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DC Link Stabilized Field Oriented Control of Electric Propulsion Systems 
S .D. SudhofF, K. A. Corzine, S .F. Glover 

Department of Electrical Engineering 
University of Missouri - Rolla 

- Induction motor based electric propulsion systems can 
be used in a wide variety of applications including locomotives, 
hybrid electric vehicles, and ships. Field oriented control of these 
drives is attractive since it allows the torque to be tightly and nearly 
instantaneously controkl. However, such systems can be prone to 
negative impedance instability of the dc link This paper examines 
this type of instability and sets forth a readily implemented albeit 
nonlinear control strategy to mitigate this potential problem. 

L INTRODUCTION 
Hectric proplaon systems coflsisting of a turbine driven 

synchmnous machine fedmg an induction motor drive through a 
nSiiier - dc link - inv- ikesuency changer are important in a 
wide Variety of applications including l"otives, hybrid eleciric 
vehicles, and ship pmpukion qstems, including the next generation 
d p ,  the Surface combatan21. The advantage ofsuch a system 
over a "kal transrmssl . 'onisthatthetudinespeedbecomes 
llly decollpledhmthe load speed, allowing the turbine speed tobe 
optumed with regard to fuel ef6ciency. In addition, the elimination 
ofthe mechanical linkagebehmnthetutbine orohrprime m e r  
and the mechanical load (drive train or propeller) allows a greater 
degree of architectmil freedom in the lmmotive / vehicle / ship 
layout Inmanyoftbesesystemr,theiwerterisdtotightly 
regulate the motor currentwavdorms, which has the admnhge of 
making the i" / motor drive extmwly robust with regard to 
pmenting overcmrents. However, at the same time, such regulation 
has the disadvantage that it makesthe motor drive appearto have a 
negative impeQnce [l], since ifthe inverter voltage is rechmced the dc 
linkcurrentwillitlcreasesoasto maintain constant power (since the 
m o t o r c u r r e n t s w i l l t . e m a i n ~ .  Thisnegatwempedam 
canresUt inlm ddynamic stability dthe propulsion system In 
order to avoid instability, one method is to increase the dc link 
q". However, in large chive systems, such asthoseusedin 
naval appliications, the l2apaciw required can become COstEy in 
terms of space, weight, and (pattlclllarlyin regard to 
identiQing shorted c-apcitom in a large bank). In this paper, a 
nonlinear dc link stabilized field oriented conml is demonstrated 
which is shown to have performance characteristics similar to the 
classical field oriented control [2-31, but mitigates the negative 
impedance instabilityprobla 
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SYSTIEM oVF,RVIEW 

Fig. 1 illlustratas the type of electric propulsion system 
consideredherein Thep0Wer"e ofthis systemis adiesel engine 
or tmbine which serves as a prime m e r  for the 3-phase 
synchronous machine (SM). The 3-phase output of the machine is 
rectified using an uncontroled d e r .  The &er output voltage 
is clenoted V r .  IhLC circuit  serve^ as aiiiter, and the output ofthis 
ater is denoted v d c s .  A voltage regulator / exciter a d , ,  the field 
voltage ofthe synchromus machine in such a way that the source 
bus voltage vdcs is equal to the commanded bus voltage v&. The 
source bus is connectedvia a tie line to the loadbus, the voltage at 
which is denoted V d n .  The lsad bus ~0- of a capacitive filter 
(which includes both electrolyhc and polypropylene capacitance) as 
well as a 3-phase filly controlled inv&, which in turn supplies an 
induction motor. The induction motor drives the mechanical load, 
which is rotating at a speed (0 rm,rm. Based upon the mechanical 

determined by tlhe controller governing the mechanical system), the 
induction motor mntrols spec@ the on/off status of each of the 
inverter &coinductOrs in such a way that the desired torque is 
obtained. Althugh this system is quite robust with regard to 
ov-nts, and simple to  design from the viewpoint that the 
confmller governing the mechanical system is decoupled h m  the 
mntrol of the electrical system (since the torque can be controlled 
nearly ins" musly), such systems are prone to be subject to a 
limit cycle behavior in the dc bus voltage known as negative 
impedance instability [l]. 

III. CAUSE OF NEGATIVE IMPEDANCE INSTABILITY 

rotOr speed, and the d&€d ekdlOInagll&C torque Te,des (which is 

In order to gain insight into the cause of ne-e lmpedanoe 
instability, it is appropriate to set forth a highly simplified model of 
the system depicted in Fig. 1. This model will focus on the dc link 
dynamics and need onlybe valid in the tens to hundreds of hertz 
firequency band. An appropriate eqwalent circuit of the 
syn&ronow malchine / rectifier and LC filter is i l l M  in Fig 2 
The- the dynlamics of both ~e prime mover and voltage regulator 
are neglected since these are subject to long time constants imposed 
by the prime mover inertia and synchronous machine field, 
mqectively. The dc voltage behind inductance and resistance 
synchronous machine model is based on the work set forth in [4], 
which has been shown to have excellent bandwidth In Fig. 2, 

where o r,sm is the electrical rotor speed of the synchronous machine 
and 1; and 1: are the q- and d-axis subtmsient flux hkages, 0: 

is the firing angJe relative to the subMent back emf, L,(P) and 
Lt(P) are the a m " m g  anid tmsient commutating i" 'S 
-b"y 

L,(P) = +(L: +L:) +(I,: -~ / , / ) s in (2~  + 5 )  (2) 

and 

0885-8969/98/$10.00 0 1997 IEEE 



28 

Tie Line Capacitive 

Figure 1. Electric propulsion system. 

L ~ ( P )  = L! +L: + (L$ -~!)sin(2~ - 5) 
where P is the firing angle relalive to rotor position andLf andL: 
are the synchronous machine q- and d-axis subtransient "cq 
rs,sm is the synchronous machine stator "E, Lf and rf are the 
in- -e of the LC filter m r ,  and c, is the 
capacitance of the LC filter capacitor. 

motor is illustrated in Fig. 3. Thw all losses inthe machine and 
inverter are neglected whereupon the drive is modeled 
dependent current equal to the divided 
by @ voltage v d a  and where, it is that the regulator,~~subtt-dnsientin~md~ea~w.h~ 
instantanm power is equal to the instan- power command 
P* definadas Yes = v z s  

In (54% a and P  an be found by e of the load 
cmn" mnveIter rdifier system set forth in [5]. HOWWEX, 
the calculation can be made much simpler by noting that the rectifier 
is ur~~~ntrolled and by neglecting subtransient saliency whereupon 

C t = O  (9) 
A Gm simplified model of the capacitive filter and 

as a andthem-*ggdtransientcomeginmmareno 
longer a function of p . Fdermox, due to the action of thevoltage 

(10) 
so that no subtransient information is a c t d y  needed It should be 

(4) cautioned that this is intended for e x p w o n  pposes and 
In (4), T,' is an instantanmm torque command which is the input to fbr guidance in designins control algorithms, not for high-fidelity 
the field oriented induction motor conml. Typically, tbe ~~Onorfor the teSt ingofcont rOla lgon~.  
~~~~ t o w  Command T,* is equal the desired tom . In order to utilize this equrVaent circuit to predict negative 
Te,des, Howma, the control unpedance d ~ t y ,  note that h-g the M& current with 
possessanaltemRMonship. respect inPUt Voltage about Operating point wherein V d n k  

@to V i a  yields 

P* = Om,2mTe* 

proposed in this 

Upon neglecting the tie line, which is gemally short in an 

(1 1) 

h m  which it is apparent that the small signal inverter input 

(12) z,, = -- P* 
As m b e  seen, in a small signal sense the inve&r appzrs as a 

electrical sense for the ikqmcy range of interest, the component 

Le =Lt(P) +Lf ( 5 )  

(6) 

P* 
models illush-dted in Fig. 2. and Fig. 3. are combined as in Fig. 4. Aidc ,  = --AVdm 
Thereh G S  

*2 
dcs Re = %43)0r,sm + 2rs,sm +rf 

Figure 2. Simplified model of synchronous Figure 3 .  Simplifie 
mach i nehecti fier and fi Iter. induction motor drive model. 
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Figure 4. Highly simplified dc link model. 
In order to verify this conclusion, replacing the dqmdent 

source rept.esenting the inverter with its small signal equdent 
impedance yields the following small signal model ofthe equivalent 
circuit 

(13) 

which has a characteristic equation of 

From (14) it fouays that necessilly conditions for stability are that 

andthat 

Equations (15) and (16) both limit the maximum power co- 
hawever (16) is normally the dominant constmint 

In order to avoid negative impedance btability, one method is 
to sinrply increase C e  until the system is stable to the "um 
possiilepowercommand Havever,thishasthedidvan@ein 
that for vgr large drive systems the physical size and weight ofthis 
capac i~becomes  an issue, esped ly  considering thew that the 
applications are largely mobile in nature. In addition, large capacitor 
banks are also undesirable h m  a "m point of view since 
identifying a shorted capacitor in a largebank is timsintensiv. This 
is sigtuficant since electrolybc capaciton have datively low 
~liability. In the next section, a control will be set forth which will 
eliminate the need to humme the cajmcitance in order to satis@ (16). 
In addition to ensuring stability, the control can be used to improve 
dampmg even ifthe system is already stable, and, in the case of small 
drives, may make it possile to entkly eliminate electrolytic 
capacitance h m  some systems thereby eliminating one ofthe 
traditionally least reliable drive covnents. 

IV. LINK STABILIZING FIELD - ORIENTED CONTROL 
In this section, an algorithm which improves the damping of 

the dc link by eluninating the n e m e  mpedam ei€d over a 
prescn'bed bandwidth is set forth. This algorithm isbased upon the 
ikt that torque control in a field oriented drive is nearly 
instantaneous. As mentioned previously, typically the instantaneous 

determined by the control algorithm governing the mechanical 
torque "IIUnd T,'k set eqUal to the daired t O F  T e , d e s a  

where V dei is the filtered dc inverter voltage, i.e., 

andthepararmmandn andza recons i~ tobecons tan t s  

T h e a d v a l l t a g e o f t h k ~ i m p ~ ~ ~  
hereinbutamldalsobemadetobeafunctonofoperationpoint 

control algorithm is that it is extremely sbraightforward to implement 
yethighlyeffecblveinmitigatingnegattveitllpedanceinstabilities. In 
orderto illustrate the effect ofthe algorithm onthe system note that 
usingthe control law (17) the input payer into the inverter is given 
kY 

P = (2) n p d e s  (19) 

where 

From (1 9) the input current may be expressed 

V Z '  
idci , i i - p d e s  

d n  

Linearizing (21) about the desired operating point(vdci = T d d  

= vics) yields 

Ifz is largecompadtothetimescaleofthedclinkdynarmcsand 

inverter is in61mte over the iiqmncy range in which negative 
impdum instabilities occu, thus avoidmg this type of hiability. 

Altlmghtheexplanationofthe~ousparagmphill~ 
the basic philw@y of the control, the posn'bilities of the contml are 
much richer than is indicated therein In pa&icular, by suitable 
selection ofz and n a largevariety of behaviom can be obtained. In 
order to see this5 it is helpful to first set forth the nonlinear d i f b d a l  
equation governing the dc link dynamics in the presence ofthe new 
control. Inplmhr, 

n is selected to be unity then the lnput impeQncepresented by the 

r 

Linearization of (23) yields 

L - 2  
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1500 

In order to ill- the effects ofvarying n and 7 , consider the 
case of a system in which vi, = 400 V, Re = 4.58 SZ, Le = 13.9 
mH, and Ce=51.4 pF. Tltese parameta corraspond to a test 
system which was used for Wmry demo"lion. Fig. 5 
illustrates the root loci ofthe c- * 'cequationasz isvaried 
h m  0.1 ms to 1 s for 4 3 3 ,  and 7 (It should be notedthat n does 
not have tobe aninteger). As canbe seen, in each case the root locus 
contains an unstable complex pole (denoted A and A*) for small 
valwof z whichbecomesstableaszisincreasdForallnshown 
inFig, 5 the real part of the eigenvalues becomes more negative as z 

In the case of n = 5 eventually the complex pair becomes real (point 
B) and then one ofthese real roots meets the root colrespondingthe 
flter at point C, at which point this pair of eigenvalues becomes 
complex In the case of n = 7 the two complex poles eventuauy 
lxxxme real at point D; after which the pair w e s  away from each 
other on the real axis. 

Fig. 6 illwtrates the damping of the complex pole pair as n 
and z are varied Note that for eachvalue of n there is a value ofz 
which "izes the damping. It is also apparent that, generally 
speakin& as n is increased the damping canbe incmsd. 

Since the conml law is mdinar, the eigenvalues will be a 
function ofoperating point, and so it is important to investigate the 
perfon" of the control as the opaabng point (pnmanly through 
power command) is varied Fig. 7 illustraks the root locus of the 
system as power command is varied with (n = 1, z = 4 ms), (n = 3, z 
= 2.4 ms), (n = 5, z = 2.7 ms), and (n = 7, z= 3.1 ms). Ineach-z 
was selected so as to maxhize the damping factor of the oomplex 
pole pair. As can be see h m  Fig. 7, at low power the complex 
eigenvalue of the system is at point (AA*) irregardlless of n. In the 
case of (n = l), the locaton of the xwts is power level independent 
Hower, in the case of n = 3 the complex pair moves to @,E*). 
Finally, in the case of n = 5, and n = 7, the complex eigenvalues 

important feature of the proposed control law which is that although 
with the standard control (n = 0) the system becomes less stable as 
the power level in- with the proposed control law the system 
actudly becomes m o ~  stable as the power level increases, with the 

inirtcI.eased Inadditioq initdlythe complexpart also decreases. 

become real at point C and D, . Thisaman 

n=3(o) n=1(+) 
- 

1000 

5 500- 
e, 

8 0 -  
.d 
M 
cj 

E U-500 

-1000 

A 

d 
M 4 -500 
U 

-1000 A* 

- 

- 

- 

-1500 
qnnn 

-1500 -1000 -500 0 500 
-L.VUU 

Real Part 

Figure 5 .  Root Locus as t and n are varied. 

I 0.8 
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0.4 

. .  . .  . . . . . . . . .  . .  . .  . .  . .  . .  . ,  . .  
. . , . . ,  . .  . .  . .  . .  . .  

n=7 

-0.2 
1 o-4 10.' lo-* 

L s 

Figure 6 .  Damping factor versus z and M. 

exception of (n = 1) in which case the eigenvalues associated with 
thedclinkbecomelargelyopemtingpointimariant 

V. IMPLEMENTATION 
More setting forth the implementation of the proposed 

contmller, it is appropriate to first consider a standard field oriented 
control such as the rotor flux indirect field oriented control iuustrated 
in Fig. 8 (note that the control proposed in ulis paper, is, hower, 
independent of whether or not the field oriented control is direct or 
indirect). Thereq an instantaneous torque command T,* is the 
input to the mnlroller. This torque command is equal to the torque 
desired by the controller governing the fnechanical dynamics, Te,des.  

As canbe seen, based onthe torque command T,* and desiredd-axis 
m r  fluxlevel A:;, the desired q- and d- axis stator cumnts, i $  and 
iz , are determined This calculation is a fimction of the induction 
motor magndzing inma L m ,  the induction motor rotor 
imchtctance (rotor leakage plus magnetizing) L', , the rotor resistance 

1500 1 

A 
(+) 

X n=7 x 

$n=S(x) 

-1500l 
-1 500 - 1000 -500 0 

Real Part 
* 

Figure 7. Root locus versus P and n. 
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stator by the npproPriate tums ratio. A solid state voltage 
regulato/exciter was used to control the dc link voltage; a blcd 

of this control appeam in Fig. 10. The LC filter, 
t”wionline:, and capacitance prametem are listed in 
Table 2. The rcrdder will note that the capacitor values are small for 
this power rating this was neoessilly to mimic conditions which exist 
on much larger drives used for ship propulsion Finally, a 3.7 kW 
inchaction motor was used as a load. Induction motor parameters are 
listed’in Table 31. The induction motor mntrol was implemented 
based on the inrW rotor flux strategy with a rotor flux linkage 

using hystmsh current control with a hysteresisband of0.95 A 
command Of 0.43 VS, and d~ Current command w a ~  synthesized 

Thelinkstab~gcontrollerparameterswere n = l , z = 4 m s ,  
V&” = 200 v, Iind V&“ = 680 v. 

VIL VALIDATION 
The PerfOImance ofthe link stabilizing field oriented control 

was validated using both a detailed (as opposed to average value / 
nxiuced order) c~mputer simulation and in hardware tests. For the 
plupwes of c o w  simulatol& the synchronous machine and 
induction motor models used were those &forth in [SI. In the case 
ofthe salient ple synchronous machine, magnetic saturation was 
q”kd in the dais .  The simulation included the switching of 
eachpaver semiconductor dmice. Semicxmdudor COndlLction losses 
wereinchld€dthalughswitchinglosseswereneglectfd. 

1- 1. synchronous machine parameters 

r =400mR 

r,,’ = 227 m l n  
L 

Figure 8. Rotor flux oriented indirect field oriented 
control. 

L, = 5.73 mH L = 64.3 mH 

LI,‘ = 4.94 mH N,, = 4 

r$, and the number of poles, N’,,, . Based on the q- and d- axis 
stator currents the ekmid radian slip ikqwncy, a s , z m ,  is 
determinsd, which is thenaddedto the electrical rotor speed a r , t m i n  

order to determine the electrial speed ofthe synchronous reference 

the syncbnous re&” fbme e,, . In addition to the algorithm 
illusbated in Fig. 8, especially in large drives, the field oriented 
contrd wil l  aften include on line p”&er identification algorithm 
tocompensateforvariationsdther0tortimeconst;mt [6-7]. 

Once the q- and daxis current commands and the position of 
t h e s y n c h r o n o u s ~ ~ a r e a t a b l i s h e d , t h e s e a n r e n t s ~  
be synthesizied inamiely ofways. Herein, the q- and d a i s  current 
ammad was ttansformed back into a abc variable current 
command which is an input to a hysteresis type current control. 

incorporating the link &Mizing control into the field oriented 
control is quite ~~~ In patti&, the only dimem in 
the~l i s tha t the ins tan taneous  torque-isgenerated 
using (16) rather thanbeing set equal tothe deskdtoque, as is 
illu&a@d in Fig 9. 

h t ~  Oe,im, Which is integrated in order to determine the position of 

VI. EXPERIMENTAL SETUP 

Inorder to illustrate the setup a system suchas 
the one depicted inFig. 1 was c o d  at alav (3.7 kw) power 
level. Theprimemwerwasadynarometerinspeedmmlmode. 
The parameters dthe 3.7 kW .spchnous machine are listed in 
Tablel. Thereh,allrcttorparametershavebeen~tothe 

2 
‘dci.min 

Figure 9. DC link stabilizing control. 

Table 2. Passive component parameters. 

I Lz=9.17mH I r,=3.01 R I C,= 10.1 uF 

Kp = 5 K j =  1 

Figure 10. Voltage regulator/exciter. 
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550 I 

25 

T,, Nn 
0 

Figure 11. Simulated performance of standard field 
oriented control during ramp increase in 
desired torque. 

550 I 100 ms 

Figure 12. Measured performance of standard field 
oriented control during ramp increase in 
desi red torque. 

Figure 11 illushtesthe simulatdpe~ormance ofthe system 
changed from 2 to 19 Nm over a period of 

include commandeda-pkcurrent 
i&, the actual a - p k  c~rrenf i,, 
the eleGtromagnetic torque Te . Although the actual torque closely 
tracksthe desirdtow, it canbe seenthatasthetoque andhence 
power mmmand in- the dc bus voltage becomes unstable, 
strexsing both the . s e m i a m m  and the capacitors. In a typical 
~suchbehavioroould~I.esult inthesemiconductor~or 
Capactor l%ilm. The experimental system has been corxmcted so 
as to k able to survive the 

was not available. As can be seen there is a Teasonable 
mrrapodence between Fig. 11 and Fig. 12 with the exception that 

* 

20 

* *  A 
'as9 

-20 

20 

"7 ' A  

-20 

550 

'dei, 

250 

25 

T,, Nn 

0 

I - " y v v v v v v  v v v  v v v v v v v v v v v '  

I " v v v v v v v v ~ v Y v v y v v v v v v '  

Figure 13. Simulatedperformance of link stabilized 
field oriented control during ramp increase 
in desired torque. 

550 

'dei, 

250 

Figure 14. Measured performance of link stabilized 
field oriented control during ramp 
increase in desired torque. 

the actual system appears to be less stable than is predicted by the 
simulation. This is because the power mpirements of the actual 
drive system are great%r than the simulated system because of 
switching lasses (It should be noted that the magnitude of the voltage 
swing in- v q  rapidly with power level). In additioq once a 
system becomes unstable it tends to be very sensitive to parameter 
VXhfiOllS. 

Fig. 13 depicts the performance of the same system with the 
link stab- field oriented control as calculated using the 
computer simulation. As can be seen, according to the simulation 
the torque still clwlytracks the mmmandedtorque. Furthermore, in 
this case there is no evidence of instability. Fig. 14 illustrates the 
systemprformanceasmdinthelabomtq. Aspredicted,the 
dcbusvoltageiswellbe~edandthedclinkbusvoltageisstable. 
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Vdci, V --l\ 
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Figure 16. Simulated performance of link stabilized 
field oriented control during step change 
in desired torque. 

One concern whichmay arise is apmiile rechaction in torque 
bandwidth since a drop in inmtervoltage will result in a transient 
dip in toque. The detailled amputer simulation was used to 
investigate this efkct since the primatyvariabe ofintemt was the 
electromagdc torque. Fig. 15 depcts the predicted change of 
performance of the standad field oriented control as the torque 
a"d is stepped fiom 2 to 19 Nm As canbe seen, the 
electromagnetic torque reaches the commanded value in 
appmximately5ms. Thetoqueresponseisnotinstantaneous dueto 
them that a steq change in current cannot be achieved in practice 
andbecause the dip inlinkvoltage cswses a tempotruyloss of cut~ent 
tmcking in the lrysteresis current mntrol. Fig. 16 depicts the 
response ofthe link stabilizedfield o r i d  control. Inthis case, the 
e l e c t r o ~ c t o r q u e  reaces the Commandedvalue in the order of 
8 ms. Although the link stabilized control is somewhat slaver than 
the standard field oriented control, this slight reduction in bandwidth 
is not a si@cant disactvantage in view of the impmed dc bus 
voltage. This is particularty true in the fact that most propulson 
systems have mechanical inertia such that in either case the torque 
responsemaybemnsi~tobeinstantaneou. 

VIIL CONCLUSIONS 
Astraightfotwardbutnonlinearm~lalgorithmhasbeenset 

forth which canbe usedto mitigate negative impeaance instabilties 
in electric propulsion systems. The eiktiveness ofthe control has 
beendemomtmtedboththroughtheuse ofcomputer simulation and 
in the hbomtory. In addition to being applicable to induction motor 
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based drives, thQ control algorithm could also be used with other 
types of machines in which rapid torque mntrol is passile, most 
notably permanent magna synchronous machines. 
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