
DBT Path Selection for Holistic Memory
Efficiency and Performance

Apala Guha Kim Hazelwood Mary Lou Soffa
Department of Computer Science

University of Virginia

Abstract
Dynamic binary translators (DBTs) provide powerful platforms for
building dynamic program monitoring and adaptation tools. DBTs,
however, have high memory demands because they cache translated
code and auxiliary code to a software code cache and must also
maintain data structures to support the code cache. The high mem-
ory demands make it difficult for memory-constrained embedded
systems to take advantage of DBT-based tools. Previous research
on DBT memory management focused on the translated code and
auxiliary code only. However, we found that data structures are
comparable to the code cache in size. We show that the translated
code size, auxiliary code size and the data structure size interact
in a complex manner, depending on the path selection (trace selec-
tion and link formation) strategy. Therefore, holistic memory effi-
ciency (comprising translated code, auxiliary code and data struc-
tures) cannot be improved by focusing on the code cache only. In
this paper, we use path selection for improving holistic memory ef-
ficiency which in turn impacts performance in memory-constrained
environments. Although there has been previous research on path
selection, such research only considered performance in memory-
unconstrained environments.

The challenge for holistic memory efficiency is that the path se-
lection strategy results in complex interactions between the mem-
ory demand components. Also, individual aspects of path selec-
tion and the holistic memory efficiency may impact performance
in complex ways. We explore these interactions to motivate path
selection targeting holistic memory demand. We enumerate all the
aspects involved in a path selection design and evaluate a compre-
hensive set of approaches for each aspect. Finally, we propose a
path selection strategy that reduces memory demands by 20% and
at the same time improves performance by 5-20% compared to an
industrial-strength DBT.

Categories and Subject Descriptors D.3 [Processors]: Code gen-
eration, Compilers, Incremental compilers, Optimizations, Run-
time environments

General Terms Design, Experimentation, Measurement, Perfor-
mance

Keywords Dynamic binary translation, Memory management,
Embedded systems, Virtual machines, Path selection

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

VEE’10, March 17–19, 2010, Pittsburgh, Pennsylvania, USA.
Copyright c© 2010 ACM 978-1-60558-910-7/10/03. . . $10.00

1. Introduction
The capability of DBTs to monitor and translate the guest appli-
cation instruction stream can be leveraged for many uses such as
runtime security [6, 20, 23], dynamic optimization [3] and dynamic
instrumentation [25]. While these uses are important across all plat-
forms, some DBT uses are particularly important in the embedded
context. For example, DBTs can manage power by exploiting sys-
tem calls to configure hardware units according to the needs of the
guest application. DBTs can also complement static compilers for
scratchpad memory management. However, it is necessary to mini-
mize the memory impact of DBTs because embedded systems such
as PDAs have small memories (an order of magnitude smaller than
general purpose systems) while embedded applications are increas-
ingly becoming larger and more complex. Additionally, PDAs are
OS-based and support multitasking, both of which increase the bur-
den on the memory system. The specific functionality targeted by
the DBT may have memory requirements of its own. For example,
runtime security intended to protect certain memory regions must
store instrumentation code for every memory load and store. There-
fore, it is necessary to optimize the core DBT memory footprint to
enable a wide variety of applications on PDAs.

The three sources of DBT memory footprint are 1) translated
code, 2) auxiliary code, and 3) data structures. DBTs modify and
translate code (for example, inserting security checks) and cache
the translations in a software code cache to amortize the translation
overhead. Control has to be transferred back and forth between
the translator and the code cache for creating new translations and
for locating existing translations. DBTs cache auxiliary code with
translated code to facilitate the control transfers, adding to the code
cache size. DBTs use data structures to keep track of the code cache
contents. DBTs patch translated control transfer instructions (CTIs)
to point directly to translated code segments and reduce transfers to
the translator, thus forming paths. Data structures also keep track of
these links between translated code segments.

The sizes of the memory demand components of a DBT depend
on path selection which denotes the way that code is selected for
each translation and the way translated code is linked. The various
aspects of the path selection strategy as well as the holistic memory
efficiency impact the performance in memory-constrained environ-
ments. Therefore, our goal is to design a path selection strategy that
holistically optimizes all three memory sources without degrading
performance. For example, an aspect of path selection is whether
code is translated speculatively or non-speculatively. While spec-
ulation may improve performance by reducing control transfers to
the translator, it may use code cache and data structure space for
code that will never be executed. The increased space usage may
require the code cache to be flushed (to reclaim space) more fre-
quently, offsetting the performance benefit of speculation. We dis-
cuss path selection in more detail in the following sections.

145

auxiliary
code
 30%

translated
code
 29%

data
structures

41%

Figure 1. Memory distribution among translated code, auxiliary
code, and data structures. The results are averages taken over
the SPEC2000 integer and MiBench embedded benchmark suite,
hosted by Pin on ARM [25].

It is challenging to design a path selection strategy for improved
holistic memory efficiency because there are complex interactions
among the three sources of memory footprint. For example, some
strategies that reduce the translated code size may increase the
data structure size as well as the total memory demand and vice-
versa. Additionally, some path selection aspects may degrade per-
formance in memory-unconstrained environments, while the im-
proved memory efficiency may improve performance.

We explore these complex interactions in this paper to motivate
the design of path selection strategies targeting holistic memory
demand. We enumerate all the aspects involved in a path selection
design and evaluate a comprehensive set of approaches for each as-
pect. Finally, we propose a path selection strategy for both memory
efficiency and performance in memory-constrained environments.
The proposed path selection strategy specifies 1) the granularity
of a translation, 2) whether code should be speculatively selected
for translation, 3) how informed the speculation (if used) should
be, 4) when a translated region should be terminated, and 5) how
translated code should be linked.

Path selection exposes complex interactions between the com-
ponents that comprise the memory demand. For example, fine-
grained translations (such as single basic blocks) increase the num-
ber of translated units and the amount of data structures required
for bookkeeping. However, fine-grained translations promote code
reuse (and reduce code duplication) if the code appears in multi-
ple program paths. Fine-grained translations also give rise to more
points at which control may need to be transferred to the translator,
and therefore increase the amount of auxiliary code. Similarly, the
linking policy also impacts the holistic memory demand in a com-
plex manner. Early (proactive) linking of translated code may cre-
ate links that are never used, and allocate data structures for record-
ing such links. Late (on-demand or lazy) linking, however, does not
allocate unnecessary data structures but requires more functionality
in auxiliary code, increasing the auxiliary code size.

Path selection also impacts performance in a complex manner.
For example, lazy linking will increase the number of control trans-
fers between the code cache and the translator, which may degrade
performance. At the same time, in memory-constrained environ-
ments, performance is impacted by the holistic memory demand
because the code cache must be flushed to free memory space on
reaching the memory limit, leading to retranslations which create
performance degradation. Therefore, the memory savings offered
by lazy linking offsets the context switch overhead in memory-
constrained environments.

Previous work on DBT memory management has not investi-
gated path selection and has focused only on the memory demands
of translated code and auxiliary code [1, 2, 11, 12, 16]. However,
such approaches are not sufficient because they ignore the data
structures which are comparable to the code cache in size [21]. As

OS + Hardware

Application

Translator

Application Code

Translation Request

Translated Code

Executable Code

Translated Code
+ Auxiliary Code
= Code Cache

Data
Structures

Figure 2. Block diagram of a typical translation-based DBT. The
translator is the core of the DBT. It caches its translations and uses
data structures to manage the translations.

shown in Figure 1, we experimentally found that on average, trans-
lated code and auxiliary code constitute 59% of the total memory
demand while data structures constitute 41%, in Pin, an industrial-
strength DBT. Similar data on the code cache components has been
found across different DBTs [2, 8]. We also found that factoring
in data structure sizes impacts the relative memory demand of path
selection strategies. Previous approaches placed the memory limit
on the code cache only [1, 2, 12, 16], leading to inaccurate in-
terpretation of performance results. Additionally, previous work
has researched both code selection [10, 18, 19] and linking strate-
gies [3, 6, 9, 22, 25] but from the performance perspective only.
Such approaches do not consider the memory demands of path se-
lection or its performance in memory-constrained environments.

We make the following contributions in this paper:

• We provide conceptual and experimental motivation for consid-
ering the holistic memory demands of DBT path selection.

• We enumerate the design axes involved in path selection and
evaluate a comprehensive set of choices for each axis.

• We enumerate and experimentally evaluate the tradeoffs among
the memory demand components.

• We evaluate whether performance improvement due to better
holistic memory efficiency outweighs the performance degra-
dation due to individual aspects of path selection.

• We propose a path selection strategy to improve holistic mem-
ory demand as well as performance.

We provide background on DBTs in Section 2. We describe the
various aspects of path selection and their implications in Section 3.
We evaluate path selection strategies and propose a strategy for
holistic memory efficiency and performance in Section 4. Finally,
we present related work in Section 5 and conclude in Section 6.

2. Background
Figure 2 is a simplified diagram of a translation-based DBT. The
core of the DBT is a translator responsible for translating the guest
application code dynamically. The translator caches translated code
which executes natively from the software code cache. Code is
translated into program traces containing one or more basic blocks.
These traces have a single entry and one or more exits, depending
on the number of basic blocks in the trace.

Code translation is performed on demand and requests have to
be generated for translations of new code. There are repeated con-
text switches between the translator (for translation of new code)
and the code cache (for execution of translated code). The con-
text switch involves saving and restoring state. DBTs create and
cache exit stubs to facilitate context switches. Exit stubs are con-
structs that translated control transfer instructions (CTIs) initially
target. Exit stubs are the main constituent of auxiliary code, con-
sisting of cached code that is not part of the guest application code.

146

Path Selection

Forming Traces

Multiple Basic
Block

Creating Links

Single Basic
Block

LazyProactive

Non-
speculative

Speculative

Figure 3. Topology of the path selection choices.

A: …

branch to C if not equal

B: …

branch to D

C: …

D: …

branch to A if less than

E: …

(a) Original code snippet to be
translated.

A

B C

D

E

(b) Control flow graph of code
snippet.

Figure 4. Section 3 describes the different path selection strategies
by applying them to this code snippet.

Although exit stubs are crucial for correct functionality, there is a
performance penalty to context switch to the translator every time
a CTI is executed. Thus, CTIs are patched to directly point to their
target code if available in the code cache in a process known as
linking. Linking is possible only for a direct CTI, i.e., a CTI whose
target does not change during the application execution.

DBTs also use data structures, as shown in Figure 2. The main
data structure is a code cache directory, which stores an entry
for each cached trace. Each entry contains the original program
address and the corresponding code cache address of a trace. The
translator searches the directory for an existing translation in the
code cache before translating code at a requested program address.
Data structures also record how traces are linked, since CTIs may
need to be unlinked if the target trace is ever removed from the
code cache (flushed). The link data structure contains the source
and and corresponding exit stub addresses of the link. Lists of
incoming and outgoing links of a trace are associated with its
code cache directory entry to facilitate removal of a trace and the
corresponding modification of incoming edges.

3. Path Selection
Path selection determines how code is selected to form a trace
and how traces are linked to each other. Figure 3 depicts the de-
sign space. Traces and links between traces make up the program
paths in the code cache. When forming a trace, the first basic block
is fully included, since all instructions are guaranteed to execute.
The translator may stop or continue translation after the first basic
block. Since the outcome of a CTI ending the first basic block can-
not be determined a priori, the translator may continue translation
speculatively or non-speculatively (for example, by executing the

partially formed trace to determine the CTI outcome). Similarly,
links between traces may be placed speculatively (proactively) or
when the path actually executes for the first time (lazily). Each
of the choices presents a tradeoff among the memory components
(translated code, auxiliary code, and data structures) or a tradeoff
between memory efficiency and performance, as discussed in the
following sections. We use the snippet of code in Figure 4(a) as
a running example to explain the configuration choices and their
tradeoffs. We assume that there is an initial translation request for
A. The execution follows path ABD once and then follows path
ACD repeatedly before exiting to E. Figure 4(b) shows the control
flow graph corresponding to Figure 4(a).

3.1 Single-Block vs. Multi-Block Translation

Given a program address, the translator may choose to translate a
trace containing one or more basic blocks starting at that address.
For example, Figure 5 shows two possible trace formations when
the translator attempts to translate A from Figure 4. Figure 5(a)
shows a single-block trace starting at A. Figure 5(b) is an example
of a multi-block trace starting at A. White blocks are part of the
trace while shaded blocks represent exit stubs.

In Figure 5(b), if B appears on some other program path, B
will have to be translated again (duplicated) because side entries
to traces are not allowed. Single-block traces will not suffer from
such duplication. However, in Figure 5(b), there is only one off-
trace branch for A, while in Figure 5(a), there are two off-trace
branches for A. This phenomenon occurs because both outcomes
of a conditional branch need to be handled in translated code. For
multi-block traces, one of the outcome targets can be part of the
trace. For single-block traces, both outcome targets are off trace.
Therefore, single-block traces have more branches and exit stubs
per unit of translated code. Also, more links have to be recorded
for single-block traces, increasing the proportion of data structures.

Another side effect of single-block traces is that there are more
code cache directory entries per unit of code, increasing the pro-
portion of data structures further. For example, in Figure 5, if B
appears in a single program path, the multi-block trace will save
storing a code cache directory entry for B.

A higher proportion of auxiliary code for single-block traces
implies that a smaller proportion of the code cache is available
for translated code, leading to lower code cache locality. The lack
of duplication for single-block traces also implies that temporally
close code may not be spatially close, again leading to lower code
cache locality. Moreover, the number of context switches will be
higher as code is translated one basic block at a time.

In summary, single-block traces reduce code duplication but in-
crease the proportion of auxiliary code and data structures. Regard-
ing performance, single-block traces suffer from lower code cache
locality and higher context switches.

3.2 Multi-Block Trace Selection and Termination

Figure 5(b) shows that the translator chose to translate B to extend
the trace starting at A. Several other choices are possible for a
multi-block trace. In this section we discuss strategies for forming
a multi-block trace.

Trace Selection. We extend a trace by selecting one basic block
at a time. We can select the basic blocks non-speculatively by
executing the last basic block to determine what is going to be
the next basic block or by speculating the next basic block. In
Figure 6(a), we execute A and find that B is the next basic block
to execute. We append B to A. In Figure 6(b), we speculate that C
is the basic block likely to execute next (for example, from offline
profiling data) and we append C to A.

We use two strategies for speculative trace selection. In the
first strategy, we use data gathered in an offline profiling run to

147

�

����
����

(a) Single-block trace.

�

����
���	

�

(b) Multi-block trace.

Figure 5. Translation to single-block and multi-block traces.
White boxes are parts of the trace, while gray boxes are exit stubs.
The gray boxes are labeled with the corresponding CTI targets.

�

����
���	

�

(a) Extending trace non-
speculatively.

�

����
����

�

	

���

(b) Extending trace specula-
tively.

Figure 6. Extending a trace. White areas are parts of the trace
while gray areas are exit stubs.

Average No. of CTIs
Basic Block Type pointing to Basic Block
Fall throughs of conditional CTIs 0.082
Targets of conditional CTIs 1.429
Targets of unconditional CTIs 3.219

Table 1. Table showing the average number of CTIs pointing to
different types of basic blocks. The results are averages taken over
the SPEC2000 integer and MiBench embedded benchmark suite,
hosted by Pin [25].

speculate which way a branch will go. We speculate about a CTI
only if it shows a particular bias for at least 90% of its executions in
the profiling run. In the second strategy, we translate a contiguous
stream of code until the trace size reaches a certain threshold size
or it encounters an indirect or direct, unconditional CTI. Such a
strategy is equivalent to speculating that no conditional CTI will be
taken. This strategy would, however, speculate that B follows A and
trace the path AB. The speculative strategy using profiling is highly
informed, while the second strategy uses minimum information.

There are more context switches in forming non-speculative
traces as these are translated one basic block at a time. However,
if the speculation is incorrect, there will be wasted space for trans-
lated code and data structures.

Trace Termination. After translating each basic block, the
translator must determine whether to extend the trace further. We

�

����
����

(a) Terminating trace when the
next basic blocks, B and C, ap-
pear on other program paths.

�

����
���	

�

(b) Terminating trace when the
next basic block, B, appears
only on this path.

Figure 7. Termination of a trace based on the number of different
paths the next basic block appears in. White areas are parts of the
trace while gray areas are exit stubs.

should ideally continue to extend the trace if the next basic block
appears in this single program path because it will not be duplicated
elsewhere. We should start a new trace with the next basic block
if it appears on other program paths because it will be duplicated
otherwise. For example, suppose both B and C are targeted by basic
blocks other than A. we should produce the trace in Figure 7(a).
However, if B always follows A, we should produce the trace in
Figure 7(b).

We experimentally explore the trace termination condition here
because the number of program paths executing a basic block is
independent of other aspects of path selection. We hypothesized
that the number of program paths in which the next basic block
appears (i.e., the number of CTIs that point to the next basic block)
is correlated with the type of the CTI ending the last basic block
translated. Indeed, as shown in Table 1, we found that if the next
basic block is a fall-through of the direct, conditional CTI ending
the last basic block, it is rarely targeted by CTIs, while if the
next basic block is a target of a direct CTI ending the last basic
block, it is usually pointed to by other CTIs also. Therefore, we
terminate traces based on CTI type i.e., whether it is a not taken
direct conditional CTI, taken direct conditional CTI or a direct,
unconditional CTI.

To confirm our hypothesis, we measured the DBT memory re-
quirements when 1) not taken direct conditional CTIs are elided to
the trace (Figure 8(a)), 2) taken direct conditional CTIs are elided
to the trace (Figure 8(b)), and 3) direct unconditional CTIs are
elided to the trace (Figure 8(c)). We then compared the results
with single-block traces (essentially, not eliding any CTI). If elid-
ing any of the above categories of CTIs has better memory effi-
ciency than the baseline, then it is considered worth eliding. Fig-
ure 8(a) shows the results of eliding not taken conditional CTIs.
Memory efficiency improves in almost all the benchmarks with an
average 5% improvement. Figure 8(b) shows the results of eliding
taken conditional CTIs. Memory efficiency degrades 41% on av-
erage. Figure 8(c) shows the results of eliding unconditional CTIs.
Memory efficiency degrades 14% on average. Although more CTIs
point to targets of unconditional, direct CTIs, the degradation from
eliding unconditional, direct CTIs is smaller because conditional,
direct CTIs are higher in number. Therefore, it is beneficial to elide
only direct conditional CTIs that are not taken, which matches the
data in Table 1.

These evaluations modify the trace selection strategies such that
1) non-speculative trace selection terminates traces at taken, direct
CTIs, and, 2) speculative, profile-based trace selection terminates
traces at direct CTIs predicted to be taken. All of these trace selec-
tion strategies continue to terminate traces at indirect CTIs.

148

0

0.2

0.4

0.6

0.8

1

1.2

1.4
st

ri
n

g
se

ar
ch sh

a

jp
eg

d
ijk

st
ra

su
sa

n

ri
jn

d
ae

l

p
g

p

m
ad

ad
p

cm

b
it

co
u

n
t

g
sm

b
lo

w
fi

sh

ti
ff

2b
w

q
u

ic
ks

o
rt

g
zi

p

cr
c

g
h

o
st

sc
ri

p
t

tw
o

lf

b
zi

p
2

ty
p

es
et ff
t

vp
r

b
as

ic
m

at
h

is
p

el
l

p
ar

se
r

rs
yn

th

vo
rt

ex

cr
af

ty

la
m

e

g
cc

av
er

ag
e

n
o

rm
al

iz
ed

 t
o

ta
l m

em
o

ry
 d

em
an

d

(a) Normalized memory requirements of benchmarks when not taken conditional control transfers are elided. Memory efficiency improves in most cases
and also on average.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

st
ri

n
g

se
ar

ch sh
a

jp
eg

d
ijk

st
ra

su
sa

n

ri
jn

d
ae

l

p
g

p

m
ad

ad
p

cm

b
it

co
u

n
t

g
sm

b
lo

w
fi

sh

ti
ff

2b
w

q
u

ic
ks

o
rt

g
zi

p

cr
c

g
h

o
st

sc
ri

p
t

tw
o

lf

b
zi

p
2

ty
p

es
et ff
t

vp
r

b
as

ic
m

at
h

is
p

el
l

p
ar

se
r

rs
yn

th

vo
rt

ex

cr
af

ty

la
m

e

g
cc

av
er

ag
e

n
o

rm
al

iz
ed

 t
o

ta
l m

em
o

ry
 d

em
an

d

(b) Normalized memory requirements of benchmarks when taken conditional control transfers are elided. Memory efficiency degrades 41% on average.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

st
ri

n
g

se
ar

ch sh
a

jp
eg

d
ijk

st
ra

su
sa

n

ri
jn

d
ae

l

p
g

p

m
ad

ad
p

cm

b
it

co
u

n
t

g
sm

b
lo

w
fi

sh

ti
ff

2b
w

q
u

ic
ks

o
rt

g
zi

p

cr
c

g
h

o
st

sc
ri

p
t

tw
o

lf

b
zi

p
2

ty
p

es
et ff
t

vp
r

b
as

ic
m

at
h

is
p

el
l

p
ar

se
r

rs
yn

th

vo
rt

ex

cr
af

ty

la
m

e

g
cc

av
er

ag
e

n
o

rm
al

iz
ed

 t
o

ta
l m

em
o

ry
 d

em
an

d

(c) Normalized memory requirements of benchmarks when unconditional control transfers are elided. Memory efficiency degrades 14% on average.

Figure 8. Normalized memory demand of terminating traces at different types of CTIs. The baseline is single-block traces. The results are
taken over the SPEC2000 integer and MiBench embedded benchmark suite, hosted by Pin [25].

149

A

B

Code Cache
Directory

Entry for A

Lists of
Incoming Links

Link from A to B

Entry for B

Lists of
Outgoing Links

Link from A to B

B
C

D

(a) Proactive linking applied to
the trace being translated when
the branch target is cached.

Code Cache
Directory

Entry for A
Tentative
Entry for B

Lists of
Outgoing Links

Tentative Link
from A to B

Lists of
Incoming Links

Tentative Link
from A to B

(b) Proactive linking applied to
the trace being translated when
the branch target is not cached.

Figure 9. Proactive linking of a trace being translated.

3.3 Link Formation

Links can be formed proactively or lazily. Proactive linking places
the link as soon as the source and target traces are cached. When
a trace is translated, a proactive linking configuration examines
each of the trace’s outgoing branches. If the branch targets are
already in the cache, the branches are immediately linked to the
targets. For example, as shown in Figure 9(a), basic block A is
being translated into a single-block trace. One branch in trace A
needs to link to target basic block B. The target B is already in
the code cache. Therefore, the branch is immediately linked to
B. The link is registered with the code cache directory entries of
its source A and target B. However, all such registered links may
not be traversed. If the target B is not already cached, as shown
in Figure 9(b), proactive linking registers a tentative code cache
directory entry for B (if not already registered) and then registers
the tentative link with the directory entries corresponding to A
and B. It is therefore ensured that, whenever B is translated, all
tentative links to it will be immediately put in place. Tentative
data structures occupy space and may never get associated with
a translation. Also, the usage of tentative entries implies that there
is a time gap between recording the entries and the actual linking.
So, at the time of linking, checking has to be done to determine
whether the source trace for the link still exists or not. To check
whether the source trace still exists, each trace is given a identifier
which is unique over the entire execution. The source trace can be
verified in the code cache directory using the identifier. Therefore,
proactive linking needs extra memory for trace identifiers.

Lazy linking creates a link only when the corresponding path
executes for the first time. For lazy linking, link entries are created
when the link is needed. Therefore, lazy linking does not need ten-
tative entries or trace identifiers. Since link entries are not created
beforehand, the exit stub has to tell the translator the location of the
CTI that is requesting to be linked. Since the exit stub stores the
CTI location, it is larger compared to the exit stubs used by proac-
tive linking. Thus, the auxiliary code size is larger for lazy linking
than for proactive linking.

In summary, lazy linking needs less data structure space than
proactive linking. However, lazy linking results in larger exit stubs
than proactive linking, leading to larger auxiliary code. From
the performance perspective, proactive linking anticipatorily links
traces and is more effective in reducing the number of context
switches between the code cache and the translator. The larger exit
stubs used by lazy linking increase the proportion of auxiliary code
in the code cache, leading to a reduction in code cache locality.

Strategy Description
Single Single basic block trace
Dynamic Non-speculative selection of multi-block traces
Threshold-based Speculative selection of contiguous code up to

a threshold size for multi-block traces
Profile-based Speculative selection based on profile data for

multi-block traces

Table 2. Trace selection strategies and their descriptions.

4. Experimental Evaluation
We experimentally evaluated various path selection strategies to
1) evaluate their holistic memory efficiency and performance,
2) demonstrate that we arrive at correct conclusions about mem-
ory efficiency and performance only when we factor in data struc-
tures as well as the code cache, 3) investigate the tradeoffs among
translated code, auxiliary code, and data structure sizes, 4) inves-
tigate the overall impact of the path selection on performance, and
5) propose a path selection strategy that achieves better memory ef-
ficiency without performance degradation in memory-constrained
environments. We describe our experimental setup in Section 4.1
followed by results in Section 4.2.

4.1 Experimental Setup

We evaluated both the memory and performance effects of the dif-
ferent path selection strategies. For memory effects, we measured
the sum of the space occupied by the translated code, auxiliary code
and the data structures. For performance, we measured the execu-
tion times of applications hosted by a DBT. In one of the perfor-
mance experiments, the DBT was limited to use half of the code
cache and data structure memory it needs for each benchmark. An-
other performance experiment used a uniform memory limit of 512
KB on all the benchmarks.

We choose a baseline path selection strategy for comparison,
which selected a contiguous chunk of code until the trace reached a
size threshold or an unconditional or indirect CTI. For linking, the
baseline used proactive linking. This trace selection strategy is one
of our two speculative strategies. We chose this baseline because it
is used by Pin [25], a production-quality DBT.

We used Pin for XScale [14] as our DBT. We implemented our
strategies by directly modifying the Pin source code. However, our
findings apply to other DBTs because the relative proportions of
translated code, auxiliary code, and data structures are reported
to be similar [2, 8]. Although Pin is generally used for dynamic
binary instrumentation, we used it simply to host our benchmarks.
When used without instrumentation, Pin uses the bare minimum
data structures (only for tracking the traces and links) required.

We ran the SPEC2000 integer [17] and MiBench embedded
benchmark [13] suites on a iPAQ PocketPC H3835 machine run-
ning Intimate Linux kernel 2.4.19. The IPAQ has a 200 MHz
StrongARM-1110 processor with 64 MB RAM, 16 KB instruction
cache and a 8 KB data cache. The SPEC benchmarks were run
on test inputs, since there was not enough memory on the embed-
ded device to execute larger inputs (even natively). The MiBench
benchmark suite provides large and small input datasets for the
benchmarks. We used the large inputs in our experiments.

We divide the benchmarks into three groups - short-running,
medium-length and long-running, according to their baseline exe-
cution times. The short-running benchmarks have execution times
of less than 100 seconds. The medium-length benchmarks execute
between 100 to 1000 seconds. The long-running benchmarks ex-
ecute for more than 1000 seconds. We categorize the benchmarks
because longer benchmarks are better able to amortize translation
overheads and the effects of DBT optimizations become clearer as

150

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2
st

ri
n

g
se

ar
ch sh

a

jp
eg

d
ijk

st
ra

su
sa

n

ri
jn

d
ae

l

p
g

p

m
ad

ad
p

cm

b
it

co
u

n
t

g
sm

b
lo

w
fi

sh

ti
ff

2b
w

q
u

ic
ks

o
rt

g
zi

p

cr
c

g
h

o
st

sc
ri

p
t

p
er

lb
m

k

tw
o

lf

b
zi

p
2

ty
p

es
et ff
t

vp
r

b
as

ic
m

at
h

g
ap

is
p

el
l

p
ar

se
r

rs
yn

th

vo
rt

ex

cr
af

ty

la
m

e

eo
n

g
cc

av
er

ag
e

short (0 - 100s) medium (100 - 1000s) long (> 1000s)

n
o

rm
al

iz
ed

 t
o

ta
l m

em
o

ry
 d

em
an

d

single, proactive dynamic , proactive threshold, proactive profile, proactive

single, lazy dynamic, lazy threshold, lazy profile, lazy

(a) Normalized memory demand of the benchmarks, with the benchmarks being arranged in increasing order of execution time.

0

0.2

0.4

0.6

0.8

1

1.2

d
yn

am
ic

,
p

ro
ac

ti
ve

p
ro

fi
le

,
p

ro
ac

ti
ve

si
n

g
le

,
p

ro
ac

ti
ve

si
n

g
le

,
la

zy

p
ro

fi
le

,
la

zy

d
yn

am
ic

,
la

zy

th
re

sh
o

ld
,

p
ro

ac
ti

ve

th
es

h
o

ld
,

la
zy

n
o

rm
al

iz
ed

 c
o

d
e

ca
ch

e
si

ze

(b) Path selection strategies ranked according to their memory effi-
ciency when only the code cache size is considered.

0

0.2

0.4

0.6

0.8

1

1.2

p
ro

fi
le

,
la

zy

d
yn

am
ic

,
la

zy

si
n

g
le

,
la

zy

th
re

sh
o

ld
,

la
zy

d
yn

am
ic

,
p

ro
ac

ti
ve

p
ro

fi
le

,
p

ro
ac

ti
ve

si
n

g
le

,
p

ro
ac

ti
ve

th
re

sh
o

ld
,

p
ro

ac
ti

ve

n
o

rm
al

iz
ed

 t
o

ta
l m

em
o

ry
 d

em
an

d
data structures
code cache

(c) Path selection strategies ranked according to their memory effi-
ciency when the total memory demand is considered.

Figure 10. Normalized memory demands of different path selection strategies, with threshold-based selection, proactive
linking as the baseline.

the benchmarks get longer. The total execution time of the long-
running benchmarks exceeds that of all the benchmarks in the short
and medium-length categories combined.

4.2 Memory and Performance Evaluation

We compare the memory efficiency and performance of our path
selection strategies in this section. We present the results on mem-
ory efficiency in Section 4.2.1 followed by the results on perfor-
mance in Section 4.2.2. We discuss the results and propose a path
selection strategy in Section 4.2.3. In the graphs, where applica-
ble, the benchmarks are arranged in increasing order of baseline
execution time. We use the nomenclature shown in Table 2 for the
path selection strategies. Each of the path selection strategies will
be combined with both lazy and proactive linking.

4.2.1 Memory Efficiency

Figure 10 shows the normalized memory demands of the bench-
marks. Figure 10(a) presents the total memory demand for all the

benchmarks. There are few intersections in the graph indicating that
there is a consistent ranking among the different strategies for most
of the benchmarks. Therefore, we use the summary graphs of Fig-
ure 10(b) and Figure 10(c). Figure 10(b) shows how the memory
efficiency would rank the strategies if we consider the code cache
only, while Figure 10(c) shows how it would rank the strategies if
we consider both the code cache and data structures. There is great
variation between the rankings of Figure 10(b) and Figure 10(c)
because the strategies use different proportions of data structures.
Therefore, it is misleading to consider the code cache size only to
measure the memory demand. Also, since the ratio of code cache
size to the data structure size is different for each configuration,
there is no straightforward method to calculate the data structure
size given the code cache size.

We first compared the strategies by fixing the linking strategy
and varying the trace selection strategy. For lazy linking, multi-
block traces (formed by dynamic or profile-based selection) have
better memory efficiency than single-block traces. Code caches

151

for single-block traces are slightly smaller or similar in size to
the code caches for multi-block traces because there is less code
duplication for single-block traces. But, single-block traces need
more data structures per unit of translated code, which gives rise to
larger data structure sizes for single-block traces. The small code
caches are outweighed by the large data structures for single-block
traces. Regarding the degree of speculation involved in trace selec-
tion, there is not much difference in memory efficiency between
dynamic trace selection and profile-based trace selection because
profile-based trace selection is highly accurate speculation because
neither waste space. However, threshold-based selection has worse
memory efficiency than all the other selection techniques because
it speculates inaccurately and wastes space. The results are similar
for the proactive linking strategies.

Next, we compared the strategies by fixing the trace selection
strategy and varying the linking strategy. For all the trace selection
strategies, proactive linking produces smaller code caches than
lazy linking because proactive linking needs smaller exit stubs
leading to lower auxiliary code size. However, the total memory
demand of lazy linking is less than that of proactive linking because
the decrease in data structures due to lazy linking outweighs the
increase in code cache size.

The following summarizes our memory efficiency evaluation:

• Considering the code cache in isolation leads us to misleading
conclusions about the memory demand. There are complex
interactions among the memory components as shown by the
variance in the relative allocation of space by the different path
selection strategies.

• As shown in Figure 10(c), all the lazy linking schemes perform
better than all the proactive linking schemes. Therefore, the
increase in auxiliary code size due to lazy linking is outweighed
by the decrease in data structures. The linking strategy has the
most effect on memory efficiency.

• The influence of the linking strategy is followed by the strategy
of deciding the number of basic blocks in a trace. The reduction
in data structures and auxiliary code due to multi-block traces
outweighs the increase in duplication. Multi-block traces have
better memory efficiency than single-block traces.

• We found that the degree of speculation does not influence the
memory efficiency much as long as the decisions are accu-
rate. Both non-speculative (dynamic selection) and highly ac-
curate, speculative (profile-based selection) trace selection per-
form well because neither waste space.

• The best memory efficiency should be provided by combining
lazy linking with multi-block traces and accurate trace selec-
tion. Profile-based trace selection and dynamic trace selection
combined with lazy linking have these characteristics and of-
fer the best memory efficiency. A 20% memory savings can be
achieved with these path selection strategies.

4.2.2 Performance

The normalized performance of the short-running, medium-length
and long-running benchmarks are shown in Figure 11(a), Fig-
ure 11(b) and Figure 11(c) with half the total memory demand
as the limit. We validated our results further by placing a uni-
form memory limit of 512 KB on all the benchmarks. Figure 12
shows that similar results were obtained with a uniform memory
limit. Short-running benchmarks do not get much time to amortize
translation overheads by executing in the code cache, resulting in
no clear winner among the different path selection strategies in
this category. Also, the average performance difference among the
different path selection strategies in the short-running benchmark
category is minor. As we move into the medium-length and long-
running benchmark categories, however, we see clearer patterns.

We first compared the strategies by fixing the linking strategy
and varying the trace selection strategy. For lazy linking, multi-
block traces (dynamic, profile-based and threshold-based selection)
perform better than single-block traces because of greater code
cache locality, fewer context switches and better memory efficiency
leading to fewer flushes. As shown in Figure 13, single-block traces
have the highest fraction of the code cache occupied by auxiliary
code, leading to lowest code cache locality. Between speculative
(profile-based and threshold-based) and non-speculative (dynamic)
trace selection, speculation has a slight advantage when it is highly
informed (as in profile-based) due to the fewer number of con-
text switches required. Profile-based selection is the best followed
closely by all the other trace selection strategies in the medium-
length benchmark category. However, in the long-running bench-
mark category, profile-based selection is the best followed closely
by dynamic selection only. These two selection strategies perform
well in all the benchmark categories and outperform the other trace
selection strategies by increasing margins as the benchmark length
increases. The profit margin increases because as the execution
time increases, there is more time to amortize translation overheads
and the true benefits of the different trace selection strategies be-
come clearer. The proactive linking strategies present a distribution
similar to the lazy linking strategies.

Next, we compared the strategies by fixing the trace selection
strategy and varying the linking strategy. Lazy linking clearly per-
forms better than proactive linking due to better memory efficiency
and fewer flushes. However, this is not the case with gcc, because
the working set of gcc changes frequently during program execu-
tion. In this situation, the extra context switch overhead of lazy link-
ing cannot be amortized because the working set changes rapidly.
The large performance gains for gcc skew the average although
for all other benchmarks in the long-running category, lazy linking
is the clear winner.

The following is a summary of the performance evaluation:

• As in the case of memory efficiency, lazy linking combined with
multi-block traces using accurate trace selection should be the
best. Dynamic and profile-based trace selection strategies com-
bined with lazy linking fulfill these characteristics and provide
the best runtime performance. The best schemes improve per-
formance by 5% for the medium-length category and by 20%
for the long-running category.

• When considering the code cache size only, usually proactive
linking is preferred for performance. Therefore, we see again
that ignoring data structures leads us to misleading conclusions
as lazy linking is preferred for holistic memory efficiency.

• The path selection strategies with the best memory efficiency
have the best performance.

• Code cache locality and context switch overhead are not as
important as memory efficiency because dynamic selection
has less code cache locality (as shown in Figure 13) than
profile-based selection. Also, dynamic selection, being non-
speculative, carries more context switch overhead than profile-
based selection. Yet dynamic selection performs almost as well
as profile-based selection.

4.2.3 Discussion

We have demonstrated that when considering the code cache in
isolation, we reach misleading conclusions about the memory effi-
ciency of DBTs. In addition, we have shown that the total memory
demand is not a simple function of the code cache size. Therefore,
the space allocated for data structures has to be evaluated in addi-
tion to the code cache.

We also found that the linking strategy has the most effect on
memory efficiency followed by the number of basic blocks in the

152

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
st

ri
n

g
se

ar
ch sh

a

jp
eg

d
ijk

st
ra

su
sa

n

ri
jn

d
ae

l

p
g

p

m
ad

ad
p

cm

b
it

co
u

n
t

g
sm

b
lo

w
fi

sh

ti
ff

2b
w

q
u

ic
ks

o
rt

g
zi

p

cr
c

g
h

o
st

sc
ri

p
t

p
er

lb
m

k

tw
o

lf

b
zi

p
2

av
er

ag
e

n
o

rm
al

iz
ed

 r
u

n
ti

m
e

single, proactive dynamic , proactive threshold, proactive profile, proactive
single, lazy dynamic, lazy threshold, lazy profile, lazy

(a) Normalized performance of short-running benchmarks.

0

0.2

0.4

0.6

0.8

1

1.2

typeset fft vpr basicmath gap ispell parser rsynth average

n
o

rm
al

iz
ed

 r
u

n
ti

m
e

single, proactive dynamic , proactive threshold, proactive profile, proactive
single, lazy dynamic, lazy threshold, lazy profile, lazy

(b) Normalized performance of medium-length benchmarks.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

vortex crafty lame eon gcc average

n
o

rm
al

iz
ed

 r
u

n
ti

m
e

single, proactive dynamic , proactive threshold, proactive profile, proactive

single, lazy dynamic, lazy threshold, lazy profile, lazy

(c) Normalized performance of long-running benchmarks.

Figure 11. Normalized performance of different path selection strategies for the different benchmark categories, with threshold-based
selection, proactive linking as the baseline.

153

0

0.5

1

1.5

2

2.5

3

3.5

st
ri

n
g

se
ar

ch sh
a

jp
eg

d
ijk

st
ra

su
sa

n

ri
jn

d
ae

l

p
g

p

m
ad

ad
p

cm

b
it

co
u

n
t

g
sm

is
p

el
l

b
lo

w
fi

sh

ti
ff

2b
w

q
u

ic
ks

o
rt

g
zi

p

cr
c

g
h

o
st

sc
ri

p
t

p
er

lb
m

k

tw
o

lf

b
zi

p
2

av
er

ag
e

n
o

rm
al

iz
ed

 r
u

n
ti

m
e

threshold single dynamic profile

threshold_lazy single_lazy dynamic_lazy profile_lazy

(a) Normalized performance of short-running benchmarks.

0

0.2

0.4

0.6

0.8

1

1.2

typeset parser fft vpr basicmath gap rsynth average

n
o

rm
al

iz
ed

 r
u

n
ti

m
e

threshold single dynamic profile
threshold_lazy single_lazy dynamic_lazy profile_lazy

(b) Normalized performance of medium-length benchmarks.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

vortex crafty lame eon gcc average

n
o

rm
a
li

z
e

d
 r

u
n

ti
m

e

threshold single dynamic profile

threshold_lazy single_lazy dynamic_lazy profile_lazy

(c) Normalized performance of long-running benchmarks.

Figure 12. Normalized performance of different path selection strategies, with threshold-based selection, proactive
linking as the baseline and 512 KB as the uniform memory limit.

154

trace. Both strategies present tradeoffs among the memory compo-
nents. Non-speculation (dynamic selection) or well-informed spec-
ulation (profile-based selection) does not result in much difference
in memory efficiency, although uninformed speculation (threshold-
based selection) degrades memory efficiency considerably.

The linking strategy has the most effect for performance as
well. Lazy linking performs better than proactive linking, although
proactive linking has fewer context switches. This phenomenon
occurs because lazy linking has better memory efficiency and
flushes less often, outweighing the performance overhead of con-
text switches and showing that memory efficiency is the most im-
portant factor influencing performance. As in the case of memory
efficiency, the next most important factor is the number of basic
blocks in trace. The better code cache locality of multi-block traces
provides a slight advantage. Non-speculation (dynamic selection)
vs. well-informed speculation(profile-based selection) has the least
impact on performance, showing that context switch overhead is
the least important factor.

Based on experimental results, we recommend the use of multi-
block traces that are formed by selecting contiguous basic blocks
as long as the control flow remains sequential. Whether the control
flow remains sequential should be determined non-speculatively
or using highly-informed speculation. The traces should be linked
lazily. Therefore, dynamic selection or profile-based selection com-
bined with lazy linking are the path selection strategies of choice
for memory-constrained scenarios. With profile-based selection, a
profiling run must occur. Our experiments show that dynamic se-
lection can get close to profile-based selection without the profiling
run. Therefore, our final recommendation is dynamic selection with
lazy linking. Dynamic selection with lazy linking improves mem-
ory efficiency by 20% and performance by 5-20%.

5. Related Work
Several DBTs have been developed for general-purpose machines,
including DynamoRIO [3, 6], Strata [19, 20, 28], Valgrind [27] and
Pin [25]. These DBTs provide features such as optimization [3],
instrumentation [25] and security [6, 20, 23]. Most DBTs sup-
port general-purpose computing platforms. Pin [25], DELI [9] and
Strata [1, 2, 26] are DBTs that support embedded platforms.

For most DBTs, the trace is the unit of choice compared to
functions and methods [3, 6, 9, 22, 25, 27, 28]. Indeed, the trace
was found to perform well and to be easy to compile [5]. Therefore,
we chose traces as the unit of compilation in this paper.

Next-Executing-Tail (NET) [10] is the most popular trace selec-
tion algorithm. NET identifies certain instructions as potential trace
heads and profiles them until they reach a hotness threshold. NET
starts compiling traces at hot trace heads by following the execution
direction at every basic block tail, until an end-of-trace condition is
reached. While our dynamic trace selection strategy is similar to
NET, we conclude that it is not beneficial to deviate from straight-
line code within a trace although NET may do so. This difference
arises because NET was designed with performance as the goal
while our goal is memory efficiency leading to good performance in
memory-bound situations. Pin [14, 25] also uses straight-line code.
However Pin’s strategy is really the threshold-based strategy that
we use in this paper. We found that just placing a threshold on the
size of a trace is not sufficient. A trace needs to be terminated de-
pending on the CTI type.

NET uses interpretation [3] or caches code as basic blocks [6]
before it builds a trace. However, we did not use interpretation or
basic block caching in our system because DBTs such as Strata [19,
24] have achieved close-to-native performance using full tracing.
Indeed, Strata has been implemented on RISC architectures such as
SPARC and MIPS. Since ARM is also a RISC architecture, similar
results can be expected for ARM.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

si
n

g
le

,
la

zy
d

yn
am

ic
,

la
zy

th
es

h
o

ld
,

la
zy

p
ro

fi
le

,
la

zy
si

n
g

le
,

p
ro

ac
ti

ve
d

yn
am

ic
,

p
ro

ac
ti

ve
th

re
sh

o
ld

,
p

ro
ac

ti
ve

p
ro

fi
le

,
p

ro
ac

ti
ve

co
d

e
ca

ch
e

b
re

ak
u

p

translated code auxiliary code

Figure 13. The division between translation code and auxiliary
code within the code cache.

For the linking strategy, most DBTs use proactive linking [3, 6,
25]. Some DBTs use a deferred linking policy [9, 22] in which they
proactively link the exits of the trace under construction, but link
the entries to that trace lazily. Such a policy will still create more
unnecessary links than lazy linking. However, deferred linking will
reduce some context switches compared to lazy linking. Surpris-
ingly, however, Strata for embedded systems [1, 2] recommends a
full proactive linking policy. The reason for recommending a full
proactive linking policy may be that when only the code cache
size is considered in a memory-constrained environment, proactive
linking outperforms both lazy linking and deferred linking. How-
ever, we found that lazy linking is the best option in a memory-
constrained situation.

Apart from trace selection and linking strategies, memory man-
agement policies have been studied before. However, either mem-
ory management was done for performance or a holistic view of
memory usage was not taken. For example, Dynamo [3] triggers a
cache flush when the rate of trace generation becomes too high, to
improve performance. Strata for embedded systems [1, 2] flushes
on reaching a memory limit, but does not consider data structure
size. Similarly, Pin for the ARM architecture [14] does not consider
data structure size when triggering a flush. DynamoRIO [4, 7] uses
thread-shared software code caches to reduce code expansion and
also dynamically detects the working set size. But they manage the
code cache only for consistency events such as self-modifying code
and not for capacity. Also, they only scale up the code cache limit
adaptively, which may not be suitable in a memory-constrained
environment. Code cache eviction schemes have been studied be-
fore [15, 16, 22]. Our trace selection strategies for improved mem-
ory efficiency are meant to complement such strategies.

6. Conclusions
Path selection strategies create interactions among memory de-
mand components, and the code cache size in isolation cannot pre-
dict the holistic memory demand because the relative memory de-
mands of the code cache and the data structures vary with the path
selection. Therefore, it is important to improve the combined mem-
ory demands of the code cache and the data structures. The best
holistic memory demand is offered by dynamic selection and lazy
linking. The best performance is offered by same path selection
strategy. Dynamic selection with lazy linking improves memory
efficiency by 20% and performance by 5-20%. Dynamic selection
entails non-speculative formation of multi-block traces from basic
blocks that appear sequentially in the guest application. The link-

155

ing strategy has the most impact and lazy linking beats proactive
linking because the increase in code cache size due to lazy linking
is outweighed by the decrease in data structure size. The number
of blocks in a trace has the next greatest impact and multi-block
traces beat single-block traces because the increase in duplication
is outweighed by the decrease in data structures and auxiliary code.
The amount of speculation involved has the least impact as long as
the speculation is highly accurate because non-speculative dynamic
selection performs as well as speculative, profile-based selection.
Holistic memory demand outweighs performance impacts due to
context switches and code cache locality. Therefore, it is benefi-
cial to improve the holistic memory demand of path selections in
memory-constrained environments.

The results obtained are fairly general because our path selec-
tion design choices are comprehensive and are not specific to any
platform or workload. We demonstrate that path selection has to
be carefully carried out for both holistic memory efficiency and
performance. Code cache-oriented traditional approaches are not
sufficient. Additionally, we have experimentally selected a path se-
lection strategy for a very common execution environment.

References
[1] J. Baiocchi, B. R. Childers, J. W. Davidson, J. D. Hiser, and J. Mis-

urda. Fragment cache management for dynamic binary translators in
embedded systems with scratchpad. In International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems, pages
75–84, Salzburg, Austria, 2007.

[2] J. A. Baiocchi, B. R. Childers, J. W. Davidson, and J. D. Hiser.
Reducing pressure in bounded DBT code caches. In International
Conference on Compilers, Architectures and Synthesis for Embedded
Systems, pages 109–118, Atlanta, GA, USA, 2008.

[3] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent dy-
namic optimization system. In Conference on Programming Lan-
guage Design and Implementation, pages 1–12, Vancouver, British
Columbia, Canada, 2000.

[4] D. Bruening and S. Amarasinghe. Maintaining consistency and
bounding capacity of software code caches. In International Sympo-
sium on Code Generation and Optimization, pages 74–85, San Jose,
California, 2005.

[5] D. Bruening and E. Duesterwald. Exploring optimal compilation unit
shapes for an embedded just-in-time compiler. In In Proceedings of
the 2000 ACM Workshop on Feedback-Directed and Dynamic Opti-
mization FDDO-3, pages 13–20, 2000.

[6] D. Bruening, T. Garnett, and S. Amarasinghe. An infrastructure
for adaptive dynamic optimization. In International Symposium on
Code Generation and Optimization, pages 265–275, San Francisco,
California, 2003.

[7] D. Bruening, V. Kiriansky, T. Garnett, and S. Banerji. Thread-shared
software code caches. In 4th Int’l Symposium on Code Generation and
Optimization, pages 28–38, Manhattan, New York, NY, March 2006.

[8] D. L. Bruening. Efficient, Transparent and Comprehensive Runtime
Code Manipulation. PhD thesis, Massachusetts Institute of Technol-
ogy, Cambridge, MA, September 2004.

[9] G. Desoli, N. Mateev, E. Duesterwald, P. Faraboschi, and J. A. Fisher.
Deli: a new run-time control point. In 35th International Symposium
on Microarchitecture, pages 257–268, Istanbul, Turkey, 2002.

[10] E. Duesterwald and V. Bala. Software profiling for hot path prediction:
less is more. In ASPLOS-IX: Proceedings of the ninth international
conference on Architectural support for programming languages and
operating systems, pages 202–211, Cambridge, Massachusetts, United
States, 2000.

[11] A. Guha, K. Hazelwood, and M. L. Soffa. Reducing exit stub
memory consumption in code caches. In International Confer-
ence on High-Performance Embedded Architectures and Compilers
(HiPEAC), pages 87–101, Ghent, Belgium, January 2007.

[12] A. Guha, K. Hazelwood, and M. L. Soffa. Code lifetime based mem-
ory reduction for virtual execution environments. In 6th Workshop on
Optimizations for DSP and Embedded Systems (ODES), Boston, MA,
March 2008.

[13] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown. Mibench : A free, commercially representative em-
bedded benchmark suite. In Workshop on Workload Characterization,
pages 3–14, 2001.

[14] K. Hazelwood and A. Klauser. A dynamic binary instrumentation
engine for the ARM architecture. In International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems, pages
261–270, Seoul, Korea, 2006.

[15] K. Hazelwood, G. Lueck, and R. Cohn. Scalable support for multi-
threaded applications on dynamic binary instrumentation systems. In
ISMM ’09: Proceedings of the 2009 international symposium on Mem-
ory management, pages 20–29, Dublin, Ireland, 2009.

[16] K. Hazelwood and M. D. Smith. Managing bounded code caches in
dynamic binary optimization systems. Transactions on Code Genera-
tion and Optimization (TACO), 3(3):263–294, September 2006.

[17] J. L. Henning. Spec cpu2000: Measuring CPU performance in the new
millennium. Computer, 2000.

[18] D. J. Hiniker, K. Hazelwood, and M. D. Smith. Improving region
selection in dynamic optimization systems. In 38th International
Symposium on Microarchitecture, pages 141–154, Barcelona, Spain,
November 2005.

[19] J. D. Hiser, D. Williams, A. Filipi, J. W. Davidson, and B. R. Childers.
Evaluating fragment construction policies for SDT systems. In Con-
ference on Virtual Execution Environments, pages 122–132, Ottawa,
Ontario, Canada, 2006.

[20] W. Hu, J. Hiser, D. Williams, A. Filipi, J. W. Davidson, D. Evans, J. C.
Knight, A. Nguyen-Tuong, and J. Rowanhill. Secure and practical de-
fense against code-injection attacks using software dynamic transla-
tion. In Conference on Virtual Execution Environments, pages 2–12,
Ottawa, Canada, 2006.

[21] V. Janapareddi, D. Connors, R. Cohn, and M. D. Smith. Persistent
code caching: Exploiting code reuse across executions and applica-
tions. In International Symposium on Code Generation and Optimiza-
tion, pages 74–88, San Jose, California, 2007.

[22] W. ke Chen, S. Lerner, R. Chaiken, and D. Gilles. Mojo: A dynamic
optimization system. In Proceedings of the 4th ACM Workshop on
Feedback-Directed and Dynamic Optimization, pages 81–90, 2000.

[23] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure execution via
program shepherding. In 11th USENIX Security Symposium, pages
191–206, San Francisco, CA, 2002.

[24] N. Kumar, B. R. Childers, D. Williams, J. W. Davidson, and M. L.
Soffa. Compile-time planning for overhead reduction in software
dynamic translators. Int. J. Parallel Program., 33(2):103–114, 2005.

[25] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. Janapareddi, and K. Hazelwood. Pin: Building customized
program analysis tools with dynamic instrumentation. In Conference
on Programming Language Design and Implementation, pages 190–
200, Chicago, IL, June 2005.

[26] R. W. Moore, J. A. Baiocchi, B. R. Childers, J. W. Davidson, and J. D.
Hiser. Addressing the challenges of DBT for the ARM architecture.
In LCTES ’09: Proceedings of the 2009 ACM SIGPLAN/SIGBED
conference on Languages, compilers, and tools for embedded systems,
pages 147–156, Dublin, Ireland, 2009.

[27] N. Nethercote and J. Seward. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. In PLDI ’07: Proceedings of
the 2007 ACM SIGPLAN conference on Programming language de-
sign and implementation, pages 89–100, San Diego, California, USA,
2007.

[28] K. Scott, N. Kumar, S. Velusamy, B. Childers, J. Davidson, and M. L.
Soffa. Reconfigurable and retargetable software dynamic translation.
In 1st Int’l Symposium on Code Generation and Optimization, pages
36–47, San Francisco, California, March 2003.

156

