alani, and David De Roure. Exploiting Synergy
Between Ontologies and Recommender Systems. CoRR, cs.LG/0204012, 2002.

18. Òscar Celma, Miquel Ramirez, and Perfecto Herrera. Foafing the music: A music
recommendation system based on RSS feeds and user preference. In Proceedings of
the 6th International Conference on Music Information Retrieval (ISMIR), 2005.

19. Alexandre Passant. Measuring Semantic Distance on Linking Data and Using it
for Resources Recommendations. In Linked AI: AAAI Spring Symposium ”Linked
Data Meets Artificial Intelligence”. AIII, 2010.

20. Alexandre Passant and Yves Raimond. Combining Social Music and Semantic Web
for Music-related Recommender Systems. In Proceedings of the First Workshop on
Social Data on the Web (SDoW2008), volume 405 of CEUR Workshop Proceedings.
CEUR-ws.org, 2008.

21. Roy Rada, Hafedh Mili, Ellen Bicknell, and Maria Blettner. Development and
application of a metric on semantic nets. IEEE Transactions on Systems, Man
and Cybernetics, 19:17–30, 1989.

22. Yves Raimond, Samer Abdallah, Mark Sandler, and Frederick Giasson. The Music
Ontology. In International Conference on Music Information Retrieval, pages 417–
422, September 2007.

23. Markus Stocker, Andy Seaborne, Abraham Bernstein, Christoph Kiefer, and Dave
Reynolds. SPARQL basic graph pattern optimization using selectivity estimation.
In WWW ’08: Proceeding of the 17th international conference on World Wide Web,
pages 595–604, New York, NY, USA, 2008. ACM.


