
DCIM: Distributed Cache Invalidation
Method for Maintaining Cache Consistency

in Wireless Mobile Networks
Kassem Fawaz, Student Member, IEEE, and Hassan Artail, Senior Member, IEEE

Abstract—This paper proposes distributed cache invalidation mechanism (DCIM), a client-based cache consistency scheme that is

implemented on top of a previously proposed architecture for caching data items in mobile ad hoc networks (MANETs), namely

COACS, where special nodes cache the queries and the addresses of the nodes that store the responses to these queries. We have

also previously proposed a server-based consistency scheme, named SSUM, whereas in this paper, we introduce DCIM that is totally

client-based. DCIM is a pull-based algorithm that implements adaptive time to live (TTL), piggybacking, and prefetching, and provides

near strong consistency capabilities. Cached data items are assigned adaptive TTL values that correspond to their update rates at the

data source, where items with expired TTL values are grouped in validation requests to the data source to refresh them, whereas

unexpired ones but with high request rates are prefetched from the server. In this paper, DCIM is analyzed to assess the delay and

bandwidth gains (or costs) when compared to polling every time and push-based schemes. DCIM was also implemented using ns2,

and compared against client-based and server-based schemes to assess its performance experimentally. The consistency ratio, delay,

and overhead traffic are reported versus several variables, where DCIM showed to be superior when compared to the other systems.

Index Terms—Cache consistency, data caching, client-based, invalidation, MANET, TTL
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1 INTRODUCTION

MOBILEdevices are the building blocks of mobile ad hoc
networks (MANETs). They are typically character-

ized by limited resources, high mobility, transient avail-
ability, and lack of direct access to the data source (server).
In MANET environments, data caching is essential because
it increases the ability of mobile devices to access desired
data, and improves overall system performance [15], [22].
In a typical caching architecture, several mobile devices
cache data that other devices frequently access or query.
Data items are essentially an abstraction of application data
that can be anything ranging from database records,
webpages, ftp files, etc.

The major issue that faces client cache management
concerns the maintenance of data consistency between the
cache client and the data source [3]. All cache consistency
algorithms seek to increase the probability of serving from
the cache data items that are identical to those on the server.
However, achieving strong consistency, where cached items
are identical to those on the server, requires costly commu-
nications with the server to validate (renew) cached items,
considering the resource limited mobile devices and the
wireless environments they operate in. Consequently there
exist different consistency levels describing the degree to
which the cached data is up to date. These levels, other than
strong consistency, are weak consistency, delta consistency

[5], [6], probabilistic consistency [8], [11], and probabilistic
delta consistency [13].

With weak consistency, client queries might get served
with inconsistent (stale) data items, while in delta consis-
tency, cached data items are stale for up to a period of time
denoted as delta. In probabilistic consistency, a data item is
consistent with the source with a certain probability
denoted as p. Finally, in probabilistic delta consistency, a
certain cached item is at most delta units of time stale with a
probability not less than p.

The cache consistency mechanisms in the literature can
be grouped into three main categories: push based, pull
based, and hybrid approaches [6]. Push-based mechanisms
are mostly server-based, where the server informs the
caches about updates, whereas Pull-based approaches are
client-based, where the client asks the server to update or
validate its cached data. Finally, in hybrid mechanisms the
server pushes the updates or the clients pull them.

An example of pull approaches is the time to live (TTL)-
based algorithms, where a TTL value is stored alongside
each data item d in the cache, and d is considered valid until
T time units go by since the last update. Such algorithms are
popular due to their simplicity, sufficiently good perfor-
mance, and flexibility to assign TTL values to individual
data items [14], [24]. Also, they are attractive in mobile
environments [25] because of limited device energy and
network bandwidth [22], [23], and frequent device dis-
connections [24]. TTL algorithms are also completely client-
based and require minimal server functionality. From this
perspective, TTL-based algorithms are more practical to
deploy and are more scalable.

In this paper, we propose a pull-based algorithm that
implements adaptive TTL, piggybacking, and prefetching,
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and provides near strong consistency guarantees. Cached
data items are assigned adaptive TTL values that corre-
spond to their update rates at the data source. Expired items
as well as nonexpired ones but meet certain criteria are
grouped in validation requests to the data source, which in
turn sends the cache devices the actual items that have
changed, or invalidates them, based on their request rates.
This approach, which we call distributed cache invalidation
mechanism (DCIM), works on top of the COACS coopera-
tive caching architecture we introduced in [2]. To our
knowledge, this is the first complete client side approach
employing adaptive TTL and achieving superior availabil-
ity, delay, and traffic performance.

In the rest of this paper, Section 2 discusses related work
and reveals the contributions of the proposed system,
which we elaborate in Section 3. Section 4 provides an
analytical analysis of the system, whereas Section 5 presents
the experimental results and discusses their significance.
Section 6 finishes the paper with concluding remarks and
suggestions for future works.

2 RELATED WORK

Much work has been done in relation to cache consistency
in MANETs, where the proposed algorithms cover push-,
pull-, and hybrid-based approaches.

The work on push-based mechanisms mainly uses
invalidation reports (IRs). The original IR approach was
proposed in [3], but since then several algorithms have been
proposed. They include stateless schemes where the server
stores no information about the client caches [3], [4], [16],
[17] and stateful approaches where the server maintains
state information, as in the case of the AS scheme [20]. Many
optimizations and hybrid approaches were proposed to
reduce traffic and latency, like SSUM [35], and the SACCS
scheme in [18] where the server has partial knowledge
about the mobile node caches, and flag bits are used both at
the server and the mobile nodes to indicate data updates.
Such mechanisms necessitate server side modifications and
overhead processing. More crucially, they require the server
to maintain some state information about the MANET,
which is costly in terms of bandwidth consumption
especially in highly dynamic environments. DCIM, on the
other hand, belongs to a different class of approaches, as it is
a completely pull-based scheme. Hence, we will focus our
survey of previous work on pull-based schemes, although
we will compare the performance of DCIM with that of our
recently proposed push-based approach, namely SSUM
[35], in Section 5.

Pull-based approaches, as discussed before, fall into two
main categories: client polling and time to live.

2.1 Client Polling

In client polling systems, such as those presented in [19] and
[20], a cache validation request is initiated according to a
schedule determined by the cache. There are variants of
such systems (e.g., [19] and [8]) that try to achieve strong
consistency by validating each data item before being served
to a query, in a fashion similar to the “If-modified-since”
method of HTTP/1.1. In [19], each cache entry is validated
when queried using a modified search algorithm, whereas

in [8] the system is configured with a probability that
controls the validation of the data item from the server or the
neighbors when requested. Although client poll algorithms
have relatively low bandwidth consumption, their access
delay is high considering that each item needs to be
validated upon each request. DCIM, on the other hand,
attempts to provide valid items by adapting expiry intervals
to update rates, and uses prefetching to reduce query delays.

2.2 TTL-Based Approaches

Several TTL algorithms which were proposed for MANETs
were motivated by web caches research. These include the
fixed TTL approach in [9] and [24] and the adaptive TTL
methods in [7], [21], [12], and [26]. Adaptive TTL provides
higher consistency requirements along with lower traffic
[7], and is calculated using different mechanisms [7], [21],
[12], [28], and [29]. The first mechanism in [21] calculates
TTL as a factor multiplied by the time difference between
the query time of the item and its last update time. This
factor determines how much the algorithm is optimistic or
conservative. In the second mechanism, TTL is adapted as a
factor multiplied by the last update interval. In dynamic
systems, such approaches are inappropriate as they require
user intervention to set the factors, and lack a sound
analytical foundation [11]. In the third mechanism in [37]
TTL is calculated as the difference between the query time
and the kth recent distinct update time at the server divided
by a factor K, and the server relays to the cache the k most
recent update times. Other proposed mechanisms take into
consideration a complete update history at the server to
predict future updates and assign TTL values accordingly
[25]. These approaches assume that the server stores the
update history for each item, which does not make it an
attractive solution. On the other hand, the approach in [30]
computes TTL in a TCP-oriented fashion [27] to adapt to
server updates. However, it is rather complex to tune, as it
depends on six parameters, and moreover, our preliminary
simulation results revealed that this algorithm gives poor
predictions. Finally, the scheme in [11] computes TTL from
a probability describing the staleness of cached documents.
At the end, it is worth mentioning that piggybacking was
proposed in the context of cache consistency to save traffic.
In [10], the cache piggybacks a list of invalidated documents
when communicating with the server, while in [36] the
server piggybacks a list of updated documents when it
communicates with the cache.

TTL-based approaches have been proposed for MANETs
in several caching architectures [22], [23], [31], [32], [33], and
[15]. The works in [22], [23], and [31] suggest the use of TTL
to maintain cache consistency, but do not explain how the
TTL calculation and modification are done. A simple
consistency scheme was proposed in [32] and [33] based
on TTL in a manner similar to the HTTP/1.1 max-age
directive that is provided by the server, but no sufficient
details are provided. Related to the above, we show in
Section 5 that approaches which rely on fixed TTL are very
sensitive to the chosen TTL value and exhibit poor
performance. In [15], a client prefetches items from nodes
in the network based on the items’ request rates, and
achieves consistency with the data sources based on
adaptive TTL calculated similar to the schemes of the Squid
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cache and the Alex file system. This scheme introduces
large traffic, as two invalidation schemes work in parallel,
and moreover, the TTL calculations are seemingly inaccu-
rate and are based on heuristics [11].

In summary, the above approaches only provide shallow
integration of TTL processing into the cache functionality,
and none of them gives a complete TTL-based cache
consistency scheme for MANETs. Additionally, they do
not include mechanisms for reducing bandwidth consump-
tion, which is crucial in MANET environments.

3 DCIM ARCHITECTURE AND OPERATIONS

This section describes the design of DCIM and the
interactions between its different components.

3.1 System Model

The system consists of a MANET of wireless mobile nodes
interested in data generated at an external data source
connected to the MANET using a wired network (e.g.,
internet) via WiFi Access Points (APs). Nodes that have
direct wireless connectivity to an AP act as gateways,
enabling other nodes to communicate with the data source
using multihop communication. For example, Node CN4 in
Fig. 1 is accessing the server through N4 and then CN1,
which in turn acts as a gateway by connecting to the
Internet via the AP. The data exchanged is abstracted by
data items, as mentioned in Section 1.

DCIM is a client-side system that is able to scale to many
types of provided services. In fact, DCIM fits more naturally
into the current state of the Internet with the prevailing
client/server paradigm, where clients are responsible for
pulling the data from the server, which in turn maintains
little state information and seldom pushes data to them. On
the other hand, push-based approaches, like those described
in the related work section, rely on the server totally or
partially to propagate item changes to the network. This
feature though is not implemented in currently deployed
application servers, as most application servers do not
maintain change history or attempt to calculate expiry times,

which is why the client side is depended on to provide such
service. We demonstrate later how DCIM performs similar
or better than push-based approaches, while keeping all the
processing at the client side with little overhead.

The proposed DCIM system builds on top of COACS,
which we introduced in [2] and did not include provisions
for consistency. For completeness, a description of the
COACS operations is provided in Appendix A, which can
be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TMC.2012.37.
Briefly, the system has three types of nodes: caching nodes
(CNs) that cache previously requested items, query
directories (QDs) that index the cached items by holding
the queries along with the addresses of the corresponding
CNs, and requesting nodes (RNs) that are ordinary nodes.
Any node, including a QD or a CN, can be a requesting
node, and hence, an RN is not actually a special role, as it is
only used in the context of describing the system. One,
therefore, might view the employed caching system as a
two layered distributed database. The first layer contains
the QDs which map the queries to the caching nodes which
hold the actual items that are responses to these queries,
while the second layer is formed by the CNs. The
operations of the QDs and CNs are described in more
details in Sections 3.4.3 and 3.4.4, respectively.

Finally, it is worth mentioning that although our recently
introduced SSUM [35] cache consistency scheme also builds
on COCAS, it is a server-based approach, whereas DCIM is
completely client-based, introduced to realize the benefits of
this class of systems. In this regard, DCIM complements
SSUM, which is why we contrast their performance in
Section 5 to see how they compare.

3.2 Design Methodology

The goal of DCIM is to improve the efficiency of the cache
updating process in a network of mobile devices which
cache data retrieved from a data server, without requiring
the latter to maintain state information about the caches.
The proposed system is pull-based, where the CNs
monitor the TTL information and accordingly trigger the
cache updating and validation process.

DCIM is scalable by virtue of the CNs whose number can
increase as the size of the network grows (each node can
becomeaCN for an item it requests if not cached elsewhere in
the network), and thus is more suitable to dynamicMANETs
than a push-based alternative since the server does not need
to be aware ofCNdisconnections. DCIM is alsomore suitable
when data requests are database queries associated with
tables and attributes. In a push-based approach, the server
would have to map a cached query to all of its data sources
(table attributes) and execute this query proactively when-
ever any of the sources is updated. Moreover, DCIM adapts
the TTL values to provide higher consistency levels by
having each CN estimate the interupdate interval and try to
predict the time for the next update and sets it as the item’s
expiry time. It also estimates the inter-request interval for
each data item to predict its next request time, and then
prefetches items that it expects to be requested soon.

3.3 DCIM Basic Design

In DCIM, the caching system relies on opportunistic
validation requests to infer the update patterns for the data
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items at the server, and uses this information to adapt the
TTL values. These validation requests are essentially
requests to the server to refresh a set of data items. The CN
polls the server frequently to know about the update times of
the items it caches. It also piggybacks requests to refresh the
items it caches each time it has reason to contact the server,
basically whenever an item it caches expires. Nevertheless,
to avoid unnecessary piggybacks to the server, the CN
utilizes a two-phase approach. Specifically, at the end of each
polling interval ðTpollÞ, every CN issues validation requests
for the items it indexes that have expired TTLs and have a
high request rate. After a configurable number of polling
intervals, denoted byNpoll, the CN issues a validation request
for all the items it caches if at least one item has an expired
TTL regardless of its request rate. We refer to the interval
Npoll � Tpoll as the piggyback interval, Tpigg. When the server
receives a CN’s request, it replies with a list of updated as
well as nonupdated items. The CN uses this information to
adapt the TTL values to the server update rate for each item.
The effectiveness of these mechanisms is explained in the
experimental evaluation section.

Although in principle it achieves weak consistency,
DCIM can attain delta consistency when at least one item
has a TTL expired by the end of the piggybacking interval,
thus effectively causing validation requests to be issued
periodically. Hence, the CN ensures that data items are at
most one piggybacking interval stale. Fig. 1 shows a
scenario for illustration purposes where two CNs are
sending cache validation requests to the server (dotted
arrows) via gateway nodes and through the Access Point.
The server replies back with lists of valid and changed data
items (short-dashed arrows) to the CNs, which in turn
update the corresponding QDs asynchronously about the
items they cache (long-dashed arrows).

3.4 Detailed Design

In the remainder of this section, we describe the operations
of DCIM in details, but first, we list the messages which we
added in DCIM (see Table 1) to those already introduced in
COACS. The reader can refer to [2] for a complete
description of all the COACS messages.

Fig. 2 shows the basic interactions of DCIM through a
scenario in which an RN is submitting a data request packet
(DRP) for a query indexed in the QD. The QD forwards the
DRP to the CN caching the item assuming there was a hit.
At the CN, the requested item may be in the waiting list at
the moment if it is being validated. Validation requests are

issued by CNs using CURP messages. Each entry in the
message consists of the query associated with this item, a
timestamp (last modification time), a “prefetch” bit (if set,
instructs the server to send the actual item if updated), and
the “expired” bit (tells if an item is expired). Upon receiving
a CURP message, the server identifies items that have
changed and those that have not, and sends the correspond-
ing CNs in SVRP messages the ids of items that did not
change and those that changed but do not have the prefetch
bit set. It also sends the CNs SUDP messages containing the
actual items if they were prefetched by the same CN and
have changed. Now the CN releases the request from the
waiting list and sends the updated cached response to the
RN via a data reply (DREP) message.

3.4.1 TTL Adaptation

The CN in DCIM has a partial picture about the update
pattern of each item at the server using the piggybacking
mechanism. It stores the last update time of each item from
the last validation request, and uses this information to
predict the next update time. However, the CNs are after all
mobile devices which have constraints in terms of power,
processing, and storage capabilities, and obviously, sophis-
ticated prediction schemes are slow and inadequate to use
in this context. Alternatively, we use a running average to
estimate the interupdate interval, using timestamps of the
items from the server’s responses to issued validation
requests. The CN can then calculate its own estimation for
the interupdate interval at the server, and utilizes it to
calculate the TTL of the data item. This is an exponentially
weighted moving average, and has the form: IUIðtÞ ¼
ð1� �Þ � IUIðt� 1Þ þ �� LUI, where IUIðtÞ is the esti-
mated interarrival time at time t and LUI represents the last
interupdate interval. The CN only needs to store the
estimated interval and the last updated time. In fact, this
method has many properties that make it suitable for usage
in this situation, mainly because of its simplicity and ease of
computation, the minimum amount of data required, and
the diminishing weights assigned to older data [34]. There
are two parameters that control this estimator which are the
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TABLE 1
Packets Used in DCIM
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Fig. 2. Interactions between nodes in a DCIM system.



initial value IUIð0Þ and the value of �, whose value should
be small, i.e., between 0.1 and 0.2, as to minimize the effect
of random fluctuations, even if it means larger convergence
times [26] (proven in Appendix B, which is available in the
online supplemental material). In the simulations we
describe later, � was set to 0.125 and IUIð0Þ to 0. In
Section 3.5.4, we show how this TTL calculation scheme is
incorporated in DCIM.

3.4.2 Server Operations

As this approach is client-based, the processing at the server
is minimal. When the server receives a CURP message from
the CN, it checks if all items have been changed by
comparing their last modified times with those included in
the request. Items that have not changed are considered
valid, and their ids are included in the SVRP response to the
CN. On the other hand, items that have changed are treated
in two ways: Expired items (those having the expiry bit set
in the CN validation request) as well as nonexpired ones
but having the prefetch bit set are updated by sending
SUDP packets (which contain the actual data items and the
associated timestamps) to the originating CNs. As to the
items whose expiry and prefetch bits are not set (i.e., will
not be requested soon), the server informs the CN about
them using an SVRP message. This is summarized in the
flow diagram of Fig. 3. As such, the server only reacts to the
received CURP messages that do not require it to maintain
any state information, and thus it does not need to be aware
of the MANET dynamics, including any CN or QD
disconnections. Given this, it is not difficult to deploy
DCIM in an Internet environment. For example, DCIM can
be suited to be deployed on top of HTTP through mapping
DCIM’s request directives into HTTP header fields and
utilizing extended headers, as allowed by HTTP/1.1 and
defined in RFC 2616. The details of suiting DCIM to
function on top of HTTP/1.1 or any other protocol are,
however, out of scope of this paper.

3.4.3 QD Operations

In contrast to the CNs that become caching nodes when they
first request noncached data, QDs are elected based on their
resource capabilities, as described in [2]. A procedure is
included in [2] that explains how the number of QDs in the
system is bounded by two limits. The lower bound
corresponds to having enough QDs, such that an additional
(elected) QD will not yield an appreciable reduction in
average QD load. The upper bound, on the other hand,

corresponds to a delay threshold, since traversing a larger
number of QDs will lead to higher response times. Between
these limits, the number of QDs can change dynamically
depending on howmuch of the QD storage capacity is used.
In the simulationsperformed in thiswork, thenumberofQDs
averaged 7 at steady statewhen thenumber of nodeswas 100.

Concerning load, it was shown in [2] that the average
load on a QD node is 1.5 times the average load on a CN
node. Since in DCIM the QDs are not assigned additional
roles as compared to [2], their average load should not
change. In general, the QD system yields a high hit rate,
which causes the request to traverse less QDs on average,
and consequently keeps the load per QD reasonably low.
Moreover, other than the occasional COACS updates about
replaced items (due to capacity constraints), the CNs never
update the QDs about the expired data items. Conse-
quently, the QD always forwards the DRP to the CN in case
of a hit. This makes the system simpler and saves traffic, but
might incur additional delay only if the item is expired at
the CN, as this will cause the CN to contact the server to
update the data item. Nevertheless, this additional internal
delay is small when compared to the server delay, and it is
compensated by reduced consistency updates from the CNs
to the QDs. Also, we show later in the experimental
evaluation section that the system maintains an acceptable
hit rate, meaning that the probability a data item will be
expired at the CN is low.

3.4.4 CN Processing

The CNs store the cached queries along with their
responses plus their IDs, and the addresses of the QDs
indexing them. They are distributed in the network and
cache a limited number of items, which makes monitoring
their expiry an easy task. A CN maintains two tables to
manage the consistency of the cache: the Cache Information
Table whose data is common to all queries whose responses
are locally cached (Table 2), and the Query Information Table
that stores query-specific data (Table 3). As shown, the CN
maintains the weighted average of inter-request interval
(IRI) for each data item it holds (in a manner similar to the
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TABLE 2
Elements of the General Cache Information Table

TABLE 3
Elements of the Query-Specific Cache Information Table



computation of the interupdate interval). The process that
runs on the CN includes two threads: a monitoring thread
and a processing thread.

Monitoring thread. The monitoring thread checks for
expired data items, issues validation requests, and requests
updates for data items. It performs these operations in two
functions.

Inner loop function. After the CN sleeps during the polling
interval ðTpollÞ, it iterates over the entries corresponding to
the data items it caches, checking each item’s TTL value. If
an item has an expired TTL, the CN sets its expiry bit and
its state to INVALID. It also sets its “prefetch” bit if the item
is predicted to be requested before the end of the current
piggybacking interval, i.e., if the last requested time plus the
average inter-request interval is lower than the end of the
current piggyback period ðNpoll � TpollÞ, meaning that in this
case the item will be requested with high probability by one
or more RN nodes before the end piggybacking interval. In
what follows we refer to items that are predicted to be
requested before the end of the current piggybacking
interval as items with high request rate, while other items
are referred to as items with low request rate. The CN then
sets the state field to TEMP_INVALID to indicate that a
validation request for the item is in progress. Normally,
nodes that request invalidated data items will have to wait
till the server updates the CNs with new versions upon
their request. At the end of the inner loop, the CN prepares
a CURP, and includes in it the validation requests for items
that have expired and whose prefetch bits are set.

Outer loop function. When the monitoring thread com-
pletes Npoll iterations (i.e., after a piggyback interval,
defined above), the CN checks if at least one item has
expired. If so, it issues a validation request for the whole
collection of cached items stored at the CN. In this request,
similar to the one issued in the inner loop, a prefetch bit
indicates if the item is expected to be requested soon, as was
described above. If it is set, the server sends the actual item,
else, it just invalidates it. Hence, the outer loop allows the
CN to piggyback validation requests for all items when
there is a need to contact the server.

Note that the inner loop function issues validation
requests only for expired items having high request rates
(items predicted to be requested before the end of the
piggybacking interval as specified before), and updates
them if necessary. Expired items with low request rates
have to wait for at most Npoll � Tpoll to be validated, while
those with high request rates wait for at most Tpoll. Since
prefetching data items to save on query delay constitutes
most of the traffic consumption in the network, prefetching
only highly requested items helps to limit the bandwidth
consumption in the network. In this regard, we note that in
delay intolerant networks, the “prefetch” bit can be set for
each item regardless of its request rate, assuming it was
requested at least once in the past. This way, all items will
be prefetched and the hit rate will be forced to be
100 percent or very close to it (when accounting for items
that are requested while being validated), thus reducing
response time considerably. Fig. 4 summarizes the opera-
tions of the inner loop and outer loop functions.

Processing thread.This threadhandlesdata requests from
RNs and replies from the server (i.e., SUDP and SVRP

packets) in response to CURP messages, and computes the
TTL value.

Processing data request messages. The CN checks the
requested item in the DRP, and if it is INVALID, it issues
an update request directly to the server, changes its state to
TEMP_INVALID, and places the query on a waiting list. In
the meanwhile, if the CN gets a DRP for the same item
before the server replies, it also puts it on the waiting list. In
all other cases, the query is processed by sending the
requested item to the RN via a DREP message.

Processing SVRP and SUDP messages. If an SUDP packet
was received, it must be for an item that has changed at the
server. The CN calculates its TTL as explained below, and if
the SUDPmakes reference to items that have requests placed
in the waiting list, those items are sent to the corresponding
requesting nodes. On the other hand, the SVRP is sent from
the server in response to a CURP packet, and it is expected to
only contain the ids of the items that did not change, and
those of the items that changed but were marked as
unexpired and had the prefetch bit not set in the CURP
(illustrated in Fig. 3). The CNupdates the TTL of all elements
whose ids are contained in the SVRP. It helps to reiterate here
that there are itemswhichwere specified in the CURP packet
but not sent as part of the SVRP because the actual updated
data itemswere sent to the CNs as part of the SUDPmessage.

TTL calculation. In DCIM, the exact TTL calculation
performed by the CN depends on whether the item was
expired at the server or not, which is information contained
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Fig. 4. Inner loop and outer loop (shaded part) functions.



in the SVRP and SUDP messages. The TTL value is
calculated as per the steps below.

. If the item has changed on the server, the SVRP
would contain the last updated time (denoted by
LUnew), given the item had the prefetch bit not set,
whereas the SUDP would contain the same value if
this bit was set. In both cases, TTL is set to
ð1� aÞ � IUI þ a� ðLUnew-TimestampÞ.

. If the item did not change on the server and the TTL
did not expire on the CN, the TTL will not be
modified. This case occurs because of the piggyback-
ing procedure described before.

. If the item expired on the CN, but did not change
on the server, the CN increases the TTL value by
considering the current time as the update time,
without changing the timestamp value it stores.
The TTL value will be set to ð1� aÞ � IUI þ a�
ðCurrentTime� TimestampÞ.

In some cases, the actual interupdate interval at the
server could increase while the estimated interupdate
interval may not have updated yet. This causes the last
calculated interupdate interval when the item was last
changed to become shorter than the time elapsed since the
past update. This gives rise to a next expiry time occurring
in the past. Should this situation occur, the CN reacts by
setting the next expiry time to the estimated interupdate
interval added to the current time (the time the item was
validated when its timestamp did not change, or changed
but the change was too old). This is done by setting TTL to
CurrentTime - Timestamp +IUI. This situation stays in effect
until the item gets a new timestamp (changes on the server).

For illustration purposes, a sample plot for the TTL
value versus the update rate of a Poisson update process is
shown in Fig. 5. It shows that at very low update rates (less
than 1 update per 1,000 s), the estimated TTL does not
adapt well. However, in actuality, time goes beyond the
2,000 s considered for this simulation time, meaning that
more item updates will occur on the server during the
longer time interval. It follows that the actual TTL will not
diverge to the same extent as shown in Fig. 5. This shows
the effectiveness of the update rate adaptation mechanism
in calculating TTL values. This is further elaborated in the
experimental evaluation section where the data consistency
is shown to be near 1.

3.4.5 Handling CN and QD Disconnections

It is fair to assume that CNs and QDs will go offline from
time to time either temporarily or permanently. In either
case, DCIM should react efficiently to keep the system
running: it does not attempt to proactively account for CN
or QD disconnections, but rather, it reacts to these events by
relying on the QDs to detect when CNs go offline. In case of
a query hit, the QD will always try to forward the data
request to the CN, and consequently any routing protocol
will return a route error if no route can be established to the
CN. This will indicate that the CN is not reachable or
equivalently disconnected. In such a case, the QD instructs
the RN to request the item from the external data source as
it would do in a case of a data miss. As a result, the RN
would become a CN for this item in particular, and the QD
will mark this entry as invalid. All the QDs behave similarly
for each request they receive for items cached in offline
CNs. When a CN rejoins the network, it broadcasts a
HELLO message as any new node joining the network
would do [2]. The QDs react by sending this CN an entry
deletion packet (EDP) which applies to any item cached in
this CN and marked as invalid because it was requested
during the CN’s disconnection and consequently cached
somewhere else. The CN will remove this item and resumes
its operations normally for the other items.

On the other hand, the QDs can disconnect but with a
lower probability than the CNs since they are limited in
number in the network and are more capable nodes in
terms of connectivity and battery. Moreover, a QD
disconnection is less severe than that of a CN. Rebuilding
a CN’s cache requires communication with the QDs and
with the server to fetch the actual items, in addition to the
loss of the associated consistency information. Alterna-
tively, the reconstruction of the QD cache only requires
communications with the CNs. A QD disconnection is
easily detected by either an RN or a QD in the system
during a data request. When an RN or a QD attempts to
forward a DRP to a disconnected QD, the routing layer will
return a routing error. From here after, the node that first
detects a disconnected QD will initiate a QD recovery
procedure as described in [2]. Briefly, this procedure
includes the election of a new QD, informing the network
about it, and then reconstructing its cache from the CNs in
the network. Needless to say, if a previously offline QD
rejoins the network; it drops its QD role, unlike a rejoining
CN, as was described earlier.

With regard to these procedures, the performance of the
system could be improved, through incorporating into the
design a replication scheme, similar to the one in [43] and
[44], to replicate data on both the QDs and CNs and hence,
reduce the overhead associated with node disconnections,
especially the query delay that results from the main-
tenance process.

4 ANALYSIS

We analyze DCIM to assess the bandwidth gain and the
query response time gain as compared to the poll-every-
time (PET) and push-based stateful (PBS) consistency
schemes. We define the bandwidth gain as the difference
between the amounts of PET and PBS traffic, on one hand,
and DCIM traffic on the other hand. Similarly, the query
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response time gain is the difference between the times it
takes to get the answer of the query (measured from the
time of issuing the query). The results are in agreement with
the results shown in Section 5.

Requests for data within the network and arrival of data
updates at the server are assumed to be random homo-
genous Poisson processes, and thus the interarrival times
are represented by exponential random variables, as was
suggested in [14] and [42]. We use �R to denote the rate of
requests and �U for the item update rate, and suppose that
each query or data item can have its own rate. The PDFs of
the interarrival times are therefore

PRðtÞ ¼ �Re
��Rt; PUðtÞ ¼ �Ue

��U t: ð1Þ

To estimate the response time and traffic gains, we
borrow concepts from our previous work in [2] related to
the average number of hops required in the various
situations in the calculations.

. HC is the average number of hops between the
corner of the topology and a randomly selected
node. It is used when a packet is sent between the
server and a node in the network.

. HR is the expected number of hops between any two
randomly selected nodes.

. HD is the expected number of hops to reach the QD
containing the reference to the requested data, in the
case of a hit.

. Tin is the transmission delay between two neighbor-
ing nodes (i.e., one hop delay), while Tout is the
round trip time between the MANET and the server.

. SD is the size of the data packet and SR is the size of
the request.

In what follows, we discuss the time response and
bandwidth gains for DCIM when compared with the PET
and PBS schemes. We show that although a push-based
stateful scheme could offer slightly smaller response times,
it generates considerably more traffic.

4.1 Response Time Gain

In Appendix C, which is available in the online supple-
mental material, we derive the response time gain of DCIM
over PET and over PBS, and show them in (2) and (3):

GTPET ¼ TRTT � PSC1 � TRTT � ð1� PSC1Þ � TMAN ; ð2Þ

GTPBS ¼ �PSC1 � TRTT þ PSC1 � TMAN ; ð3Þ

where TRTT¼Tout þ Tinð2HC þHDÞ; ð4Þ

TMAN ¼ Tinð2HR þHDÞ; ð5Þ

PSC1 ¼ �U � TRTT � e��U�TRTT�1: ð6Þ

The gains are plotted in the left graph of Fig. 6, where
values consistent with the corresponding values in the
simulations were used: HD ¼ 5; HR ¼ 5:21; HC ¼ 5:21; Tin ¼
5 ms, Tout ¼ 70 ms, and �U ¼ 1=500. As implied from (2), the
gain mainly depends on the update rate, which causes it to
decrease slightly when it increases. We note that for PBS,
we consider the best case scenario, where items are always

up-to-date and answered directly from the CNs. In the
graph, the lower curve confirms that in DCIM the majority
of the requests are answered from the MANET, this is why
the time response difference is less than 10 ms.

4.2 Bandwidth Gain

The expressions for the bandwidth consumption of PET,
PBS, and DCIM are derived in Appendix D, which is
available in the online supplemental material, and are
shown below in (7), (8), and (9), respectively,

Rtot � ðPpoll �Bpi þ ð1� PpollÞ �BpoÞ; ð7Þ

Brej þBrej�rq þBrej�up þBdisc þBupd; ð8Þ

M �ðBRpoll þBpol ln c þBpollcÞ�BRpigg �Bpiggnc �Bpiggc: ð9Þ

In the expressions above, Bpo ¼ SRðHD þHC þHRÞþSDHC ,
Bpi ¼ SRðHD þ 2HCÞ, Rtot ¼ �R � Tpigg, TR ¼ 1=�R and Tpigg

is the piggybacking interval. Ppoll ¼ e��U�TR , Bpollnc ¼
ðK�lÞ�SRHC , Bpollc¼ l�ðSDHCþSRHRÞ, BRpoll¼K�SRHC ,
Bpiggc¼m�SDHC ,Bpiggnc¼ðN�mÞ�SRHC ,BRpigg¼N�SRHC ,
and N is the number of items. Brej ¼ E½Ndisc� � pr � HcSu,
Brejrq ¼D� q � �R �E½Ndisc� � pr � ðHcSR þHcSD þHcSuÞ,
Brej�up ¼ D � q � ð1� �RÞ � �U � E½Ndisc� � pr � ðHcSR þ
HcSD þHcSuÞ, Bdisc ¼ q��R �E½Ndisc�� ð1� prÞ� ðHcSR þ
HcSD þHcSuÞ, Bupd ¼ �u �N �HcSD. E½Ndisc� is the CN
disconnection rate, q is the average number of data items in
CN, pr is the rejoining rate, D is the disconnection interval,
and Su is the control message size. The terms for l,K, andm,
are found in Appendix D, which is available in the online
supplemental material.

The bandwidth gain is plotted in the right graph of
Fig. 6, where in addition to the same hop count values as
those utilized above, the following values are used �R ¼
�U ¼ 1=500, N ¼ 4;000, M ¼ 20, SR ¼ 0:5 KB, SD ¼ 10 KB,
SU ¼ 0:15 KB, q ¼ 20, E½Ndisc� ¼ 15 (highly dynamic scenar-
io), and D ¼ 20 s. It is worth noting, that N represents the
number of cached items (requested at least once before),
rather than the total number of items; this matches the
experimental results since not all items will be requested
within the simulation time. In effect, the traffic resulting
from large piggybacking intervals is lower than that of
small piggybacking interval. Also, the traffic demands for
DCIM decrease exponentially for small polling intervals in
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both the analytical and experimental results. It is evident
that DCIM is less costly than PBS, which relies on
maintaining a full state of the cache system at the server
and pushing the updates to the CNs.

This traffic analysis shows that the polling interval is the
main parameter that affects performance, and thus it needs
to be tuned. Given the traffic expression, the optimal polling
interval is the value that results in the lowest traffic
consumption (equivalent to the highest bandwidth gain
since poll every time does not depend on the polling
interval). One can use a numerical method or plot the traffic
versus polling interval (Fig. 6) to find the optimal polling
interval which is in the vicinity of 15 s.

5 EXPERIMENTAL RESULTS

DCIM was implemented using ns2 [36], and a new database
class was developed that mimics the server process in
storing and updating data items and in processing the
validation requests. Timers were utilized to implement the
monitoring thread: the timer sleeps for the polling interval
duration and then wakes up to run the innerloop function,
i.e., after Npoll runs of the innerloop, (the piggybacking
interval) the outer-loop is invoked. Ns2 is a single threaded
simulator, but it is nevertheless capable of controlling the
operations of the timers autonomously, thus acting similar
to a multithreaded application.

Two additional schemes were implemented for compar-
ison: the poll-every-time mechanism (considered in Sec-
tion 4), where each time an item is requested, it is validated;
and the fixed-TTL mechanism, where all items have the
same expiry interval. The TTL value is calculated by adding
to the current time the expiry interval, and when a TTL
value expires, the item is flagged as such, and is fetched
from the server whenever it is requested.

In order to assess the effectiveness of piggybacking,
request rate adaptation, and polling interval mechanisms of
DCIM, we additionally implemented three versions of
DCIM, each of which had one of the above mechanisms
removed. The first has piggybacking disabled so that only
expired items are validated in both the innerloop and
outerloop functions. The second has the “prefetch” bit
always set for all requests so all items are prefetched from
the server regardless of their request rate. The last version
only implements the update rate adaptation mechanism,
where items are validated when they expire.

The simulation area was set to 400� 400 m
2, populated

with 100 nodes that were randomly distributed. Propaga-
tion was according to the two-ray model, and the node’s
bitrate was set to 2 Mbps. Mobility was based on the
random waypoint model (RWP), with a maximum speed of
2 m/s. The server node was connected to the MANET via a
gateway and a wired link whose propagation delay was
simulated at 40 ms, thus resulting in a server access delay
of 80 ms. The server had 10,000 items which were updated
according to a Poisson random process at an average rate
of about 20 items/s. In the default scenario, each node
issues a data request every 10 s according to a Zipf access
pattern, frequently used to model non-uniform distribu-
tions [38]. In Zipf law, an item ranked ið1 � i � nqÞ is
accessed with probability: 1=ði�

Pnq

k¼1
1=k�Þ, where � ranges

between 0 (uniform distribution) and 1 (strict Zipf
distribution). The default value of the Zipf parameter �

was set to 1. In the default scenario, the capacity for each of
the caching nodes (CNs) is 200 Kb. The simulation
parameters are summarized in Table 4.

In order to calculate the number of runs required for
achieving 10 percent confidence interval with an acceptable
significance level of 95 percent, we ran a scenario with
default parameter values 10 times. For each simulation run,
the pseudorandom generator seed (based on the clock of
the ns2) and the node movement file were changed. The
consistency ratio, delay of the system, and the average
traffic per node were computed starting from T ¼ 500 s,
and the mean plus standard deviation for each set were
calculated. Next, the number of runs was computed using
the central limit theorem, as discussed in [1]. The error
values for the consistency, delay, and traffic were chosen as
0.05, 2 ms, and 0.3 kbps, respectively. The required number
of runs was found to be equal to 5 for the consistency ratio,
5 for the delay, and 6 for the traffic. We therefore computed
the result of each scenario from the average of six runs.

The reported results are from 5 experiments that involve
varying the request rate, the update rate, the item
popularity, the maximum velocity, the polling interval,
and the data item size. The results are the 1) consistency
ratio, 2) query delay (regardless of the source of the results),
3) cached data query delay, 4) uplink traffic, 5) downlink
traffic, and 6) average overhead traffic.

5.1 Varying the Request Rate

In this experiment, the inter-request interval was varied
between 5 s and 120 s, and the results are plotted in the
graphs of Fig. 7. It is evident that poll every time provides
the highest consistency ratio (top left graph), since the
requested items are always validated, and the items are
always fresh, except in certain cases when they change just
after being validated. However, when using fixed TTL, the
caches might serve stale items (as in the case of TTL ¼ 500

s), but this possibility decreases when the TTL is less than
the update interval (as in the case of TTL ¼ 100 s). As a
matter of fact, getting the right TTL value is a key issue in
relation to the performance of client-based consistency
approaches. DCIM is a better approach as it tries to get the
appropriate TTL value through piggybacking, which helps
in getting a high consistency ratio. Moreover, prefetching
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enables DCIM to provide a high hit ratio, and hence much
lower delays than the other approaches. As also shown, the
query delay gets smaller after the item is cached but
increases by a small margin due to less prefetching as the
request rate decreases. Finally, DCIM consumes more traffic
on the server side due to prefetching, but is not far off from
the other schemes. As for the node traffic, by piggybacking
large amount of items, DCIM consumes more traffic when
compared to other approaches. However, as the request rate
decreases, prefetching does not happen that often, and this
leads to lower traffic as shown in the graph. This is how
DCIM adapts prefetching to the request rate of items.

5.2 Varying the Update Rate

The results for this scenario are shown in Fig. 8. A TTL
value of 100 s is less than the interupdate intervals in all of
the scenarios simulated, and hence, it must provide the best
consistency level. As shown, DCIM’s consistency ratio
coincides with that of TTL ¼ 100 s, which is higher than
that of TTL ¼ 500 s. Of course, increasing the update rate in
any TTL algorithm would decrease its consistency, but with

a good TTL estimate, an acceptable consistency could be
obtained (comparing TTL ¼ 500 s and DCIM at 100
update/s). Nevertheless, fixed TTL approaches have higher
hit rates than poll every time, but less than DCIM, which
uses prefetching. This implies that the delay after caching
for DCIM is the lower than that of polling every time and
fixed-100, but it may exceed that of fixed-500 that keeps the
element for a longer time.

The gains in delay and consistency, discussed above, are
manifested in a modest increase of traffic as the update ratio
increases. However this traffic is not high at the server, and
is very low in the MANET (less than 10 kbps, while the
bandwidth is 2 Mbps). The reason for the traffic increase is
the piggybacking of requests, which increases in frequency
as update rates increase. Without this traffic though, the
CNs would not be able to infer the update rate and calculate
reliable TTL estimates.

5.3 Varying the Zipf Parameter

Varying the � value effectively varies the popularity of the
data items, and is analogous to varying the items’ request
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rates. This scenario actually shows the prefetching adapta-
tion to the request rates. As � increases, the diversity of the
requested items decreases, meaning that a smaller subset of
the items is requested more. In case one item is updated at
the server before the TTL expiration, more stale cached
items will result. As seen in Fig. 9, this is why the
consistency ratio decreases as � increases. However, DCIM
maintains the TTL for all items regardless of their request
rates, and this gives a constant consistency at 98 percent.
The situation is reversed when considering hit ratios. For
low � values the hit ratio for fixed TTL is low since requests
are distributed across all items, which increases the
probability of expired items while the request interval is
fixed. As � increases, the requests will be distributed over a
smaller set which increases the probability of hits. It is
evident that through prefetching, DCIM provides nearly
constant hit rate, which lowers the delay as explained
before. DCIM produces more traffic when compared to
the other approaches, but this decreases as � increases since
more items will have lower update rates, and will therefore
not be validated as frequently.

5.4 Varying the Node Velocity

The maximum node velocity was varied between 0 m/s and

20 m/s, and the obtained results showed that velocity

changes produced no special outcome. There was, however,

a mild increase in the delay, which is considered normal. In

fact, the use of a proactive routing protocol in these

simulations masked the delay by making the paths always

available. We do not show the relevant graphs in this paper

due to the above and to space restrictions.

5.5 Varying the Polling Interval

The polling interval is increased from 1 to 50 s, while the

fixed TTL values are kept constant, i.e., 100 and 500 s. The

results are shown in the graphs of Fig. 10. This increase

caused a mild decrease in the consistency ratio and the hit

ratio, and consequently, an increase in the delay, which

remains below that of fixed TTL (100 s) and polling every

time. Also, the traffic in the uplink direction increases when

the piggyback interval increases due to the decrease of hit

rate. Finally, it is worthy to point out that by increasing the
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polling interval, the validation requests from the inner loop
function become farther apart in time. However, when the
piggybacking interval is very large, the CN will predict that
items will be requested before the end of this interval, which
leads to more prefetching and consequently more traffic.

5.6 Varying the Data Item Size

In this experiment, the size of the data item was varied
between 5 KB and 1,500 KB. The results are shown in
Fig. 11, where it is evident that DCIM at high data sizes
(1,500 KB) still demands less traffic than the network
bandwidth (2 Mbps) leaving room for other applications to
operate. Also, it is evident that the traffic per node increases
linearly with the increase in data item size as it should be
theoretically. This shows that there are dropped packets,
which is reflected in the ratio of accepted requests (not
shown for size considerations) which does not change as the
data item size increases.

5.7 Effectiveness of DCIM Mechanisms

To demonstrate the effectiveness of each individual
mechanism of DCIM, as was mentioned at the start of this
section, different versions of DCIM were developed and
simulated. Fig. 12 shows the obtained results.

One can easily observe that DCIM achieves better
consistency over its variants. This illustrates that piggy-
backing offers an added value by providing a better
estimate of TTL, which results in more accurate estimates
of expiry times, and consequently higher data consistency.
However, piggybacking induces more overhead traffic,
resulting from the validation requests and prefetching. We
only show the uplink server traffic as it is more critical than
the downlink traffic. The server uplink traffic for DCIM is
slightly higher than the “pigg-disabled” scheme. However,
DCIM traffic would have been much larger if the request
rate adaptation scheme was not implemented as seen in the
“req-disabled” version. Thus, prefetching highly requested
items saves on traffic and provides acceptable query delay
as seen in Figs. 7, 8, 9, and 10. Moreover, as the polling
interval increases, the effect of piggybacking decreases so
that DCIM and “pigg-disabled” converge in performance.
As for the “poll-disabled” mechanism, it shows the lowest
data consistency in all the graphs, and higher traffic
overhead than DCIM. This shows the appropriateness of
the proposed mechanisms. Piggybacking increases data
consistency and prefetching adapted to the request rate

controls overhead traffic consumption. As for the update
rate adaptation, its effect is evident from “poll-disabled”
that has all the other features of DCIM disabled, but still
shows higher consistency than fixed TTL.

5.8 Comparison with Push-Based Approaches

This section compares DCIM to SSUM [35] and to the
updated invalidation (UIR) method [4]. In SSUM the server
propagates item update information to the QDs, and
computes for each cached item a ratio of its update rate to
its request rate. If this ratio exceeds a threshold, the item is
deleted from the server’s state table, and no updates about
it are propagated. However, if it falls below another
threshold, the caching node receives updates for the item.
Hence, SSUM reduces traffic associated with unnecessary
updates for items that are more updated than requested. On
the other hand, UIR is a server stateless approach that relies
on invalidation updates broadcasted to the network to
inform the nodes about the updated items. Caches answer
the query after validating the requested data against the
invalidation report. Unlike SSUM, UIR is not based on
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COACS. Hence, by also comparing these two methods, we
additionally illustrate the advantage of COACS as an
underlying caching system.

SSUM achieves consistency with a delta equal to the
communication time between the server and caching nodes,
but, as illustrated in Fig. 7 through Fig. 10, DCIM also
provides consistency guarantees if the polling interval is not
high, with a comparable generated traffic. We confirm the
above analysis using three scenarios, with an area of
750� 750 m

2, a � value of 0.5, a request period of 20 s,
and an item size that was varied between 1 and 10 KB. All
other parameters kept the same values as before.

We report the hit rate and node traffic versus the request
interval and update rate. The � value of 0.5 means there is
more variety in the requested items, and given there is a
total of 10,000 items, the probability of requesting an
element several times is low, which reflects on the hit rate
values in Fig. 13. For traffic, in SSUM it is due to
maintaining the server state, and pushing data items
proactively, while in DCIM it is due to validation requests
and proactive fetching of items. UIR provides strong
consistency but at the expense of more traffic and
deteriorated data availability, while DCIM on the other
hand provides near strong consistency as was shown
earlier, but with considerably lower traffic and higher data
availability. Moreover, Fig. 13 shows the effectiveness of
COACS as a caching system in providing data availability
while keeping traffic in the network low when compared to
other caching systems. One can refer to [2] for detailed
analysis of COACS and comparisons to existing systems.

We conclude the experimental results with Table 5,
which summarizes key properties of DCIM and compares
them to the presented pull-based approaches and SSUM.

6 CONCLUSION

We presented a client-based cache consistency scheme for

MANETs that relies on estimating the inter update intervals

of data items to set their expiry time. It makes use of

piggybacking and prefetching to increase the accuracy of its

estimation to reduce both traffic and query delays. We

compared this approach to two pull-based approaches

(fixed TTL and client polling) and to two server-based

approaches (SSUM and UIR). This showed that DCIM

provides a better overall performance than the other client-

based schemes and comparable performance to SSUM.
For future work, we will explore three directions to

extend DCIM. First, we will investigate more sophisticated
TTL algorithms to replace the running average formula.
Second, we will extend our preliminary work in [44] to
develop a complete replica allocation. Third, DCIM
assumes that all nodes are well behaved, as issues related
to security were not considered. However, given the
possibility of network intrusions, we will explore integrat-
ing appropriate security measures into the system func-
tions. These functions include the QD election procedure,
QD traversal, QD and CN information integrity, and TTL
monitoring and calculation. The first three can be mitigated
through encryption and trust schemes [39], [40]. The last
issue was not tackled before, except in the case of [41].
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