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Cerebral ischemic stroke (IS) is still a difficult problem to be solved; energy metabolism failure is one of the main factors causing
mitochondrion dysfunction and oxidation stress damage within the pathogenesis of cerebral ischemia, which produces
considerable reactive oxygen species (ROS) and opens the blood-brain barrier. Dichloroacetic acid (DCA) can inhibit pyruvate
dehydrogenase kinase (PDK). Moreover, DCA has been indicated with the capability of increasing mitochondrial pyruvate
uptake and promoting oxidation of glucose in the course of glycolysis, thereby improving the activity of pyruvate
dehydrogenase (PDH). As a result, pyruvate flow is promoted into the tricarboxylic acid cycle to expedite ATP production.
DCA has a protective effect on IS and brain ischemia/reperfusion (I/R) injury, but the specific mechanism remains unclear.
This study adopted a transient middle cerebral artery occlusion (MCAO) mouse model for simulating IS and I/R injury in
mice. We investigated the mechanism by which DCA regulates glycolysis and protects the oxidative damage induced by I/R
injury through the PDK2-PDH-Nrf2 axis. As indicated from the results of this study, DCA may improve glycolysis, reduce
oxidative stress and neuronal death, damage the blood-brain barrier, and promote the recovery of oxidative metabolism
through inhibiting PDK2 and activating PDH. Additionally, DCA noticeably elevated the neurological score and reduced the
infarct volume, brain water content, and necrotic neurons. Moreover, as suggested from the results, DCA elevated the content
of Nrf2 as well as HO-1, i.e., the downstream antioxidant proteins pertaining to Nrf2, while decreasing the damage of BBB and
the degradation of tight junction proteins. To simulate the condition of hypoxia and ischemia in vitro, HBMEC cells received
exposure to transient oxygen and glucose deprivation (OGD). The DCA treatment is capable of reducing the oxidative stress
and blood-brain barrier of HBMEC cells after in vitro hypoxia and reperfusion (H/R). Furthermore, this study evidenced that
HBMEC cells could exhibit higher susceptibility to H/R-induced oxidative stress after ML385 application, the specific inhibitor
of Nrf2. Besides, the protection mediated by DCA disappeared after ML385 application. To sum up, as revealed from the
mentioned results, DCA could exert the neuroprotective effect on oxidative stress and blood-brain barrier after brain I/R injury
via PDK2-PDH-Nrf2 pathway activation. Accordingly, the PDK2-PDH-Nrf2 pathway may play a key role and provide a new
pharmacology target in cerebral IS and I/R protection by DCA.

1. Introduction

Stroke refers to a vital cause of death and permanent dis-
ability globally [1], of which ischemic stroke (IS) takes up

more than 87% of its incidence [2]. The early intervention
strategy of IS refers to restoring the blood supply of
infarcted and ischemic areas. Nevertheless, reperfusion is
likely to further aggravate ischemic brain injury, i.e.,
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cerebral ischemia/reperfusion (I/R) injury [3, 4]. According
to related studies and reports, CIRI displays a relationship
with energy metabolism disorder [5, 6], oxidative stress [7,
8], Ca2+ overload, excitatory neurotransmitters, apoptosis,
and necrosis [9]. Energy metabolism disorder can lead to
considerable ROS generation, and oxidative stress attrib-
uted to ROS displays a close relationship with IS patho-
genesis. In CIRI, the excessive production of ROS will
cause DNA, proteins, and brain lipids to undergo oxida-
tive damage, thereby causing cell death and neurological
dysfunction [10]. Thus, energy metabolizers are taken into
account to prevent and treat IS.

During reperfusion after cerebral ischemia, the blood
supply will restore glucose and oxygen levels, produce exces-
sive ROS, promote responses of promoting oxidative stress
such as leukocyte and proinflammatory neutrophil infiltra-
tion and complement and platelet activation, and damage
the blood-brain barrier (BBB) [11, 12], which are all compo-
nents of reperfusion injury. Accordingly, it is necessary to
reduce reperfusion injury to promote cell repair and ische-
mic tissue regeneration.

Dichloroacetic acid (DCA) is a small molecule, which
has been used as a therapeutic agent for many genetic mito-
chondrial diseases [13, 14]. Dichloroacetic acid (DCA) is an
inhibitor of pyruvate dehydrogenase kinase (PDK), and
PDK2 is the most abundant isoenzyme in the rat brain
[15]. DCA can inhibit mitochondrial PDK2 and activate
pyruvate dehydrogenase (PDH), which is a gatekeeper
enzyme combining anaerobic (glycolysis) with aerobic
(Krebs cycle) metabolism [16, 17]. After ischemia and hyp-
oxia, the activity of PDH decreases, pyruvate cannot decar-
boxylate and will produce lactic acid via glycolysis, and
each glucose molecule produces two moles of ATP. How-
ever, when PDH is activated, pyruvate can decarboxylate to
acetyl-CoA, enter the tricarboxylic acid cycle, and produce
up to 36 moles of ATP per glucose molecule within mito-
chondria [18]. DCA exerts protecting effects on I/R injury
[12], cancer [19], and pulmonary hypertension [20]. Never-
theless, it is not clear if DCA exerts a protecting effect on IS
and CIRI.

In this study, we found that mitochondrial-related
enzymes are inactivated after cerebral ischemia-reperfusion,
and then, glycolysis produces considerable ROS. DCA can
improve glycolysis by inhibiting PDK2 and activating
PDH, so as to activate Nrf2, reduce oxidative stress, and
reduce the permeability of the blood-brain barrier. Thus,
as suggested from the results of this study, DCA is likely
to be a new therapeutic approach in terms of IS and
CIRI.

2. Materials and Methods

2.1. Sigma-Aldrich (St. Louis, Missouri, USA) Offered
Materials. Dichloroacetic acid (347795), 2,3,5-triphenylte-
trazole chloride (TTC), and ML385 (GC19254) originated
from GLPBIO (Montclair, California, the United States of
America). Gibco (Grand Island, NY) provided fetal bovine
serum (FBS) and trypsin.

2.2. Animal and Animal Experiments. An animal and focal
cerebral ischemia model and male C57BL/6 mice aged 6 to
8 weeks were used for this study. The animal operations
received approval from the Animal Experimentation Ethics
Committee (No. WYDW2019-0559). In addition, the
humanistic care was carried out according to the animal
experiment guidelines of Wenzhou Medical University.
The researchers carried out the transient MCAO model of
mice by occluding MCA [21]. In terms of sham-operated
mice, the isolation was conducted on the right common
and external carotid artery, whereas there was no MCA liga-
tion. The mice received the random allocation in 4 cohorts,
i.e., sham cohort, MCAO cohort, DCA (100mg/kg) cohort,
and DCA (200mg/kg) cohort. After 90min of occlusion,
100mg/kg and 200mg/kg DCA were given to the DCA
cohort as soon as the plug was released.

2.3. Neurological Deficit Assessment. When the 24 h reperfu-
sion was conducted, the neurological deficit received the
assessment in accordance with the scoring standards [22,
23]: 0: no neurological deficit; 1: falling to contralateral sides;
2: failing to have spontaneous activities; 3: failing to stretch
the contralateral forelimb; 4: circling to paretic sides.

2.4. Infarct Volume Assessment. After neurological assess-
ment, as mentioned before [24], mice were euthanized with
2% pentobarbital sodium, and the mice received the decapi-
tation. The brains received the removal to measure infarct
volume. Coronal section slices were taken from the whole
brain and then received the staining process with 2% TTC
under the temperature of 37°C for 20min. To conduct the
investigation, the pictures of slices were captured by using
a digital camera, and all images were collected and analyzed
with the use of ImageJ (National Institutes of Health, USA).
The relative infarct volume rate was obtained, and the edema
was corrected. In brief, the calculating process is conducted
below: corrected infarct volume ratio = ½contralateral
hemisphere area − ðischemic hemisphere area − infarct areaÞ/
contralateral hemisphere area� × 100%.

2.5. Brain Water Level. The mice received the sacrifice 24h
when MCAO was caused. The brains received careful
removal. By weighing the ischemic hemisphere, the wet
weight received the rapid measurement. By weighing the
samples dried under the temperature of 105°C for 24 h, the
dry weight received the measurement. The brain water con-
tent is expressed as brainwater content ð%Þ = ðwet weight −
dry weightÞ/wet weight × 100%.

2.6. Nissl Staining. The mice were deeply anesthetized when
the neurological deficit test was performed. The left ventricle
received the perfusion by using 4% paraformaldehyde.
When the perfusion was achieved, the brain received the
48 h fixing process, the dehydration, and the embedment
in wax. Coronal sections with a thickness of 10μm were
set for Nissl staining. The experiment was carried out
according to the instructions of the Nissl staining tool
(Solarbio, China). Brain slices received dehydration by using
alcohol and were impregnated with xylene and stained with
thiophane. Then, the morphological changes of cortical
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neurons were observed under a microscope. The number of
surviving neurons was recorded by neuron count.

2.7. TUNEL Assay. By complying with the manufacturer’s
guidelines, the researchers carried out the TUNEL test using
the in situ cell death detection tool (Roche) and detected
under the fluorescence microscope (DM2500; Leica Micro-
systems, Germany). With the use of Image-Pro Plus version
6.0 (Media Cybernetics, USA), the researchers without any
knowledge regarding the grouping assignment measured
TUNEL positive cells with green fluorescence. Results had
the expression of labeled cell numbers.

2.8. Assessment of BBB Permeability. Based on the measure-
ment of the penetration of Evans blue (Sigma) in brain tis-
sues, the researchers examined BBB permeability [25].
Evans blue (2% saline, 4mL/kg body weight) was adminis-
tered intravenously through the tail vein 1 h before measure-
ment. The anesthetized animals were perfused with normal
saline before sampling. The respective sample received the
weighing and homogenizing processes by using 400μL
PBS, and subsequently, the sample received the precipitation
throughout the night by using 50% trichloroacetic acid. The

sample underwent 30min centrifugation at 10,000 rpm to
precipitate the brain tissues. EB absorbance received the
measurement at 610nm using one microplate reader (Bio-
Tek, Winooski, Vermont). The concentration was then cal-
culated according to the standard curve, with the
expression of μg/g brain tissue.

2.9. Electron Microscope Study. The brain slices were fixed
with 0.1mol/L methylarsonic acid buffer of 4% glutaralde-
hyde (pH7.4). The slices were then immersed in 1% osmium
tetroxide in 0.1M methyl arsenate buffer for 2 h and stained
overnight with 1% uranyl acetate aqueous solution. The tis-
sue sections received the dehydration to 100% with ascend-
ing series of ethanol and subsequently with acetone and
underwent the embedding process within an epoxy resin.
The ultrathin sections received the restaining by using lead
citrate before the examination under transmission electron
microscopy (H7650).

2.10. Cell Culture and Treatment. HBMEC (HUM-CELL-
0101) cells were purchased from PriCells (Wuhan, China).
The cells received the culture under the temperature of
37°C, 5% CO2, and 95% humidity supplemented with 1%
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Figure 1: DCA protects mice from brain I/R damage. (a, b) Representative photograph and relative infarct size of mouse coronal slices
stained with TTC at 24 h by MCAO (n = 6). (c) The effect of DCA on neurological deficit score (n = 6). (d) Effect of DCA on brain water
content (n = 6). In conclusion, the mentioned findings strongly support the protective role of DCA in brain I/R injury in mice. ∗P < 0:05;
∗∗
P < 0:01. Comparison between cohorts is marked in the figure.
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penicillin/streptomycin solution (P/S, Sclencell), 1% endo-
thelial cell growth supplement (ECGS, Sclencell), and 10%
fetal bovine serum (FBS, Sclencell). To simulate ischemia-
like conditions in vitro, HBMEC cells received the transfer
toward sugar-free medium and the culture within the Tri-
GAS (1% O2/5% CO2/94% N2) incubating tool for 4 h. Sub-
sequently, the glucose-free medium received the replace-
ment by using fresh maintenance medium and the
recovery based on normoxic conditions for 24h.

2.11. Determination of Cell Viability (Cell-Counting-Kit 8
(CCK-8) Colorimetric Assay). Cell viability was determined
by CCK-8 (Dojindo Molecular Technologies, Inc., Kuma-
moto, Japan). For HBMEC cells, the cells are inoculated in
96-well plates with a density of 5,000 cells per well. The next
day, HBMEC cells were pretreated with different concentra-
tions of DCA, i.e., 2.5mM, 5mM, and 10mM, 6h before
hypoxia, and then exposed to OGD for 4 h, followed by oxy-
genation for 24 h. Next, the addition of 20μL CCK-8 was
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Figure 2: DCA attenuates neuronal apoptosis after brain I/R injury. (a, b) Nissl staining and (c, d) TUNEL staining and quantitative analysis
of coronal sections of ischemic cerebral cortex (n = 6; scale, 50μm). ∗P < 0:05 and ∗∗

P < 0:01. The comparison between cohorts is marked in
the figure.
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used to each well, and the incubation was achieved under the
temperature of 37°C. Lastly, the absorbance at 450nm
received the measurement with a microplate analyzer.

2.12. Oxidative Stress Detection. The brain tissue and
HBMEC cells were homogenized and centrifuged with
12000mg × g for 15min. The supernatant was collected for
spectrophotometric study. The BCA assay kit was adopted
for determining the protein concentration. The contents of
superoxide dismutase (SOD) and malondialdehyde (MDA)
in brain tissue and HBMEC cells were detected by using
the appropriate kit (Beyotime Biotechnology, China) and
in accordance with the producer’s guideline.

2.13. Determination of Intracellular Reactive Oxygen Species.
To determine the production of intracellular reactive oxygen

species, the 2′,7′-dichlorofluorescein diacetate (DCFH-DA)
assay was used to measure ROS according to the manufac-
turer’s instructions (Solarbio, Beijing, China). In the pres-
ence of ROS, DCFH reacts with ROS to form DCF, a
fluorescent product. Intracellular detection of ROS in differ-
ent groups was achieved by incubating cells with 10μmol/L
DCFH-DA at 37°C in darkness for 30min. The fluorescence
of DCFH-DA is inspired at 488 nm, and the emission is col-
lected at 525nm. The fluorescence microscope (Olympus,
Japan) is used to detect the fluorescence value.

2.14. Western Blotting Assay. Overall proteins from the
ischemic side cerebral cortex and HBMEC cells received
the collection and the fractionation by using SDS-PAGE gels

[23]. Subsequently, the protein received the incubation by
using primary antibodies against PDK2 (1 : 1000, Abcam,
USA), PDH (1 : 1000, Abcam, USA), ZO-1 (1 : 1000, Abcam,
USA), occludin (1 : 1000, Abcam, USA), Nrf2 (1 : 500,
Proteintech, Chicago, USA), HO-1 (1 : 500, Proteintech,
Chicago, USA), and Tubulin (1 : 10000, BaoDragon, Hefei,
China). The BCA test kit (P0012; Beyotime Biotechnology)
was used to measure protein concentrations. After the dena-
turation, the same amount of protein was separated by SDS-
PAGE and transferred to PVDF membranes (Millipore,
Billerica, MA). After the membrane transfer, the membrane
was sealed with 5% skim milk at ambient temperatures for
2 h. Next, the membrane received the incubation under the
temperature of 4°C with primary antibody and then with
appropriate secondary antibody at ambient temperatures
for 1 h. Image Lab Software (Bio-Rad Laboratories Inc.,
Berkeley, CA) was used to detect the protein bands.

2.15. Statistical Analysis. All data, in addition to the neuro-
logic score, had the expression of the mean ± standard
deviation ðS:D:Þ and received the comparison by ANOVA
and then with Tukey’s multiple-comparison examination.
The neurologic scores had the expression of the median
(range) and received the comparison with a nonparametric
method (Kruskal-Wallis test) as well as the Mann–Whitney
U statistic with Bonferroni correction. The researchers
employed GraphPad Prism 7.0 (GraphPad, San Diego, CA,
USA) to achieve the statistical investigation. A value of P <
0:05 was statistically significant.
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Figure 3: DCA can reduce the damage of the blood-brain barrier attributed to ischemia. (a, b) Representative photograph of Evans blue-
stained mouse brains 24 h after sham surgery or MCAO (n = 6). (c–e) Western blotting assay of the representative proteins of TJ
proteins occludin and ZO-1 in mouse brain and the band strength of the respective protein relative to Tubulin. ∗P < 0:05 and ∗∗

P < 0:01.
The comparison between cohorts is marked in the figure.
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3. Results

3.1. DCA Protects Mice from Cerebral Ischemia-Reperfusion
Injury. According to Figure 1, to study the potential effect
exerted by DCA in CIRI, neurological score, cerebral infarct
area rate, and brain edema content were examined 24 h
when MCAO was caused. In contrast to sham operation,
the MCAO cohort had an increase in cerebral infarct size
and cerebral edema and a decrease in neurological scores.
The cerebral infarction area and neurological score were sig-
nificantly improved in the DCA cohort (Figures 1(a)–1(c)).
In addition, the DCA treatment significantly improved cere-
bral edema (Figure 1(d)).

3.2. DCA Attenuates Neuronal Apoptosis after I/R Injury.
Nissl staining showed a decrease in the number of neurons
in the MCAO cohort compared with the sham cohort and
a significant improvement in the number of neurons in the
DCA treatment cohort (Figures 2(a) and 2(b)). TUNEL
staining showed that neuronal apoptosis increased in the

MCAO cohort compared with the sham operation cohort
but decreased in the DCA cohort (Figures 2(c) and 2(d)).

3.3. DCA Attenuates BBB Damage after Cerebral I/R Injury.
The permeability of Evans blue dye is shown in Figures 3(a)
and 3(b). Compared with the sham operation cohort, the
permeability of Evans blue dye increased in the MCAO
cohort but decreased in the DCA cohort. Compared with
the sham operation cohort, the MCAO cohort also signifi-
cantly reduced the expressions of major TJ membrane pro-
teins occludin and ZO-1 (Figures 3(c)–3(e)), which were
improved in the DCA treatment cohort, and they interacted
to maintain BBB integrity. The mentioned results suggest
that DCA inhibits ischemia-induced BBB destruction.

3.4. DCA Improves Mitochondrial Metabolism after Cerebral
I/R Injury. According to electron microscopy (Figure 4(a)),
compared with the sham operation cohort, the volume of
mitochondria in the MCAO cohort increased, the electron
density of matrix decreased, the matrix particles decreased
or disappeared, and the cristae became shorter, reduced,
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Figure 4: DCA improves mitochondrial metabolism after brain I/R injury. (a) Mitochondrial morphology was observed by electron
microscopy 24 h after sham surgery or MCAO (n = 6). (b–e) Western blotting assay of key metabolic proteins PDK2 and PDH of
mitochondrial TCA cycle in mouse brain as well as the band strength of the respective protein relative to Tubulin. (f, g) Effects of DCA
on the contents of oxidative stress products SOD and MDA after brain I/R injury. ∗P < 0:05 and ∗∗

P < 0:01. The comparison between
cohorts has been shown in the figure.
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and moved to the edge, which was improved in the DCA
treatment cohort. In contrast to the sham-operated cohort
(Figures 4(b)–4(e)), the expression of mitochondrial
metabolism-related protein PDK2 increased, and PDH
decreased in the MCAO cohort, PDK2 in the DCA cohort
was lower than that in the MCAO cohort, and PDH in the
MCAO cohort was higher than that in the MCAO cohort.
Oxidative damage was assessed by measuring SOD and
MDA productions. As shown in Figures 4(f) and 4(g), as
opposed to the sham operation cohort, SOD activity signifi-
cantly decreased, and MDA content increased in the H/R
cohort. Furthermore, DCA administration significantly
restored the activity of SOD and decreased the content of
MDA after H/R.

3.5. DCA Activates the Nrf2/HO-1 Signaling Channel to
Reduce Oxidative Damage. The Western blotting assay was
conducted to examine the expressions of oxidative stress-
related proteins Nrf2 and HO-1 in the ischemic cerebral cor-
tex. According to Western blotting analysis of the ischemic
cerebral cortex after MCAO, DCA significantly upregulated
Nrf2 and HO-1 expressions (Figures 5(a)–5(d)).

3.6. DCA Improves Mitochondrial Metabolism after I/R
Injury and Activates Nrf2/HO-1 Signaling Channel to
Reduce Oxidative Damage In Vitro. The researchers specifi-
cally investigated the neuroprotective influence exerted by
DCA in HBMEC cells using the OGD model. The viability
of the injured cells was measured by the CCK8 assay. For
instance (Figure 6(a)), cell viability was significantly reduced
by OGD-induced treatment compared with the controls,
while cell viability was significantly increased by the DCA
treatment. As indicated from the results, DCA could protect
differentiated HBMEC cells from OGD injury, and the rela-
tive optimal dose was 5mM.

Oxidative damages were assessed through the measure-
ment of in vitro SOD, MDA, and ROS productions. As

shown in Figures 6(b) and 6(c), compared with the sham
operation cohort, the SOD activity of the H/R cohort signif-
icantly decreased, and the MDA content increased. In addi-
tion, DCA significantly restored the activity of SOD and
reduced the MDA content after H/R (Supplementary mate-
rial online, Figure S). DCA reduced the ROS content after
H/R. DCA inhibited PDK2, i.e., the key metabolic protein
of mitochondrial TCA cycle, and activated PDH.
Furthermore, DCA activated Nrf2 and HO-1 expressions
(Figures 6(d) and 6(e)). Oxidative damages were assessed
through the measurement of SOD, MDA, and ROS
productions in vitro.

3.7. DCA Attenuates the Damage of Blood-Brain Barrier after
I/R Injury In Vitro and the Disruption of Tight Protein. DCA
attenuates the expressions of occludin and ZO-1, the key of
TJ membrane proteins, in vitro to maintain BBB integrity.
The mentioned results indicated that DCA inhibits
ischemia-induced BBB destruction (Figures 7(a)–7(d)).

4. Discussion

Previous studies have shown that DCA plays an important
role in vascular protection [26], promoting vascular revascu-
larization and improving vascular calcification in patients
with atherosclerosis [27]. However, the mechanism of
DCA regulating mitochondrial metabolism and oxidative
stress in cerebral IS and I/R has not been clarified. For IS
and I/R, energy metabolism disorder and mitochondrial dys-
function are able to result in considerable free radical forma-
tions, thereby triggering oxidative damages, inhibiting the
activity of antioxidant enzymes, breaking down the blood-
brain barrier, and aggravating brain injury. This study
reveals the protective role of DCA in mediating brain I/R
injury. DCA can improve CIRI by reducing infarct volume,
neurological score, and cerebral water content. DCA admin-
istration attenuated mitochondrial metabolism, oxidative
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Figure 5: DCA activates the Nrf2/HO-1 signaling channel. (a–d) Western blotting assay of Nrf2 and HO-1 in mouse brains and the band
strength of the respective protein relative to Tubulin. ∗P < 0:05 and ∗∗

P < 0:01. The comparison between cohorts is marked in the figure.
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stress, neuronal apoptosis, and blood-brain barrier perme-
ability after I/R injury in mice. In addition, the DCA treat-
ment also reduced the mitochondrial metabolism, blood-
brain barrier permeability, and oxidative stress in OGD-
induced HBMEC cells. This study confirmed that the brain
protective function of DCA was related to the activation of
the PDK2-PDH-Nrf2 pathway, and the Nrf2-mediated anti-
oxidant stress and blood-brain barrier protection disap-
peared when ML385, i.e., the specific inhibitor of Nrf2, was
used.

Under physiological conditions, ATP required by the
brain is mainly produced by pyruvate oxidation (PO) and
glucose oxidation (GO) within mitochondria [28]. Pyruvate
formation increases the rate of glycolysis and promotes the
glucose oxidizing process via the PDH activation [29], thus

converting pyruvate to acetyl-coA. Nevertheless, based on
pathophysiological conditions (e.g., I/R), due to mitochon-
drial dysfunction, it can facilitate the expressions of PDK
and phosphorylate PDH, thereby inhibiting PDH regulated
glucose metabolism and reducing glucose oxidation rate
[30, 31]. Studies have found that in the brain, PDK activity
mainly has a correspondence to isoenzyme PDK2. Further-
more, DCA could inhibit PDK, the inhibition order was
PDK2 > PDK1 > PDK4 > PDK3 [15], which improved the
activity of PDH.

Previous studies have shown that DCA is a pharmaco-
logical agent that activates PDH by inhibiting PDK and also
shows significant neuroprotective potential. The administra-
tion of DCA has been suggested to facilitate local lactic acid
removal [32], tumor therapy [33], and pulmonary
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Figure 6: Neuroprotective effect of DCA on HBMEC cells. (a) CCK8 assay was used to detect the viability of cells after injury. (b, c) The
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hypertension [34]. However, the protective effect, molecular
mechanism, and blood-brain barrier permeability of DCA in
cerebral IS and I/R injury have been rarely investigated. This
study reported that DCA could exert a protective effect by

inhibiting PDK2 and activating PDH to regulate mitochon-
drial metabolism. The transmission electron microscope
was adopted to observe the mitochondria of the cerebral cor-
tex after brain I/R injury, and the results suggested that the
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mentioned results indicate that DCA inhibits ischemia-induced BBB destruction. ∗
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mitochondrial injury was alleviated. In IS, after the recovery
of cerebral blood flow, considerable free radicals and reactive
oxygen species will be produced, leading to the aggravation
of I/R injury. The mechanism is that IS leads to the abnor-
mal activities of some enzymes of mitochondrial metabolism
(PDK2 and PDH). However, DCA can inhibit PDK2 and
activate PDH, thus improving mitochondrial metabolism.

Oxidative stress acts as the vital actor of brain I/R injury,
capable of causing neuronal damage and death [35]. Various
antioxidants can improve brain I/R injury [36–38]. Accord-
ing to existing studies, DCA exhibits broad biological activ-
ity and can cross the blood-brain barrier in mice [39].
Accordingly, we investigated whether DCA affects oxidative
stress after brain I/R injury. In addition, Nrf2 refers to a crit-
ical antioxidant defense mechanism [40, 41]. Under cerebral
I/R, excessive oxidative stress facilitates Keap1 and Nrf2 sep-
arating processes, thereby activating Nrf2, and the activated
Nrf2 is translocated to the nucleus and binds with ARE, thus
activating the transcription of several downstream antioxi-
dant genes [42, 43]. Thus, Nrf2 acts as the vital transcription
element for maintaining redox homeostasis. According to
existing researches, Nrf2 has a cytoprotective effect within
a wide range of I/R-induced brain and kidney injury models
[44, 45]. However, there are few studies on how DCA and
Nrf2 regulate oxidative stress. We assumed that DCA regu-
lates mitochondrial metabolism by inhibiting PDK2 and
activating PDH, thus activating the Nrf2-HO-1 channel to
produce antioxidant stress effect. As revealed from the
results, the activities of Nrf2 and HO-1 significantly
increased after the DCA treatment. We used ML385, a spe-
cific inhibitor of Nrf2 in cells, and the protective effect of
DCA disappeared, indicating that DCA could alleviate oxi-
dative stress through the PDK2-PDH-Nrf2 channel.

In this study, SOD and MDA were employed to assess
oxidative damage. SOD can catalyze superoxide anion free
radicals to be transformed into hydrogen peroxide. As a
product of lipid peroxidation, MDA has been adopted to
assess the level of free radicals within brain I/R injury [46].
Consistent with existing studies, SOD activity declined sig-
nificantly and the MDA level rose significantly after brain
I/R injury. Next, DCA significantly improved the activity
of SOD and downregulated MDA levels within brain tissues
and HBMEC cells of I/R mice. The mentioned results
directly reveal that DCA attenuates brain I/R damage by
inhibiting oxidative stress.

The blood-brain barrier (BBB) refers to a selection-
related osmotic membrane comprising endothelial cells,
extracellular matrix unit pertaining to the basement mem-
brane, pericyte, and endings of astrocytes. The tight junction
of endothelial cells is the gatekeeper, restricting the entry of
substances from the blood into the brain, thereby maintain-
ing brain homeostasis [47]. After the aggravation of I/R
injury, impaired BBB integrity increases paracellular perme-
ability, which allows toxins, a wide range of immune cells,
and inflammation-related cytokines to enter the brain,
which leads to risen cerebrovascular edema, hemorrhagic
transformation, and increased mortality [25]. As indicated
from the data of this study, DCA reduces extravasation of
Evans blue dye in the I/R cerebral cortex of mice. Moreover,

ischemia noticeably reduced the expressions of major TJ
membrane protein, including occludin and ZO-1, and
DCA significantly improved the expressions of occludin
and ZO-1 for maintaining BBB integrity.

The present study also had some defects; for example,
BBB only observed changes in endothelial cells but did not
observe the relationship between the extracellular matrix
components of the basement membrane, pericytes and
astrocytes, and BBB. In addition, we did not observe the rel-
evant studies on DCA in patients, and the relevant mecha-
nisms need to be further studied.

In brief, our study proved that after brain I/R injury,
DCA can improve the activity of mitochondrial-related
enzymes PDK2/PDH to promote energy generation and
activate the Nrf2 pathway to inhibit oxidative stress and
neuronal apoptosis and increase BBB permeability
(Figure 8). The PDK2-PDH-Nrf2 pathway may play a key
role and provide a new pharmacology target in cerebral IS
and I/R protection by DCA.
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