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Abstract. Streaming applications, such as environment monitoring and vehicle 
location tracking require handling high volumes of continuously arriving data 
and sudden fluctuations in these volumes while efficiently supporting multi-
dimensional historical queries. The use of the traditional database management 
systems is inappropriate because they require excessive number of disk I/O in 
continuously updating massive data streams. In this paper, we propose DCF 
(Data Stream Clustering Framework), a novel framework that supports efficient 
data stream archiving for streaming applications. DCF can reduce a great 
amount of disk I/O in the storage system by grouping incoming data into 
clusters and storing them instead of raw data elements. In addition, even when 
there is a temporary fluctuation in the amount of incoming data, it can stably 
support storing all incoming raw data by controlling the cluster size. Our 
experimental results show that our approach significantly reduces the number of 
disk accesses in terms of both inserting and retrieving data. 
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1   Introduction 

Rapid and continued advances in sensor and wireless communication technologies 
have fueled a new type of application called streaming applications [16] such as 
habitat and environment monitoring, RFID-enabled supply chain networks, vehicle 
location tracking, and transaction log analysis. Such applications have different 
workload characteristics from traditional applications. Extremely high volumes of 
data are continuously generated from a lot of data sources. These data need to be 
stored in permanent storage systems in order to apply analysis tools such as online 
analytical processing (OLAP) and data mining. These analytical operations are 
complex and require quite high processing costs. Additionally, in some special 
situations such as a forest fire, the application monitoring those events must face a 
sudden rise in data updates. 

In such streaming applications, the high costs of disk accesses overload the storage 
system. Processing a high volume of continuous data requires numerous disk accesses 
in the storage system in order to write new incoming data into disk and update the 
index structure. Processing retrieval queries also causes many disk accesses to look up 
the index structure and retrieve the corresponding data from disk. In the case of 
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temporary load peaks, the situation would become much more severe. Considering 
these challenges, for streaming applications, exploiting traditional data management 
systems, which are designed to support applications over static data sets, is 
inappropriate. 

In this paper, we propose DCF (Data Stream Clustering Framework), a novel 
framework that supports efficient data stream archiving for streaming applications. It 
can handle high rates of data insertion and adapt to sudden spikes in the input rate while 
not degrading retrieval performance. DCF can reduce a great amount of disk I/O for 
both index updates and look-ups. The key idea of DCF is adopting the scheme of cluster 
indexing, in which the storage system stores data in units of clusters and leaf nodes in 
the index structure point to clusters instead of individual data. In the case of an insertion, 
a set of data is grouped into a cluster based on a clustering policy and inserted the 
cluster via a single insertion operation. Hence, the total number of insertion operations, 
each of which causes multiple disk accesses, can be considerably reduced. In addition, 
DCF constructs the resulting index structure with fewer indexing nodes, thereby 
reducing the index lookup time. DCF also provides the ability to adapt to load 
fluctuations by monitoring the rate of incoming data and controlling cluster size. 

The cluster indexing scheme could cause two additional overheads in retrieving 
data from disk, since the retrieval operation returns data in units of clusters, not as 
individual data items. Depending on the cluster size, a cluster could occupy more than 
one disk block and thus may require multiple disk block accesses to get a cluster from 
disk. Thus, although the larger cluster size yields the better insertion performance, the 
retrieval performance is decreased as the cluster size increases. However, typically 
retrieving a data item from disk requires at least one disk block access. A good 
compromise is confining the cluster size less than one block, thereby avoiding this 
overhead. There is another overhead in filtering out unwanted data from a retrieved 
cluster, but this computation cost of post-processing can be ignored. Typically, the 
dominant cost of processing a query is the time that it takes to bring a block from disk 
into main memory. Once we have fetched the block, the time to scan the entire block 
is negligible. 

The rest of the paper is organized as follows. Section 2 describes the proposed DCF. 
In Section 3, we discuss the scheme of cluster indexing. Section 4 presents experimental 
results. Section 5 reviews related work. Finally, Section 6 concludes our work. 

2   DCF Framework 

This section details how our DCF framework is constructed and how it handles a 
large number of data streams and queries. As shown in Figure 1, DCF is composed of 
three components: the Clusterer, Load Monitor, and Query Handler. The back-end 
storage system is responsible for indexing, storing and retrieving stream clusters. 

Our framework processes two types of queries: insertion and retrieval queries. For 
insertion requests, which are stream data elements, the Clusterer first receives and 
clusters them according to the clustering policy. The clustering policy is a system 
parameter set by the system administrator. Then, data elements are stored in the 
internal buffer and periodically sent to the back-end storage system. 
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Fig. 1. Overall Architecture of DCF 

In the case of a retrieval queries, the Query Handler (QH) temporarily stores the 
query information for post-processing, then forwards the query to the storage system. 
The QH has to delay the forwarding of the query until all the corresponding data are 
processed and stored in the storage system. Since the result is in the form of clusters, 
the QH needs to do post-processing on the result. Next, we will describe each 
component in detail. 

Clusterer 
The Clusterer receives data streams from data stream sources. Its primary role is 
making incoming data into a set of clusters. When receiving a data element, the 
Clusterer assigns it to the proper cluster, and then loads the data into the buffer. In 
order to prevent the storage system from being overloaded, the Clusterer should 
bound the total number of generated clusters to the maximum available update rate 
that the storage system can hold. The Clusterer receives the data arrival rate from the 
Load Monitor and uses this information for load adaptation. Depending on the data 
input rate, more data elements are included in one cluster. Also, note that the 
Clusterer could use multiple threads to manage multiple requests efficiently. 

Load Monitor (LM) 
The Load Monitor is in charge of monitoring the data input rate and notifying the 
Clusterer. Once the input rate of stream data reaches a threshold, the LM warns the 
Clusterer. 

Query Handler (QH) 
The Query Handler is mainly responsible for processing retrieval queries. Since the 
query result is a series of clusters, it could contain a set of data not matching the range 
of user’s query. Thus, the QH unpacks the clusters and filters out unnecessary data 
elements in order to return the exact query results. For this filtering process, the QH 
stores and maintains a list of user queries, which are registered in the Query 
Repository when receiving them. In the context of streaming applications, it is 
common for a number of users to show similar interests. Thus, with the aid of more 
intelligent refinement or buffering scheme, the query processing could be further 
optimized by reusing the pre-fetched clusters. 
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3   Cluster Indexing 

This section describes the difference between cluster indexing and data indexing, and 
several advantages of cluster indexing. 

Index StructureData Stream Index StructureData Stream  

(a) Data Indexing 

Index StructureClustererData Stream Index StructureClustererData Stream  

(b) Cluster Indexing 

Fig. 2. Brief scheme of data indexing and cluster indexing 

Figure 2-(a) shows data indexing, the existing indexing process where leaf nodes in 
the index structure point to individual data. On the other hand, Figure 2-(b) shows 
cluster indexing where the storage system stores data in units of clusters grouped by 
the Clusterer. Leaf nodes in the index structure point to clusters instead of individual 
data. Hence, cluster indexing leads to an index structure with fewer nodes as 
compared to data indexing and thus reduce the tree height of the index structure. 
Given N number of data and fanout f, the height of index structure can be described as 

1log −= Nh f
. Since cluster indexing reduces the total number of indexed objects N 

to N’=N/C, where C is average cluster size, the height of resulting index structure is 
likely to be reduced. 

Cluster indexing, which has the reduced number of the indexed objects, provides 
several advantages in both insertion and retrieval operations. It can reduce the number 
of disk I/O occurred in insertion operations by reducing the frequency of updating 
index structure. Due to the shortened height of the resulting index structure, the 
number of nodes visited by a retrieval query is decreased. Cluster indexing is also 
beneficial in supporting complex queries such as region query or k-nearest-neighbor 
query. As noted, cluster indexing groups individual data based on its proximity and 
stores them in one cluster. Thus, for collecting a number of data belonging to the 
queried area, cluster indexing only need to search a small number of clusters. 
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We use R-tree (an R-tree [1] or one of its variants) as an index structure for cluster 
indexing. We assume that the main purpose of data stream archiving is online 
analytical processing and data mining operations, so the most prevalent query type is 
the multi-attribute range query. R-tree is the most common index structure for such 
query type. Also, R-tree doesn’t need to be modified for cluster indexing, since R-tree 
and our cluster indexing scheme use the same data representation type. Every object 
is abstracted as Minimum Bounding Rectangle (MBR) in R-tree and the Clusterer 
represent clusters as MBR. 

4   Experiment 

In this section, we demonstrate the performance benefit of DCF compared with the 
existing approach. For evaluation, we made DCF prototype in GNU C/C++ and we 
ran performance comparisons on the Linux platform. For rapid DCF prototyping, 
existing library package including the R-tree and the storage manager [15] was used 
for the storage system. The fill factor of the R-tree is set to 40% and the maximum 
number of entries each node can hold in the R-tree index structure is set to 100. 

As an experimental scenario, we suppose that DCF is used for a taxi location 
tracking application. It receives and manages all the position data of taxis in a 
downtown area. Our experimental scenario is modeled with the following parameters: 
(1) the size of the area is 30Km x 30Km, (2) the total number of taxis varies from 
1,000 to 8,000, (3) every taxi reports its new position – longitude, altitude, and time - 
every three seconds, (4) all the taxis move at an average speed of 60Km/h, (5) initially 
all vehicles are uniformly distributed over the whole area and continue to move to the 
top-right direction. According to the above scenario, we synthetically generate position data 
of vehicles using the “Generate_Spatio_Temporal_Data” (GSTD) [14], which is a well-
known spatiotemporal data generator. 

Clustering policies affect the retrieval performance of the index structure. To show 
this effect, we present three different clustering algorithms, which are a well-known 
K-means clustering algorithm, a 3D R-tree clustering algorithm which is used for 
spatiotemporal databases, and a Hash-based clustering algorithm. 

The Hash-based clustering is the simplest way to group data streams into clusters. 
Each data consists of several attributes. Entire attributes’ value ranges are divided into 
equal sized grids in the Hash algorithm. Incoming data stream’s attribute values are 
hashed into a specific grid. Data in the same grid are periodically grouped into a 
cluster. In this scheme, there is no overlap between clusters. 

The K-means clustering [17] is the most popular clustering algorithm. We give 
parameter values; the number of clusters k, the coarsening value C, and the refining 
value R, and the flush values fmin and fmax. Initially, the first k data become a cluster 
of size one, and the next data elements are assigned to the closest cluster. After 
finishing the first assignment, the K-means algorithm repeats the calculation of the 
centroid for each cluster and reassigns all data to the closest cluster. 

The 3D R-tree clustering periodically builds a small in-memory 3D R-tree [18] 
with incoming data stream. Data elements pointed to by the same leaf-node of the in-
memory R-tree are grouped as one cluster. Because the tree algorithm is a one-pass 
algorithm, overlaps between clusters are much larger than other two clustering 
algorithms. 
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Fig. 3. Insertion performance with varying number of objects 

In order to examine the insertion performance of DCF, we measure the total number 
of disk I/O for updating the index structure. The two hours of position data generated 
from 1,000, 2,000, 4,000, and 8,000 cars are inserted into the index structure. As 
shown in Figure 3, in the case of OBO insertion, the total number of disk I/O increases 
with the number of objects. However, in the case of the clustering schemes, the total 
number of disk I/O remains stable since our cluster indexing scheme generates equal or 
fewer clusters than the maximum number of data which can be handled by the storage 
system, which is assumed to be 200 insertions per second in our experiment. 

The total number of nodes at each level after finishing the whole insertion process 
is shown in Table 1. We can see that DCF has a smaller space requirement than OBO 
insertion. 

Table 1. Total number of nodes and height of the resulting R-tree index structure 

Hash-based K-mean 3D R-tree OBO 
# of objects 

# of nodes Height # of nodes Height # of nodes Height # of nodes Height 
1,000 19,370 4 16,370 4 21,246 4 63,779 4 
2,000 22,612 4 19,591 4 22,562 4 120,846 4 
4,000 23,168 4 21,553 4 22,774 4 233,901 5 
8,000 24,429 4 22,755 4 22,800 4 394,652 5 

We also investigate the retrieval performance of our approach. The query type is the 
window query, which is “find all objects that exists in a certain area during a certain time 
range.” The ranges of queries are 0.05%, 0.1%, 0.5%, and 1% of the total range with 
respect to each dimension. Each query set includes 1,000 queries. We measure the total 
number of disk I/O caused by index lookup operations to process each query set when 
the R-tree is populated with data generated from 1,000, 2,000, 4,000, and 8,000 objects. 

As seen in Figure 4, DCF using the Hash-based and the K-mean clustering 
algorithms outperforms the existing OBO approach. However, DCF using the 3D R-
tree clustering algorithm shows that its retrieval performance decreases more severely 
as the query range increases. From 0.1% of the query range, the 3D R-tree clustering 
algorithm generates a resulting R-tree having worse retrieval performance than OBO 
insertion. This indicates that DCF does not always provide better retrieval 
performance than OBO insertion. We measure the MBR overlap between clusters  
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(a) query range: 0.05% 
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(b) query range: 0.1% 
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(c) query range: 0.5% 
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(d) query range: 1% 

Fig. 4. Retrieval Performance with varying number of objects at different query ranges 

Table 2. MBR overlap of clusters generated over the same period 

# of objects Hash-based K-mean 3D R-tree 
1,000 0.00E+00 3.88E-11 1.94E-10 
2,000 0.00E+00 5.54E-10 1.23E-08 
4,000 0.00E+00 5.56E-09 3.69E-07 
8,000 0.00E+00 3.12E-08 1.27E-06 

generated over the same period as shown in Table 2. The larger overlap increases the 
number of nodes to be traversed and results in an inefficient index structure. The 
clusters generated by the 3D R-tree clustering algorithm show the largest overlap 
between clusters such that its overlap is almost two orders of magnitude larger. Thus, 
although cluster indexing generates fewer objects to be indexed and allows the 
resulting R-tree to be more compact, a poor clustering algorithm like the 3D R-tree 
clustering algorithm results in an index structure with poor retrieval performance. 

5   Related Work 

Many researchers have studied indexing overhead reduction, since indexing is the 
most serious bottleneck in handling large amounts of data. [2][3] try to mitigate 
indexing overhead by dropping those updates which do not affect the current 
structure. They are very effective in handling position data of moving objects. 
However, they are not suitable for data archiving where every update should be 
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recorded without any loss of data. a bottom-up R-tree [4] speeds up index updates by 
utilizing locality among incoming data. 

Bulk loading approaches [5][6][7][8][9][10] have been proposed to efficiently 
build multidimensional index structures such as R-trees on massive amounts of data. 
In these approaches, input data are first sorted according to a certain criteria such as 
proximity. Then, a number of sorted data are grouped together and the index tree is 
built upon the data groups. The indexing overhead is reduced by about a factor of the 
average size of the groups. However, since all the data should be known before using 
bulk loading, this approach can not be used directly for streaming applications, where 
data are continuously coming from data sources. 

Bulk updating, a.k.a. bulk insertion, [11][12][13] is an approach to efficiently load 
a bulk of data into an already existing index tree. [11] achieves this goal by creating 
new index trees on partitions of incoming data, then the index trees are merged with a 
pre-existing big tree. [12] further improves the performance of index merging by 
exploiting the characteristics of an existing index tree while constructing a new small 
index tree. However, there still remains the problem of how to efficiently build the 
small tree when updates occur very frequently. [13] reduces the frequency of index 
updates by delaying the propagation of insertions to other tree nodes until a threshold 
number of data are collected. But this approach requires too much main memory for 
buffering. Especially, this problem becomes very serious in historical data archiving 
since the indexing tree grows endlessly. In addition, bulk updating techniques do not 
address the problem of adapting to load fluctuations, which happens frequently when 
dealing with stream-based applications.  

6   Conclusion 

In this paper, we describe DCF, a novel framework that supports data stream 
archiving for streaming applications. High volumes of continuously arriving data 
cause a lot of disk I/O, overloading the storage system. The proposed framework, 
DCF can reduce a great amount of disk I/O in both updating and looking up index 
structure. The basic idea of DCF is indexing a group of data, namely a cluster, instead 
of individual data. Our experimental studies show that DCF is very effective in 
reducing disk I/O resulting from updating index structures, and it is beneficial in 
reducing the number of disk accesses required to process queries due to the 
compactness of the index structure. 

Possible future works include thorough cost analysis in order to reveal influential 
factors to retrieval performance, exploration about standard criterion for developing a 
clustering algorithm, and an adaptive load management mechanism for DCF. 
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