
DBSCAN-Based Multi-Objective Niching to Approximate
Equivalent Pareto-Subsets

Oliver Kramer
International Computer Science Institute

Algorithms Group
Berkeley CA 94704, USA

okramer@icsi.berkeley.edu

Holger Danielsiek
Technische Universität Dortmund
Department of Computer Science

44221 Dortmund, Germany
holger.danielsiek@tu-dortmund.de

ABSTRACT
In systems optimization and machine learning multiple al-
ternative solutions may exist in different parts of decision
space for the same parts of the Pareto-front. The detection
of equivalent Pareto-subsets may be desirable. In this paper
we introduce a niching method that approximates Pareto-
optimal solutions with diversity mechanisms in objective and
decision space. For diversity in objective space we use rake
selection, a selection method based on the distances to refer-
ence lines in objective space. For diversity in decision space
we introduce a niching approach that uses the density-based
clustering method DBSCAN. The clustering process assigns
the population to niches while the multi-objective optimiza-
tion process concentrates on each niche independently. We
introduce an indicator for the adaptive control of clustering
processes, and extend rake selection by the concept of adap-
tive corner points. The niching method is experimentally
validated on parameterized test function with the help of
the S-metric.

Categories and Subject Descriptors
G.1.6 [Optimization]: Global optimization; G.4 [Math.
Software]: Algorithm design and analysis

General Terms
Algorithms

Keywords
Hybrid Evolutionary Multiobjective Algorithm, Local Search,
Memetic Algorithms, Hybrid Metaheuristics

1. INTRODUCTION
The optimization of conflictive objectives belongs to one

of the most challenging tasks in optimization. E.g., in ma-
chine learning conflictive objectives are prediction accuracy

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’10, July 7–11, 2010, Portland, Oregon, USA.
Copyright 2010 ACM 978-1-4503-0072-8/10/07 ...$10.00.

and model complexity, and can be handled with regular-
ization techniques such as penalty functions. In this pa-
per we will concentrate on the detection and approximation
of equivalent Pareto-subsets. We will introduce a niching
approach that is based on evolution strategies (ES) [2], a
variant of evolutionary algorithms (EA) with operators like
self-adaptive Gaussian mutation that are well-appropriate to
numerical optimization. Furthermore, our approach is based
on a recently proposed multi-objective technique called rake
selection [12] that makes use of reference lines in decision
space. Solutions are assigned to niches with a data analy-
sis technique, i.e., the density-based clustering method DB-
SCAN [7]. Most multi-objective algorithms that have been
proposed in the past concentrate on diversity in objective
space. Only a few approaches also consider diversity in de-
cision space. Our niching technique maintains diversity in
objective space with rake selection, and diversity in decision
space with the clustering approach.

1.1 Test Problems
In this paper we focus on multi-objective optimization

problems with multiple alternative solutions in different parts
of decision space for the same parts of the Pareto-front, i.e.,
equivalent Pareto-subsets. We use two parameterized func-
tions, i.e., TWO-ON-ONE by Preuss et al. [13] and SYM-
PART by Rudolph et al. [14]. The two-objective problem
TWO-ON-ONE consists of two objective functions [13]:

f = (f1, f2) : R2 → R2 : (1)

with

f1(x1, x2) = x4
1 + x4

2 − x2
1 + x2

2 − cx1x2 + dx1 + 20,
f2(x1, x2) = (x1 − k)2 + (x2 − l)2.

(2)

Function f1 has two optima while the spheric function f2 has
only one optimum at (k, l). Figure 1 shows the contour lines
of TWO-ON-ONE, and the influence of the four parameters
c, k, and l, with d = 0. The behavior of our niching approach
on TWO-ON-ONE will be analyzed in Section 4.1. The
experiments will show that the problem is relatively easy to
solve with our approach.

The second problem SYM-PART has been introduced by
Rudolph et al. [14]. It is more difficult to optimize than
TWO-ON-ONE, and hence well appropriate to analyze the
interactions between clustering and multi-objective optimiza-
tion. SYM-PART has one Pareto-front with nine discon-
nected Pareto-sets. Each set covers the whole Pareto-front.
It consists of nine sections in decision space for that the func-
tion has been defined. The points of the Pareto-set of each
section lie on a line. The complexity of SYM-PART can be

f 2

f 1

increase c

increase k

increase l

Figure 1: Contour lines and influence of parameters
of TWO-ON-ONE, f1 is plotted in black, f2 in red.

controlled with the following manipulations: 1. Scaling of
each section, 2. shift of each section, 3. rotation of each
section by ω◦, and 4. transformation, i.e., control of the
individual size of each section. SYM-PART is described in
detail by Rudolph et al. [14]. In the following, we summarize
the derivation shortly. A simple version of the test problem
consists of two objective functions and a two-dimensional
decision space.

f(x1, x2) =

„
(x1 + a)2 + x2

2

(x1 − a)2 + x2
2

«
for arbitrary a > 0, (3)

with Pareto-set:

P∗ = {x ∈ R2 : x =

„
x1

0

«
mit x1 ∈ [−a, a]}, (4)

and Pareto-front:

PF∗ = {z ∈ R2 : z =

„
4a2ν2

4a2(1− ν)2

«
|ν ∈ (0, 1)}. (5)

In this simple definition the Pareto-set covers a line of length
2 ·a, the vertical distances between the sections are specified
by parameter b, horizontal distances by parameter c. The
problem is distributed to 3×3-section in decision space. The
section size is specified by width 2 · a+ c and height b. The
function is symmetric and the zero-point lies in the middle
of the Pareto-set of section (0, 0). Hence, the whole decision
space lies between ((−3a− 3

2
c),− 3

2
b) and ((3a+ 3

2
c), 3

2
b). In

the following, we will use the fixed parameterization of a =
1, b = 10, c = 8, and a decision space between (−15,−15)
and (15, 15). Based on the preliminary equation, function
SYM-PART1 is defined by:

f (1)(x1, x2) = f(x1 − t1(c+ 2a), x2 − t2b) (6)

To rotate the function, the following rotation matrix is used:

r(x) =

„
cosω − sinω
sinω cosω

«
(7)

with rotation angle ω. The function SYM-PART2 sounds
as follows:

f (2)(x1, x2) = f (1)(r1(x), r2(x)). (8)

A further extension of SYM-PART2 makes the optimization
problem even more difficult. The transformation

d(x1, x2) = x1 ×
„
x2 − L+ ε

U − L

«−1

(9)

for small ε > 0, U as upper bound and L as lower bound is
the basis of SYM-PART3, which is defined as follows:

f (3)(x1, x2) = f (2)(d(x1, x2), x2). (10)

The two introduced functions, and their variants will be the
basis of the experimental analyses in Section ??.

1.2 Related Work
Our niching approach is based on ES, which have been

introduced by Rechenberg and Schwefel [2], and make use
of self-adaptive Gaussian mutation. Evolutionary multi-
objective optimization algorithms (EMOAs) have shown out-
standing success in the last decade. Algorithms like NSGA-
II by Deb et al. [5], SPEA by Zitzler [19] and the SMS-
EMOA by Beume et al. [1] are able to generate Pareto-
sets of solutions in non-linear and multimodal scenarios. A
comprehensive introduction to evolutionary multi-objective
optimization is given in the book of Coello et al. [4]. We
will use the S-metric in the experimental analyses as indi-
cator for the ability to approximate the Pareto-front. The
S-metric is an indicator for the approximation of the Pareto-
front by computing the dominated hypervolume of a popu-
lation. Niching is an evolutionary technique to maintain
diversity in a population. Niching in ES is described in Shir
[15]. Goldberg [9] was the first who introduced domination
as selection criterion. To maintain diversity he introduced
sharing [10] as a niching-based approach. Also Horn et al.
[11] as well as Fonseca et al. [8] proposed a niching ap-
proach. Many Pareto-sampling techniques have been intro-
duced, e.g., MOGA by Fonseca and Fleming [8] or SPEA2
by Zitzler et al. [18]. One of the most famous approaches
in this line of research is the non-dominated sorting genetic
algorithm (NSGA) by Srinivas and Deb [17] and its suc-
cessor NSGA-II by Deb et al. [5]. A combined consider-
ation of objective and decision space has been introduced
by Chan and Ray [3]. It considers the location of solutions
in decision space. Also Deb and Tiwari [6] proposed the
omni-optimizer, which could also handle objective and de-
cision space. A further niching-based approach has been
introduced by Shir et al. [16]. Their Niching-CMA-ES com-
bines a multi-objective variant of the CMA-ES with a special
niching-based selection operator.

2. RAKE SELECTION
Rake-Selection [12] has been introduced as approach to

approximate the Pareto-front with the help of reference lines
called rakes that can arbitrarily be distributed in objective
space. For m = 2 they can be distributed in parallel, and
equidistantly in objective space yielding approximately uni-
formly distributed solutions on the Pareto-front. This sec-
tion introduces the rake principle for the generation of a
Pareto-set.

Let m be the number of objective functions f1(x), . . . ,
fm(x) with x ∈ RN . The basis of rake selection is to define
k reference lines rj , 1 ≤ j ≤ k in decision space that we
call rakes in the following. The rakes can be placed arbi-
trarily, but for m = 2 we propose to place them in parallel
and distribute them uniformly in objective space to guide
the search. Uniformly distributed rakes lead to approxi-
mately uniformly distributed solutions on the Pareto-front.
The rakes can be arranged orthogonally and equidistantly
on the surface defined by the Pareto-optimal corner points
ci, 1 ≤ i ≤ m on a (m − 1)-dimensional hyperplane. This

f 1

f2

c1

c2

rakes

pareto-
front P

corner point

corner point

dominated
solution

non-dominated
solution

selected
solution

Figure 2: Illustration of Rake Selection: The rakes
lie equidistantly in the objective space and guide
the evolutionary selection process. Among the set
of non-dominated individuals N (black squares and
grey circles) for each rake line rj the closest solution
(black squares) is selected.

variant of rake placement would result in km−1 rakes in ob-
jective space. Each corner point is the optimum with re-
gard to one objective. If x∗i ∈ RN is the optimal solution
minimizing fi, the corner point ci is computed by insertion
ci = (f1(x∗i), . . . , fi(x

∗
i), . . . , fm(x∗i))

T . For this sake rake
selection has to compute the corner points ci in the first
stage by minimizing the single objectives fi, 1 ≤ i ≤ m,
unlike the corner points are known in advance. Another ap-
proach to compute the corner points is to evolve them during
the optimization process by taking into account the so far
best solutions with regard to each objective fm.

To define each rake rj a vector n that is orthogonal to the
hyperplane h of corner points ci has to be computed, e.g.,
using Gram-Schmidt orthogonalization. Due to the equidis-
tant distribution of the intercept points of the rake the lines
lie equidistantly parallel to each other in the objective space.
Consequently, they cut the Pareto-front PF∗ equidistantly
with respect to a projection of the Pareto-front onto the hy-
pergrid, and approximately equidistantly on the Pareto-front
hypersurface. Figure 2 illustrates the situation in N = 2 di-
mensions. Parameter k is the number of rakes along the
connection between the two corner points c1 and c2 that
are optimal with regard to f1 and f2 respectively. The rakes
are uniformly distributed on the connecting line between c1

and c2. The intercept points

pi = c1 + (i− 1) · ‖c1 − c2‖/(k − 1), 1 ≤ i ≤ k (11)

define the rake lines rj , 1 ≤ j ≤ k. The direction vector
n, orthogonal to c1 − c2, is the same for each rake.

In each generation the algorithm produces population P
consisting of λ offspring solutions with the help of inter-
mediate recombination and self-adaptive Gaussian mutation
[2]. After λ offspring solutions have been generated, non-
dominated sorting is applied as the first step of the selection
process. For each individual xi the number di of solutions is
computed that dominate xi. The set of non-dominated so-

lutions N = {xi ∈ P|di = 0} is subject to the rake selection
procedure. The core of rake selection is to select the clos-
est solution (black squares) to each rake rj among the set
of non-dominated solutions (black squares and grey circles),
i.e.:

xi = arg min
xn∈N

dist(xn, rj), (12)

if dist(xn, rj) measures the distance between point xn and
line rj in Rm. One solution may be selected multiple times
by different rakes, in particular at the beginning of the search.
The rakes guide the optimization process to establish equidis-
tant solutions in objective space. If the number of selected
solutions δ is smaller than µ, we add the µ− δ solutions to
the population Pt+1 that are dominated least to maintain
diversity.

Algorithm 1 Rake-Selection (see [12])

1: Initialize population P1

2: Set t := 0
3: Minimize each objective function f1(x), . . . , fm(x)
4: Compute corner points c1, . . . , cm
5: Compute hyperplane h (rake base)
6: Compute orthogonal vector b
7: Compute intercept points of rake lines r1, . . . , rkm−1

8: while NOT termination condition do
9: Set t := t+ 1

10: Initialize offspring set Ot := ∅
11: for µ = 1 to λ do
12: Produce offspring xi
13: Add offspring xi to Ot (Ot := Ot ∪ {xi})
14: end for
15: Select set N of non-dominated solutions from Pt ∪Ot
16: Compute distance matrix Dij with distances between

xi and rake rj
17: Initialize set of selected solutions Pt+1 = ∅
18: for all rake rj do
19: Find closest solution xi to rake rj ,

i.e. (xi = arg minxn∈N D(xn, rj))
20: Add xi to Pt+1 (Pt+1 := Pt+1 ∪ {xi})
21: end for
22: for i = 0 to |Pt+1| − µ do
23: Find solution x of lowest rank in not selected solu-

tions ((Pt ∪ Ot) \ Pt+1)
24: Add x to Pt+1 (Pt+1 := Pt+1 ∪ x)
25: end for
26: end while

Table 1 shows a comparison of S-metric values between
rake selection and the SMS-EMOA with the same number
of fitness function evaluations on three ZDT problems from
literature, see [4]. Although the SMS-EMOA directly max-
imizes the hypervolume, the rake selection results are com-
petitive. On ZDT2 the standard deviation of the 25 runs of
rake selection is remarkably small, while it even achieves the
best S-metric result on ZDT6.

For m = 2 objectives a parallel distribution of rakes ri
orthogonal to the connection of corner points is sufficient
to reach all points on the Pareto-front. In case of more
objectives, i.e., m > 2, this condition cannot be guaranteed.
Adaptive corner points solve this problem, see Section 4.

problem EMOA best median worst dev

ZDT1 rake 99.6558 99.65 99.64 0.003
SMS 99.6572 99.65 99.65 0.0002

ZDT2 rake 99.3233 99.32 99.31 0.003
SMS 99.3235 99.32 90.00 3.901

ZDT6 rake 96,7411 96.72 96.69 0.014
SMS 95.6742 95.43 95.29 0.153

Table 1: Comparison of S-metric values between
rake selection and SMS-EMOA with N = 30 and the
same number of fitness function evaluations (20, 000).
The SMS-EMOA applies SBX recombination and
polynomial mutation. Rake selection uses 50 rakes
and a population of (50 + 100)-ES as well as τ0 = 2.0
and τ1 = 2.0.

3. CLUSTERING WITH DBSCAN
In this section we introduce the clustering technique DB-

SCAN (Density Based Spatial Clustering of Applications
with Noise) by Ester et al. [7]. DBSCAN is based on the
density of data samples in the search space and has two
essential advantages that are useful in the context of the
niching procedure. First, it allows to cluster data samples
that are non-convex and intertwined, second, the number of
clusters does not have be known in advance. In the follow-
ing, we give a brief introduction to density-based clustering.
Density-based clustering methods are based on the assump-
tion that a certain least number of data samples have to lie
in the radius of a reference data sample. The density of data
samples has to exceed a given threshold. A further advan-
tage in comparison to squared-error -methods like k-means
is the ability to adapt the number of clusters in the course of
the clustering process. Hence, the number of clusters does
not have to be known in advance. Furthermore, structures
of arbitrary shape like non-convex or intertwined data sets
can be identified, see Figure 3.

●●

●

●

●●●

●
●

●

●

●

●

●
●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●●
●

●

●

●
●

●●

●
●

●●

●

●

●

●●

●●

●
●

●

●●

●●

●

●

●

●

●●
●●
●

●
●
●

●●

●

●
●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●●

●

●

●

●●
●
●
●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●
●

●
●

●

●
●
●

●

●

●

●

●●

●

●

●●●
●

●

●●
●●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●
●●

●

●●

●●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●
●●

●
●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●●

●●
●

●

●
●●

●

●

●●

●

●●

●

●●

●

●●

●

●
●
●

●
●

●

●

●
●
●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●
●●
●

●

●
●
●

●

●

●

●●

●
●

●

●

●

●

●
●

●
●

●
●●

●

●●
●●
●

●●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●●
●●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●●●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●●
●

●

●

●
●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●
●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●

●

●

●●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●
●
●

●●
●
●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●
●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●●
●

●●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

−1 0 1 2 3 4 5

−
1

0
1

2
3

4
5

X1

X
2

●

●

●●● ● ●● ● ●●● ●● ●●● ●●●● ● ●●● ● ●● ●●● ● ●●● ●● ●● ● ●● ●●● ●● ●● ● ●● ● ●●●● ● ●●●●● ●● ●● ●●● ● ●●●●● ● ●● ● ● ● ●● ● ●● ● ● ●●● ●●●●● ●●●● ●●● ●● ● ●● ●● ●●● ●● ●●● ●●●● ● ● ●●●● ● ●● ● ●●●● ● ● ●● ●● ●● ● ●●● ● ●● ● ●●● ● ● ●● ●● ●●●● ●●●●●● ● ● ●●●● ● ●● ●● ●● ●● ●●● ●● ● ● ●● ●●● ●● ●●●●●● ●● ● ●● ●●● ●● ●●● ●● ● ●●● ●● ●●● ● ●● ●●●● ● ●●● ● ●●● ● ●● ● ●● ●●● ● ●●●● ● ●● ● ●●● ●● ●●● ● ●● ●● ●●● ● ●●● ●● ●● ●● ●●● ●●● ●●●● ●●● ● ● ●●●● ●● ●● ●● ●●● ● ●● ●●● ●●●● ● ● ● ●● ●●● ●●●● ● ●● ● ●● ●●● ●● ●● ●● ● ●● ● ●●● ● ●● ●●● ●●● ● ●●● ● ●● ● ●● ● ●●●●● ●●● ● ●● ●●● ● ●●●●● ●●● ● ●● ●● ● ●● ● ●● ●● ● ● ●●●● ●● ●● ●● ●●● ● ● ●●● ●●●●● ● ● ● ●●●● ● ●●● ●●● ●● ●● ● ● ●● ● ● ●● ●● ●● ●●●●● ●●●● ● ●●● ●●● ● ●●●● ●●● ●● ● ●●● ●● ●●● ●● ●● ●● ●● ●● ●● ●●●● ●● ● ●● ●●● ●● ●● ●●● ● ●● ●● ●● ●● ● ● ●●●● ● ●●● ●● ●●●●● ●● ● ● ●● ●●● ●●●●●● ● ●●●● ●● ● ●● ● ●●● ●● ●●● ●●●●● ●● ●● ● ● ●●● ●●● ● ●● ● ●●● ● ●● ● ● ●● ● ●● ●●●● ●● ● ● ●●● ●● ● ● ●●●● ●● ●●● ●● ● ●● ● ● ●● ●● ●● ●●● ●● ● ●●● ●●● ●● ●●● ● ●● ●● ● ● ●● ●●●● ●● ●● ● ●● ●●● ● ●●● ●●● ●● ●● ●● ● ● ●●● ● ● ●● ●● ●● ●●● ● ●●● ●●● ●●●●● ●● ● ●● ● ● ●●●● ●●● ●● ●● ●● ●●●●● ●● ●●● ●●● ● ●● ●●● ● ●●●●● ● ●● ●●● ● ●●● ●● ●● ●● ● ●● ●●● ● ●● ● ●● ●● ● ●●●● ● ●● ●●● ●● ●●●●● ● ●● ●●●● ●● ●● ●● ●●● ●●●●● ●● ● ●●● ●● ● ●● ●● ●●● ● ●●●● ●●● ● ●●●● ●●●●●● ●● ● ● ●●●●●●●● ●● ● ●●● ●● ●●● ●●● ●● ● ●● ● ●● ●●● ●●● ● ●● ● ●● ●●●● ●● ●● ● ●● ●● ●● ●●●●● ●● ●●● ● ●●● ●● ● ●●● ●●● ●● ●●● ●●● ●●● ●● ● ●● ●●●● ● ●●● ●● ●●● ●●● ● ●●● ●●● ● ●● ● ●● ●●● ●● ●●●● ● ●●● ●●● ● ●● ●● ●●● ● ●●●● ●● ●● ●●●● ● ●● ●●●●● ●● ●●● ●●●● ● ●● ●● ●● ●● ●● ●● ●● ●●●● ●●●● ●● ●● ● ●● ●● ●●●●● ● ●● ●● ●● ● ● ●●● ●●●●● ● ●●●● ● ●●●● ● ● ● ●● ●● ●●●● ●●●● ●● ●●● ● ●● ● ●●● ●●● ● ●●●●●● ● ●●● ●● ●● ● ● ●●●●● ● ●● ● ●●● ●● ●●●● ●●● ●● ●● ●●●● ●●● ●● ●● ●● ●●●● ●● ● ●●●●●● ● ●●●●● ● ●● ● ●● ●●●●● ● ●● ●● ● ●●● ●●● ●●●● ●● ●● ●●● ●● ●● ●● ●● ●● ● ● ●●● ●● ●●● ●● ●●●● ●●●● ●●● ● ●●●● ●● ●● ●● ● ●●● ●●● ●●●● ●●●● ● ●● ● ● ●●● ●● ● ●●●● ●●●●● ●● ●● ●● ●●● ●●● ●● ●● ●● ●● ●● ● ●● ●●●● ● ● ●●● ●● ●● ● ● ●●●● ●● ●● ●● ●●● ●●●● ●●● ● ●● ●● ●● ●●● ● ●●●● ● ●● ● ●● ●● ●●● ●● ●●●●●●● ●●● ● ●●●● ●● ●●● ●● ● ●● ● ●● ●● ● ●●● ● ●● ● ●● ●● ● ●● ●● ●●●●● ●●●● ● ●● ●●● ● ●● ●●●● ●● ●● ●●● ●●●● ●●●●● ●●● ●●● ●● ●●● ●● ●●● ●● ● ●●● ● ●● ●● ●●● ●● ●● ●● ● ● ●●● ● ●● ●●● ●●●● ● ●●● ●● ● ● ●● ●● ●● ●● ●● ●● ●● ●●● ● ● ●●●● ●● ●●● ●● ●● ● ●● ●●●● ●●●● ●● ●● ●● ● ● ●●● ●● ●●● ●● ●●● ●● ●● ●● ● ●● ● ●●● ●●● ● ● ●●●● ● ●● ●●●● ● ●● ●● ●●● ●● ● ● ● ●●● ●● ● ●● ● ●● ●● ● ●● ●● ●●● ●●●● ●●● ●● ●● ●● ●● ●● ● ●●● ●● ● ● ●●● ● ●● ●● ●● ●●●● ●●● ●● ● ●● ●●● ● ● ●● ●●●● ●● ● ● ●● ●● ●● ●● ●●● ●● ●●●● ● ●● ● ● ●●●● ●●●● ●● ●● ●●●● ●● ●● ●● ●●● ● ●● ●● ●● ● ● ●● ●● ●● ●●●● ● ●●● ●● ●●●● ●● ●● ● ● ●● ●● ●● ● ● ●● ●● ●● ●● ●● ● ●● ●●●● ●● ● ● ●●● ● ●●● ● ●●● ●● ●● ●●● ● ●●●● ●● ●● ● ●●● ● ●● ●●● ● ●●● ● ●● ●● ●● ●● ●● ●● ● ●● ●●●●● ● ● ● ●●● ●●●● ●● ● ● ● ●● ●● ●● ●● ●●● ● ●● ●●● ● ●● ●●●● ● ●● ●●

−1 0 1 2 3 4 5

−
1

0
1

2
3

4
5

X1

X
2

Figure 3: Comparison of clustering results of k-
means (left) and DBSCAN (right). The clustering
method k-means is not able to detect both clusters
properly. The right part shows the clustering result
of DBSCAN, and shows that both donut clusters
can be detected.

At first, we introduce the most important terms of density-
based clustering. Let H be the set of data elements. Two
parameters are essential: the neighborhood radius ε and the
least number of neighbors ν. The discovery of core points
plays a fundamental role. For this sake the concept of ε-

neighborhood of a feature vector x has to be defined that
comprises all data samples within an ε-distance of x. The
ε-neighborhood Nε(x) of point x is defined by (see [7]):

Nε(x) = {y ∈ H | ‖y − x‖ ≤ ε}. (13)

Points at the border of a cluster usually have less points in
their neighborhood than points in the cluster center. Hence,
we distinct between core and border points of a cluster in the
following. Core points exhibit at least ν neighbors in their
neighborhood. Border points that are density-connected with
a core point belong to one cluster.
Point x is a core point iff:

|Nε(x)| ≥ ν, (14)

(see [7]). Density-based clusters exhibit at least one core
point, but can also exhibit border points that do not fulfill
the condition to have ν points in their neighborhood. They
are direct density-reachable from at least one core point, see
[7]: A point x is direct density-reachable from a point y with
regard to ε and ν if:

x ∈ Nε(y) and (15)

|Nε(y)| ≥ ν (y is a core point). (16)

The relation Direct Density-Reachable is only symmetric, if
both points are core points. A transitive extension is the
relation Density-Reachable. A point x is density-reachable
from a point y with regard to ε and ν, if a chain x1, . . . ,xn
of data points exists with x1 = y and xn = x, such that xi+1

is directly density-reachable from xi. This relation is asym-
metric, if one point is a core- and one point is a border-point,
but symmetric for two core points. For two border-points of
one cluster the relation Density-Connected exists. A point x
is density-connected with a point y with regard to ε and ν,
if a point w exists, from that x and y are density-reachable.
Because the relation density-connected is symmetric, tran-
sitive and reflexive, it is an equivalence relation. With the
help of this relation, the density-based clusters can be ex-
pressed as follows. For a data set H a density-based cluster
K with regard to ε and ν is defined as non-empty subset of
H that fulfills the following conditions:

∀ x,y : x ∈ K∧y density-reachable from x⇒ y ∈ K, (17)

and

∀ x,y ∈ K : x density-connected with y. (18)

Feature vectors that cannot be assigned to a density-based
cluster, because no core point lies in the ε-neighborhood, are
classified as noise according to Equation 19. Let K1, . . . ,Kk
be classes of data set H with regard to εi and νi, i = 1, . . . , k,
then all points that are not assigned to density-based clus-
ters Ki are noise:

noise = {x ∈ H | ∀i : x /∈ Ki}. (19)

Of course, noise and density-based clusters depend on pa-
rameter ν. The pseudocode of DBSCAN can be found in
Algorithm 2. Parameters of DBSCAN are the data set H,
radius ε, and the number ν of points that have to lie in the
neighborhood of x so that it will be classified as core point.

At the beginning, ClusterNumber is initialized with 1,
and each point is assigned to label −1, i.e., it is not assigned
to a cluster yet. In the main loop of DBSCAN each un-
classified point is called with method ExpandCluster, see

Algorithm 2 DBSCAN (see [7])

Require: Data set H, radius ε, density ν
Ensure: Label set L := {l1, . . . , ln}
1: ClusterNumber := 1
2: for i = 1 to n do
3: li := −1 {−1 means not classified}
4: end for
5: for all x ∈ H do
6: if lx = −1 then
7: if ExpandCluster(H,x, ClusterNumber, ε, ν)

then
8: ClusterNumber := ClusterNumber + 1
9: end if

10: end if
11: end for

Algorithm 3. The method returns True if the point is clas-
sified as core point with regard to ε and ν. Furthermore,
ExpandCluster detects the complete density-connected clus-
ter and assigns the current ClusterNumber.

To assign a label for the next cluster, parameter Cluster-
Number is increased after each iteration. If the point is
no core point, it will be classified as noise and parameter
ClusterNumber is not increased. Method ExpandCluster
is called with the whole data set H, point x, the current
cluster number ClusterNumber, radius ε, and density ν. At
the beginning a neighborhood request is called that saves all
feature vectors y in the set neighbors that lie within radius
ε with regard to metric ‖ · ‖. In the following, we will use
the Euclidean distance.

If the number of neighbors of feature vector x is lower
than ν, point x will be classified as noise, lx is assigned to
0 (noise), and the method returns False. If set neighbors
exhibits at least ν data samples, x is classified as core point
and the lower part of Algorithm 3 (from line 6) assigns each
density-reachable point x to the current ClusterNumber.
For this sake two sets are used: Set neighbors contains
the assigned feature vectors, while set areal contains new
identified data samples. For each point of set neighbors
the set of neighbored points areal is computed. If |areal|
is smaller than ν, x is classified as border point and does
not have to be considered any more. Otherwise, i.e., for
|areal| ≥ ν all points y in areal, which are not classified yet,
will be added to set neighbors and assigned to the current
ClusterNumber. Points y in areal that are already clas-
sified as noise are assigned to the current ClusterNumber,
and will not be given attention anymore, as they are border
points. The algorithm has to assure that no core point is
classified as noise. Before a new iteration starts, the current
feature vector x is deleted from set neighbors. If neighbors
is empty, the method terminates and returns True.

The result of DBSCAN is deterministic, and guarantees
the neighborhood conditions with regard to ε and ν, i.e.,
it guarantees that the same feature vectors are classified as
core points. The difference that may result in different runs
on the same data set is the assignment of border points
that are directly density-connected from two core points of
different clusters. As long as the data set is processed in the
same order, the result is deterministic and the mentioned
points will be assigned to the first processed cluster.

Algorithm 3 DBSCAN (ExpandCluster)(see [7])

Require: Data set H, data point x, ClusterNumber, ra-
dius ε, density ν

Ensure: True, if new cluster is found
Ensure: False, if x is classified as noise
1: neighbors := {y ∈ H | ‖y − x‖ ≤ ε}
2: if |neighbors| < ν then
3: li := 0 {0 means noise}
4: return False
5: else
6: for all y ∈ neighbors do
7: ly := ClusterNumber {Points belong to a new clus-

ter}
8: end for
9: neighbors := neighbors \ x {Delete x from set}

10: while neighbors 6= ∅ do
11: x := first element from neighbors
12: areal := {y ∈ H | ‖y − x‖ ≤ ε}
13: if |areal| ≥ ν then
14: for all y ∈ areal do
15: if ly < 1 {ly is not classified or noise} then
16: if ly = −1 {ly is not classified} then
17: neighbors := neighbors ∪ y
18: end if
19: ly := ClusterNumber
20: end if
21: end for
22: end if
23: neighbors := neighbors \ x {Delete x from set}
24: end while
25: return True
26: end if

4. CLUSTERING-BASED NICHING
In this section we introduce a clustering-based niching ap-

proach based on DBSCAN and rake selection. We will in-
troduce various algorithmic variations complemented by an
experimental evaluation on two problems, i.e., TWO-ON-
ONE and SYM-PART.

4.1 Single Population Niching and Adaptive
Corner Points

First, we show a simple algorithmic variant on the prob-
lem TWO-ON-ONE. Unlike SYM-PART, the Pareto-set of
TWO-ON-ONE is connected. For the experimental analysis
we use the TWO-ON-ONE parameterization (c = 20, d =
k = l = 0), see Section 1.1. As the Pareto-set is connected,
we use k-means as DBSCAN would only find one connected
cluster. We set k = 2. Preuss et al. [13] have shown that
famous multi-objective optimization algorithms like NSGA-
II and SPEA2 neglect about half of the Pareto-set after few
generations and concentrate on only one niche. Our ex-
periments, see Figure 4, show that our approach is able to
maintain diversity in both niches.

Algorithm 4 Simple Niching

1: Initialize population
2: Optimize population with rake selection
3: Divide population into (k = 2) niches with k-means
4: Optimize each niche with reduced mutation rate σ and

number k of rakes

18/12/2009 19:48two_one.svg

Seite 1 von 1file:///Users/Simon/Desktop/two_one.svg

3 2 1 0 1 2 3
3

2

1

0

1

2

3

30 20 10 0 10 20
f1

0

2

4

6

8

10

f2

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

30 20 10 0 10 20
f1

0

2

4

6

8

10

f2
2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

30 20 10 0 10 20
f1

0

2

4

6

8

10

f2

Figure 4: The clustering-based niching approach
with k-means and rake selection, see Algorithm 4
on problem TWO-ON-ONE. The upper plots show
the Pareto-set in decision space while the lower plots
show the Pareto-fronts in objective space with rakes
(grey) and rake base (blue). The left column shows
the whole population, while the center column in-
dicates the first cluster and the right column shows
the second cluster with less individuals. Notice that
the pareto-front is well approximated.

Algorithm 4 shows the simple k-means and rake selection
hybrid that is used for TWO-ON-ONE. To avoid the ne-
cessity of preliminary problem knowledge, we propose an
evolvement of the rake corner points during the optimiza-
tion process. The idea of adaptive rake corner points is to
use the m optimal solutions xj , 1 ≤ j ≤ m of population
Pt at generation t with regard to each objective fj as corner
points for the rake base, i.e., cj = fj . First experiments
have shown that this idea is not sufficient to guarantee that
the corner points are distributed over the objective space,
so that the rakes cut the whole Pareto-front. As the rakes
are only distributed between the corner points, the original
approach has no explorative character and only a part of
the Pareto-front can be found. To increase the explorative
capabilities the best solutions are shifted to the outside, i.e.,
cj = fj + ε. The outer rakes in the neighborhood of the
corner points have an explorative character, while the in-
ner points exploit the knowledge about the location of the
already explored Pareto-front. After the first optimization
phase the Pareto-set is clustered and the two niches in the
decision space are identified. Each niche is optimized inde-
pendently with rake selection and a reduced mutation rate
σ (see [2] for mutation strengths in ES). The optimization
within the single niches allows to evolve a Pareto-set that
covers the whole Pareto-front in each niche. Figure 4 shows
the results of Algorithm 4 on TWO-ON-ONE. A (50+100)-
ES is used for pre-optimization, and a (20 + 100)-ES for the
post-optimization process. The upper part shows that both
equivalent subsets in decision space have been found and
assigned to different clusters (red and yellow circles). The
lower part shows that both niches cover the Pareto-front.
It also shows that each solution lies very close to a rake
reference line.

4.2 Multiple Populations and Recluster Indi-
cator

In the following, we analyze the use of multiple popula-
tions, one for each niche. The niching approach with multi-
ple populations can be found in Algorithm 5. Let q be the
number of niches. Each subpopulation makes use of a (µ, λ)
population scheme. Hence, the total number of individuals
is q · µ. The high population size increases the probability
that new niches can be detected. Clustering and optimiza-
tion take place alternately. We propose a recluster indicator
that allows an automatic recognition of new potential niches.
The recluster indicator φ, see Definition 4.1, considers the
genotypic and phenotypic distance between two individuals.
A threshold θφ for φ decides, whether two solutions lie in
the same or in different niches. Again, we use the Euclidean
distance.

definition 4.1 (Recluster Indicator).
The recluster indicator φ measures the relation between the
distances of two solutions in decision space and in objective
space.

φ(x,y) =
‖x− y‖2

‖f(x)− f(y)‖2
for x,y ∈ (sub-)population.

(20)

Algorithm 5 Niching with Recluster Indicator

Require: Initial population, φ
1: recluster = TRUE
2: while Number of clusters has not been reached do
3: if recluster = TRUE then
4: Merge all individuals to one population
5: Run DBSCAN
6: Assign each individual to its cluster/niche
7: recluster = FALSE
8: end if
9: for all found clusters do

10: Optimize niches independently for tiso generations
11: if recluster = FALSE then
12: for i = 1 to |solutions of cluster| − 1 do
13: Compute recluster indicator φ := φ(i, i + 1),

{assure that individuals i and i + 1 are neigh-
bors with regard to Pareto-front}

14: if φ > θφ then
15: recluster = TRUE
16: end if
17: end for
18: end if
19: end for
20: Select next populations
21: end while
22: Optimize each niche with reduced mutation rate σ and

number k of rakes

The idea of the recluster indicator is based on the as-
sumption that two neighbored individuals of one niche in
objective space are neighbored in decision space. Hence, if
the distance ‖f(x) − f(y)‖2 of two neighbored solutions x
and y in objective space is higher in decision space than the
distance of two solutions that are more unalike in objective
space, probably a novel niche has been found. In the case
of rake selection, the neighborhood computation is relatively
easy and can be reduced to checking neighbored rakes. If the

ES θφ runtime niching clustering ffe total ∅
in sec iterations calls S-metric S-metric

(10 + 20) 2 47.07 60.1 24.3 50,780 99.25 98.93
(10 + 20) 4 48.64 61.7 21.5 60,360 99.24 98.97
(10 + 20) 10 42.2 62.7 14.9 50,180 99.24 98.89

(100 + 200) 2 563.91 8.9 8.8 99,400 99.32 99.3
(100 + 200) 4 479.50 7.4 7.1 84,400 99.32 99.3
(100 + 200) 10 566.18 8.9 7.9 99,000 99.32 99.3

Table 2: Experimental results of rake selection with reclustering indicator and adaptive corner points on
SYM-PART2, averaged over 10 experiments. Two different population sizes and three thresholds θφ have
been tested.

ES [L,U] θφ runtime niching clustering ffe total ∅
in sec iterations calls S-metric S-metric

(100 + 200) [−15, 15] 2 2,355 35.8 33.6 478,600 99.32 99.21
(100 + 200) [−15, 15] 4 2,362 34.9 31.9 466,200 99.32 99.28
(100 + 200) [−15, 15] 10 2,508 43.1 33.4 548,600 99.32 99.15

(100 + 200) [−20, 20] 2 1,076 17.9 15.5 197,400 99.32 99.28
(100 + 200) [−20, 20] 4 1,157 21.0 15.8 219,600 99.32 99.28
(100 + 200) [−20, 20] 10 1,124 21.1 13.8 216,800 99.32 99.28

(100 + 200) [−30, 30] 2 1,028 18.1 16.8 192,400 99.32 99.29
(100 + 200) [−30, 30] 4 975 19.0 15.6 210,600 99.32 99.28
(100 + 200) [−30, 30] 10 738 18.0 10.3 156,400 99.32 99.28

(10 + 20) [−15, 15] 2 566 417.1 243.2 541,340 99.23 98.63
(10 + 20) [−15, 15] 4 535 421.0 138.9 591,800 99.24 98.13
(10 + 20) [−15, 15] 10 429 395.5 69.5 514,980 99.23 97.49

(10 + 20) [−20, 20] 2 224 221.2 84.7 241,420 99.25 98.86
(10 + 20) [−20, 20] 4 180 206.0 44.4 212,640 99.24 98.88
(10 + 20) [−20, 20] 10 142 196.2 23.0 181,500 99.23 98.65

(10 + 20) [−30, 30] 2 190 184.7 78.6 202,280 99.24 98.85
(10 + 20) [−30, 30] 4 98 114.0 24.1 115,860 99.24 98.88
(10 + 20) [−30, 30] 10 77 116.8 15.0 97,240 99.23 98.84

Table 3: Results of the niching approach with recluster indicator and adaptive corner points on SYM-PART3,
averaged over 10 runs with various parameterizations, two population sizes and three different thresholds θφ
for the recluster indicator.

recluster indicator condition becomes true, the new potential
niche has to be checked, if it is really new or already known.
To answer this question DBSCAN is restarted and the solu-
tions are clustered. Algorithm 5 shows the pseudo-code of
rake selection, DBSCAN, and the recluster indicator. The
optimization process terminates when the number of niches
has been reached.

Important for the success of Algorithm 5 is the choice of
parameter θφ. If θφ is chosen too small, too many cluster
processes are started and the new method leads to no im-
provement in comparison with the algorithm without reclus-
ter indicator. If θφ is chosen too high, the algorithm may not
be able to detect solutions from other niches and computes
a necessary cluster reassignment too late. This would lead
to an increased number of fitness function evaluations. Pa-
rameter θφ is problem-dependent. A further analysis of its
influence will be subject to future work. Table 2 shows the
results of the DBSCAN niching variant with recluster indi-
cator and adaptive corner points on function SYM-PART2.
The results are averaged over 10 runs. Two different popu-
lation sizes and three different thresholds θφ for the cluster
indicator have been tested. The fastest run with a satisfy-
ing S-metric was achieved with a (10 + 20)-ES and θφ = 2,
while the highest S-metric was achieved with all (100+200)-

ES variants. Table 3 shows the experimental results of the
niching approach with recluster indicator and adaptive cor-
ner points on SYM-PART3. The results of different values
for the parameter θφ do not differ much within one class of
parameter settings, but a high value of θφ = 10 achieves the
best results. Interestingly, almost all runs achieved the high
S-metric value of 99.32. Also the average S-metric values
show satisfying results, while the S-metric of the subpop-
ulations partly differ. E.g., for the parameter constellation
L = −15, U = 15 slight deteriorations can be observed. In
these cases, we recommend a further concentration on par-
ticular niches to improve the results in terms of S-metric
measures.

5. SUMMARY AND OUTLOOK
The approximation of equivalent Pareto-subsets is no easy

undertaking. Without data analysis methods like clustering
that support the optimization process, standard evolution-
ary multi-objective optimization techniques fail to detect all
Pareto-subsets. Furthermore, they fail to cover these sub-
sets in decision space in order to allow the approximation
of alternative solutions in objective space. In this paper we
have proposed an approach that uses density-based cluster-
ing for the detection of disjunct subsets in decision space.

Density-based approaches are well appropriate to detect and
separate non-convex data sets. The number of clusters does
not have to be known in advance, but the number of niches,
if we apply the termination condition of this paper. It will
the decision of the practitioner, if enough equivalent Pareto-
optimal solutions have been detected. Our experiments have
shown that rake selection and DBSCAN turn out to be a
successful hybridization approach for the approximation of
equivalent Pareto-subsets. The approach was successful in
optimizing the simple function TWO-ON-ONE, and various
instances of the more difficult problem SYM-PART.

As not many problems with equivalent Pareto-subsets ex-
ist, it must be future work to develop more test problems,
also from practice. E.g., properties like non-convex and in-
tertwined Pareto-sets have not been tested yet. As such
data distributions belong to the strengths of DBSCAN, we
can expect that our approach will be capable to solve this
problem class as well. Further work may concentrate on a
comparison of various clustering techniques, and the inter-
action with various EMOAs, as well as the combination with
covariance matrix adaptation techniques. Parameter θφ of
the recluster indicator is problem dependent. We are cur-
rently working on a parameter-free recluster indicator based
on the comparisons between three points.

6. REFERENCES
[1] N. Beume, B. Naujoks, and M. Emmerich.

SMS-EMOA: Multiobjective Selection based on
Dominated hypervolume. European Journal of
Operational Research, 181(3):1653–1669, 2007.

[2] H.-G. Beyer and H.-P. Schwefel. Evolution strategies –
a comprehensive introduction. Natural Computing,
1(1):3–52, March 2002.

[3] K. P. Chan and T. Ray. An evolutionary algorithm to
maintain diversity in the parametric and the objective
space. In Proceedings of IEEE International
Conference on Computational Robotics and
Autonomous Systems (CIRAS 2005), page CD
proceedings, Los Alamitos, 2005. IEEE Computer
Society Press.

[4] C. A. Coello Coello, G. B. Lamont, and D. A. van
Veldhuizen. Evolutionary Algorithms for Solving
Multi-Objective Problems. Genetic and Evolutionary
Computation Series. Springer Science+Business
Media, New York, NY, USA, 2. edition, 2007.

[5] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast elitist multi-objective genetic algorithm: Nsga-ii.
IEEE Transactions on Evolutionary Computation,
6:182–197, 2000.

[6] K. Deb and S. Tiwari. Omni-optimizer: A procedure
for single and multi-objective optimization. In
Proceedings of the Third International Conference on
Evolutionary Multi-Criterion Optimization, EMO
2005, Guanajuato, Mexico, pages 47–61, 2005.

[7] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A
density-based algorithm for discovering clusters in
large spatial databases with noise. In Proceedings of
2nd International Conference on Knowledge Discovery
and Data Mining (KDD-96), pages 226–231. AAAI
Press, 1996.

[8] C. M. Fonseca and P. J. Fleming. Genetic algorithms
for multiobjective optimization: Formulationdiscussion
and generalization. In ICGA, pages 416–423, 1993.

[9] D. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison Wesley,
1989.

[10] D. E. Goldberg and J. Richardson. Genetic algorithms
with sharing for multimodal function optimization. In
Proceedings of the Second International Conference on
Genetic Algorithms on Genetic Algorithms and their
Application, pages 41–49, Hillsdale, NJ, USA, 1987.
Lawrence Erlbaum Associates Inc.

[11] J. Horn, N. Nafpliotis, and D. E. Goldberg. A niched
pareto genetic algorithm for multiobjective
optimization. In Proceedings of the First IEEE
Conference on Evolutionary Computation, IEEE
World Congress on Computational Intelligence, pages
82–87, 1994.

[12] O. Kramer and P. Koch. Rake selection: A novel
evolutionary multi-objective optimization algorithm.
In Proceedings of KI 2009: Advances in Artificial
Intelligence, 32nd Annual German Conference on AI,
pages 177–184. Springer, 2009.

[13] M. Preuss, B. Naujoks, and G. Rudolph. Pareto set
and emoa behavior for simple multimodal
multiobjective functions. In PPSN IX: Proceedings of
the 9th International Conference of Parallel Problem
Solving from Nature, pages 513–522. Springer, 2006.

[14] G. Rudolph, B. Naujoks, and M. Preuss. Capabilities
of emoa to detect and preserve equivalent pareto
subsets. In S. Obayashi, K. Deb, C. Poloni,
T. Hiroyasu, and T. Murata, editors, EMO 2007:
Proceedings of the 4th International Conference on
Evolutionary Multi-Criterion Optimization, volume
4403 of Lecture Notes in Computer Science, pages
36–50. Springer, 2007.

[15] O. M. Shir. Niching in Derandomized Evolution
Strategies and its Applications in Quantum Control.
PhD thesis, Leiden University, The Netherlands, 2008.

[16] O. M. Shir, M. Preuss, B. Naujoks, and M. Emmerich.
Enhancing decision space diversity in evolutionary
multiobjective algorithms. In EMO ’09: Proceedings of
the 5th International Conference on Evolutionary
Multi-Criterion Optimization, pages 95–109, Berlin,
Heidelberg, 2009. Springer.

[17] N. Srinivas and K. Deb. Multiobjective optimization
using nondominated sorting in genetic algorithms.
Evolutionary Computation, 2:221–248, 1994.

[18] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2:
Improving the Strength Pareto Evolutionary
Algorithm for Multiobjective Optimization. In
Evolutionary Methods for Design, Optimisation and
Control with Application to Industrial Problems
(EUROGEN 2001), pages 95–100. International
Center for Numerical Methods in Engineering
(CIMNE), 2002.

[19] E. Zitzler and L. Thiele. Multiobjective Evolutionary
Algorithms: A Comparative Case Study and the
Strength Pareto Approach. IEEE Transactions on
Evolutionary Computation, 3(4):257–271, 1999.

