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Abstract. Atmospheric dynamical cores are a fundamen-

tal component of global atmospheric modeling systems and

are responsible for capturing the dynamical behavior of the

Earth’s atmosphere via numerical integration of the Navier–

Stokes equations. These systems have existed in one form

or another for over half of a century, with the earliest dis-

cretizations having now evolved into a complex ecosystem

of algorithms and computational strategies. In essence, no

two dynamical cores are alike, and their individual successes

suggest that no perfect model exists. To better understand

modern dynamical cores, this paper aims to provide a com-

prehensive review of 11 non-hydrostatic dynamical cores,

drawn from modeling centers and groups that participated

in the 2016 Dynamical Core Model Intercomparison Project

(DCMIP) workshop and summer school. This review in-

cludes a choice of model grid, variable placement, verti-

cal coordinate, prognostic equations, temporal discretization,

and the diffusion, stabilization, filters, and fixers employed

by each system.
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1 Introduction

The Dynamical Core Model Intercomparison Project

(DCMIP) is an ongoing effort targeting the intercomparison

of a fundamental component of global atmospheric model-

ing systems: the dynamical core. Although this component’s

role is simply to solve the equations of fluid motion gov-

erning atmospheric dynamics (the Navier–Stokes equations),

there are numerous confounding factors and compromises

that arise from making global simulations computationally

feasible. These factors include the choice of model grid, vari-

able placement, vertical coordinate, prognostic equations,

representation of topography, numerical method, temporal

discretization, physics–dynamics coupling frequency, and

the manner in which artificial diffusion, stabilization, filters,

and/or energy/mass fixers are applied.

To advance the intercomparison project and provide a

unique educational opportunity for students, DCMIP hosted

a multidisciplinary 2-week summer school and model inter-

comparison project at the National Center for Atmospheric

Research (NCAR) in June 2016, that invited graduate stu-

dents, postdocs, atmospheric modelers, expert lecturers, and

computer specialists to create a stimulating, unique, and

hands-on driven learning environment. The 2016 workshop

and summer school followed from earlier DCMIP and dy-

namical core workshops (held in 2012 and 2008, respec-

tively), and other model intercomparison efforts. Its goals

were to provide an international forum for discussing out-

standing issues in global atmospheric models and provide a

unique training experience for the future generation of cli-

mate scientists. Special attention was paid to the role of sim-

plified physical parameterizations, physics–dynamics cou-

pling, non-hydrostatic atmospheric modeling, and variable-

resolution global modeling. The summer school and model

intercomparison project promoted active learning, innova-

tion, discovery, mentorship, and the integration of science

and education. Modeling groups were then invited to con-

tribute model descriptions and results to the intercomparison

effort for publication.

The summer school directly benefited its participants by

providing a unique educational experience and an opportu-

nity to interact with modeling teams from around the world.

The workshop is expected to have further repercussions on

the development of operational atmospheric modeling sys-

tems by allowing modeling groups to assess their models

in the context of the global dynamical core ecosystem. Past

and present intercomparison efforts have been leveraged by

modeling groups to improve their own models, in turn lead-

ing to a positive impact on the quality of weather and cli-

mate simulations. The workshop component of DCMIP has

also advanced our knowledge of (1) the relative behaviors

exhibited by atmospheric dynamical cores, (2) differences

that arise among mechanisms for coupling the physical pa-

rameterizations and dynamical core, and (3) the impacts of

variable-resolution refinement regions and transition zones

in global atmospheric simulations. Notably, the use of ideal-

ized test cases to isolate specific phenomena gave us a unique

opportunity to assess specific differences that arise due to the

choice of dynamical core. Another important outcome of the

workshop was the development of a standard test case suite

and benchmark set of simulations that can be used for assess-

ment of any future dynamical core. The test cases introduced

in the 2016 workshop build on the previous DCMIP test case

suites (Jablonowski et al., 2008; Ullrich et al., 2012) with

tests that now incorporate simplified moist physics.

This paper is the first in a series of papers documenting

the results of this workshop. Its purpose is two-fold: first,

to review the multitude of technologies and techniques that

have been developed for non-hydrostatic global atmospheric

modeling; and second, to provide a mechanism to understand

the differences that arise in the test cases of later papers in

this series. For ease of reference, a list of mathematical sym-

bols that are employed in this paper (and subsequent DCMIP

papers) is given in Table 1. Section 2 then provides a brief

overview of each of the participating models, along with a

tabulation of relevant details about the dynamical core de-

sign. The body of this paper is dedicated to an overview

of techniques available for building the infrastructure of a

global dynamical core: Sect. 3 describes aspects of the hor-

izontal discretization, including model grids and horizontal

placement of prognostic variables; Sect. 4 describes the verti-

cal placement of model variables and choice of vertical coor-

dinates; Sect. 5 describes aspects of variable placement and

prognosis; Sect. 6 describes diffusion, stabilization, filters,

and fixers employed by these models; and Sect. 7 describes

temporal discretizations. The summary and conclusions then

follow in Sect. 8. Finally, Appendix A provides a comprehen-

sive overview of the various forms the Navier–Stokes equa-

tions take in dynamical cores, and has been included as a

resource for dynamical core developers.

2 Dynamical cores

This section provides a brief overview of key discretization

choices, along with unique features or design specifications

from participating dynamical cores. Further details on these

choices can be found in subsequent sections. In total, sim-

ulation results and model descriptions have been submitted

from 11 dynamical cores (see Table 2). The prognostic vari-

ables employed and horizontal discretizations for these dy-

namical cores are summarized in Table 3. The vertical stag-

gering of variables and vertical coordinate choice are sum-

marized in Table 4. Principal options for diffusion, stabiliza-

tion, filters, or fixers along with the temporal discretization

for these models are summarized in Table 5. A brief descrip-

tion of each participant model follows, focused on the unique

features and decisions underlying the model design.
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Table 1. A standard list of symbols used throughout this paper and

in the DCMIP.

Symbol Description

λ Longitude (in radians)

ϕ Latitude (in radians)

z Height with respect to mean sea level (set to zero)

s Vertical model coordinate

ps Surface pressure (ps of moist air if q > 0)

8 Geopotential

8s Surface geopotential

zs Surface elevation with respect to mean sea level

(set to zero)

u Zonal wind velocity

v Meridional wind velocity

w Vertical wind velocity

ζ̇ GEM vertical coordinate velocity

u 3-D wind vector

uh Horizontal wind vector

vh Horizontal wind vector with covariant compo-

nents

ω Vertical pressure velocity

D Divergence of the horizontal wind vector

ζ Vertical component of relative vorticity

p Pressure (pressure of moist air if q > 0)

e Internal energy

ρ Total air density

ρd Dry air density

ρs Pseudo-density

T Temperature

Tv Virtual temperature

θ Potential temperature

θv Virtual potential temperature

θil Ice–liquid potential temperature

θρ Density potential temperature

q Specific humidity

qv Water vapor mixing ratio

qc Cloud water mixing ratio

qr Rain water mixing ratio

qi General tracer mixing ratio

2.1 Accelerated Climate Model for

Energy–Atmosphere (ACME-A)

The Accelerated Climate Model for Energy–Atmosphere

(ACME-A) has much in common with the Community At-

mosphere Spectral Element Model (CAM-SE) (Dennis et al.,

2012) as both share a common origin in the High Or-

der Method Modeling Environment (HOMME) (Taylor and

Fournier, 2010). ACME-A employs both a hydrostatic model

and an experimental non-hydrostatic compressible shallow-

atmosphere model. Both variants are designed to be mass

and energy conserving, with nearly optimal parallel scala-

bility at large core counts. ACME-A is built upon an un-

structured grid of quadrilateral elements arranged in a cubed-

sphere configuration (Sect. 3.2), although unstructured, re-

gionally refined meshes with conforming edges may also

be employed. The fluid equations are discretized using di-

mensional splitting, with a nodal fourth-order spectral el-

ement discretization in the horizontal and vertical floating

Lagrangian levels in hybrid terrain-following pressure co-

ordinates (Sect. 4.2.3). Vertical operators are based on the

mimetic (mass- and energy-conserving) second-order finite

difference discretization of Simmons and Burridge (1981).

All fields are co-located in the horizontal, in the sense that

they share the same fourth-order basis functions. Tracer

transport is subcycled relative to the hydrodynamics, using

the spectral element method, with tracer mass as the prog-

nostic variable.

2.2 Colorado State University (CSU) model

The Colorado State University (CSU) model is a finite-

volume model using an optimized geodesic grid (Heikes

and Randall, 1995; Heikes et al., 2013) (Sect. 3.4), with

height as the vertical coordinate. The model is based on

the non-hydrostatic unified system of equations proposed by

Arakawa and Konor (2009), which filters vertically propa-

gating sound waves but allows the Lamb wave and does not

require a reference state. The horizontal wind field is deter-

mined by predicting the vertical component of the vorticity

and the divergence of the horizontal wind, and then solving a

pair of two-dimensional Poisson equations for a stream func-

tion and velocity potential. Horizontal diffusion is included

in the form of a fourth-order hyperviscosity operator ap-

plied on constant height surfaces (∇4
z ) that acts on the vortic-

ity, divergence, potential temperature, and tracer (Sect. 6.2).

The CSU model supports both third-order and fifth-order

upstream-weighted, finite-volume advection schemes, with

positivity preservation enforced via mass borrowing.

2.3 DYNAMICO

DYNAMICO is a mimetic finite-difference/finite-volume

model using a geodesic grid (Sect. 3.4) and a floating ver-

tical mass coordinate (Sect. 4.2.3). Although originally a hy-

drostatic model, it has been recently extended to solve the

shallow-atmosphere non-hydrostatic Euler equations. DY-

NAMICO’s design uniquely combines a representation of the

prognostic and diagnostic fields following the ideas of dis-

crete differential geometry (Dubos et al., 2015). It includes

a novel Hamiltonian formulation of the equations of motion

in non-Eulerian coordinates (Dubos and Tort, 2014) which

is imitated at the discrete level using building blocks from

the literature (Thuburn et al., 2009; Ringler et al., 2010) and

(up to the addition of explicit diffusion) leads to an energy-

conserving spatial discretization. It also incorporates a novel

explicit–implicit splitting which results in a simple, efficient,

and scalable implicit solver while allowing stable time steps

close or identical to those of the hydrostatic solver). Hori-

zontal diffusion is included via a fourth-order hyperviscos-
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Table 2. Participating modeling centers and associated dynamical cores that have submitted a model description and/or simulation results.

Short name Long name Modeling center or group

ACME-A Atmosphere model of the Accelerated Sandia National Laboratories and

Climate Model for Energy University of Colorado, Boulder, USA

CSU Colorado State University Model Colorado State University, USA

DYNAMICO DYNAMical core on the ICOsahedron Institut Pierre Simon Laplace (IPSL), France

FV3 GFDL Finite-Volume Cubed-Sphere Dynamical Core Geophysical Fluid Dynamics Laboratory, USA

FVM Finite Volume Module of the Integrated Forecasting System European Centre for Medium-Range Weather Forecasts

GEM Global Environmental Multiscale model Environment and Climate Change Canada, Canada

ICON ICOsahedral Non-hydrostatic model Max-Planck-Institut für Meteorologie, Germany

MPAS Model for Prediction Across Scales National Center for Atmospheric Research, USA

NICAM Non-hydrostatic Icosahedral Atmospheric Model AORI/JAMSTEC/AICS, Japan

OLAM Ocean Land Atmosphere Model Duke University/University of Miami, USA

Tempest Tempest Non-hydrostatic Atmospheric Model University of California, Davis, USA

Table 3. Details on the prognostic variables and horizontal discretization for participating dynamical cores. The equation set indicates

whether a model is hydrostatic (H) or non-hydrostatic (NH), and whether the model presently supports the deep-atmosphere formulation (D).

Only three numerical methods are represented among participating models, namely finite difference (FD), finite volume (FV), and spectral

element (SE). More details on horizontal staggering can be found in Sect. 3.8.

Short name Equation set Prognostic variables Horizontal grid Numerical Horizontal

method staggering

ACME-A H/NH uh, w, ρs, ρsθ , 8, ρsqi Cubed sphere (Sect. 3.2) SE A grid

CSU NH (unified) ζ , D, w, ps, θv, qi Geodesic (Sect. 3.4) FV Z grid

DYNAMICO H/NH vh, ρsw, ρs, ρsθv, 8, ρsqi Geodesic (Sect. 3.4) FV C grid

FV3 NH uh, w, ρs, ρsθv, 8, ρsqi Cubed sphere (Sect. 3.2) FV D grid

FVM NH (D) ρd, uh, w, θ ′, qi Octahedral (Sect. 3.6) FV A grid

GEM NH uh, w, ζ̇ , Tv, p, qi Yin–Yang (Sect. 3.7) FD C grid

ICON NH (D) uh, w, ρ, θv, ρqi Icosahedral triangular (Sect. 3.3) FV C grid

MPAS NH ρduh, ρdw, ρd, ρdθv, ρdqi CCVT (Sect. 3.5) FV C grid

NICAM NH ρuh, ρw, ρ, ρe, ρqi Geodesic (Sect. 3.4) FV A grid

OLAM NH (D) ρuh, ρw, ρ, ρθil, ρqi Geodesic (Sect. 3.4) FV C grid

Tempest NH uh, w, ρ, ρθv, ρqi Cubed sphere (Sect. 3.2) SE A grid

ity operator (Sect. 6.3). In addition, it features a conservative

positive-definite transport scheme based on a slope-limited

finite-volume approach (Dubey et al., 2015).

2.4 FV cubed (FV3)

The GFDL Finite-Volume Cubed-Sphere Dynamical Core

(FV3, or sometimes written FV3) is a finite-volume model

that solves the non-hydrostatic Euler equations on the

equiangular gnomonic cubed-sphere grid (Sect. 3.2) with

a floating Lagrangian vertical coordinate. The Lagrangian

vertical coordinate deforms so that the flow is constrained

to follow the Lagrangian surfaces, allowing vertical trans-

port to be represented implicitly without additional advection

terms (see Sect. 4.2.3 below). The non-hydrostatic formula-

tion extends the hydrostatic model described in Lin (2004) by

adding a prognostic vertical velocity and geometric height of

each grid cell, which can then be used to compute density.

The discretization is on the C–D grid as described by Lin

and Rood (1997) (see also Sect. 3.8), although the prognos-

tic horizontal winds are stored in the native gnomonic local

coordinate. All variables are 3-D cell-mean values, except

for the horizontal winds, which are 2-D face-mean values on

their respective staggerings; as a result, diagnostic vorticity is

a 3-D cell-mean value. Fluxes are computed using the piece-

wise parabolic method of Colella and Woodward (1984) with

an optional monotonicity constraint; in non-hydrostatic ap-

plications, the monotonicity constraint is used primarily for

tracer transport. Since divergence is effectively invisible to

the solver, a 2-D divergence damping is applied to control

numerical noise as divergent modes cascade to the grid scale

(Sect. 6.4). Implicit viscosity is applied through the mono-

tonicity constraint; if non-monotonic advection is used for

the momentum and total air mass, a weak explicit hypervis-

cosity is applied for stability and to alleviate numerical noise.

Explicit viscosity is applied every acoustic time step.

Geosci. Model Dev., 10, 4477–4509, 2017 www.geosci-model-dev.net/10/4477/2017/
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Table 4. Vertical staggering (detailed in Sect. 4.1) and vertical coordinates (detailed in Sect. 4.2) for participating dynamical cores.

Acronym Vertical staggering Vertical coordinate

ACME-A Co-located Floating mass (Sect. 4.2.3)

CSU Lorenz Fixed height

DYNAMICO Lorenz Floating mass (Sect. 4.2.3)

FV3 Co-located Floating mass (Sect. 4.2.3)

FVM Co-located Fixed height

GEM Modified Charney–Phillips (Sect. 4.1) Log pressure (Sect. 4.2.2)

ICON Lorenz Fixed height

MPAS Lorenz Fixed height

NICAM Lorenz Fixed height

OLAM Lorenz Fixed height with cut cells (Sect. 4.2.4)

Tempest Lorenz Fixed height

Table 5. Principal options for diffusion, stabilization, filters, or fixers in participating dynamical cores (detailed in Sect. 6) and temporal

discretization (detailed in Sect. 7).

Acronym Principal options for diffusion, Temporal discretization

stabilization, filters, or fixers

ACME-A Fourth-order horizontal hyperviscosity KGU53 (Guerra and Ullrich, 2016)

CSU Fourth-order horizontal hyperviscosity Third-order Adams–Bashforth (AB3)

DYNAMICO Fourth-order horizontal hyperviscosity ARK(2,3,2) (Giraldo et al., 2013)

FV3 Divergence damping, hyperviscosity Forward–backward (Lin and Rood, 1997)/semi-implicit

FVM Monotonic limiting Semi-implicit (Smolarkiewicz et al., 2014) (Sect. 7.2)

GEM Hyperviscosity Semi-implicit (Girard et al., 2014) (Sect. 7.3)

ICON Divergence damping, Smagorinsky, hyperdiffusion Predictor–corrector

MPAS Smagorinsky, hyperdiffusion Split-explicit (Klemp et al., 2007)

NICAM 3-D divergence damping, Smagorinsky, hyperviscosity Split-explicit (Klemp et al., 2007)

OLAM Divergence/vorticity damping Second-order Adams–Bashforth, Lax–Wendroff (for tracers)

Tempest Fourth-order horizontal hyperviscosity ARS(2,3,2) (Ascher et al., 1997)

2.5 Finite-Volume Module (FVM) of the Integrated

Forecasting System

The Finite-Volume Module (FVM) of the Integrated Fore-

casting System (IFS) is currently under development at

ECMWF (Smolarkiewicz et al., 2016; Kühnlein and Smo-

larkiewicz, 2017; Smolarkiewicz et al., 2017). FVM solves

the non-hydrostatic Euler equations on an octahedral re-

duced Gaussian grid (Sect. 3.6) with a height-based terrain-

following vertical coordinate (Szmelter and Smolarkiewicz,

2010; Smolarkiewicz et al., 2016). The horizontal spatial

discretization uses the median-dual finite-volume approach,

combined with a structured-grid finite-difference method

in the vertical. In both the horizontal and vertical dis-

cretizations, all variables are co-located. A centered two-

time-level, semi-implicit integration scheme is employed

with 3-D implicit treatment of acoustic, buoyant, and ro-

tational modes (Smolarkiewicz et al., 2014) (Sect. 7.2).

The associated 3-D Helmholtz problem is solved itera-

tively using a bespoke preconditioned generalized conjugate

residual approach. The integration procedure uses the non-

oscillatory, finite-volume MPDATA (multidimensional posi-

tive definite advection transport algorithm) advection scheme

(Smolarkiewicz and Szmelter, 2005; Kühnlein and Smo-

larkiewicz, 2017). The non-oscillatory (i.e., monotonic) MP-

DATA also provides sufficient dissipation/diffusion to stabi-

lize the model, so no other explicit filtering mechanism is

required (Sect. 6.5). Note that the octahedral reduced Gaus-

sian grid is also employed in the spectral-transform dynami-

cal core of the presently operational IFS at ECMWF, which

facilitates interoperability of the two formulations. However,

FVM is not restricted to this grid and offers capabilities to-

wards broad classes of meshes (Szmelter and Smolarkiewicz,

2010; Kühnlein et al., 2012; Deconinck et al., 2017).

2.6 Global Environmental Multiscale (GEM) model

The Global Environmental Multiscale (GEM) model (Gi-

rard et al., 2014) is used for operational forecasting at

Environment and Climate Change Canada. GEM solves

the non-hydrostatic Euler equations on the Yin–Yang grid

(Kageyama and Sato, 2004) (Sect. 3.7) with Arakawa C-

grid staggering of prognostic variables. The vertical coordi-

nate is a unique hybrid terrain-following coordinate of a log-

www.geosci-model-dev.net/10/4477/2017/ Geosci. Model Dev., 10, 4477–4509, 2017
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hydrostatic-pressure type (Sect. 4.2.2) and the vertical dis-

cretization is based on the Charney–Phillips grid (Sect. 4.1).

A two-time-level, semi-Lagrangian implicit time discretiza-

tion is implemented as described in Sect. 7.3. It gives rise

to an iterative process where each step requires the solu-

tion of a linear system of equations that is reduced to a

Helmholtz problem for one composite variable. For this

problem, a direct solver is involved, using the Schwarz-

type domain decomposition method (Qaddouri et al., 2008).

Semi-Lagrangian advection is also used for tracer transport.

To eliminate numerical noise, an explicit hyperviscosity is

employed for wind components and tracers via applications

of the Laplacian operator, applied after the completion of the

physics time step (Sect. 6.6).

2.7 ICOsahedral Non-hydrostatic (ICON) model

The ICOsahedral Non-hydrostatic (ICON) model (Zängl

et al., 2015) is a finite-volume model that solves the non-

hydrostatic Euler equations in 2-D vector-invariant form on

an icosahedral (triangular) grid (Sect. 3.3) with Arakawa

C-grid staggering, and further utilizing a smoothed terrain-

following height-based Lorenz vertical discretization. Prog-

nostic horizontal velocities are stored as normal wind com-

ponents at the edge midpoints of full levels. Prognostic ver-

tical velocity is stored at the circumcenters of the triangles

on half levels. The discretization employs a two-time-level

predictor–corrector scheme, which is explicit in all terms ex-

cept for those describing the vertical propagation of sound

waves. For stabilization of the divergence term on the tri-

angular C grid, the divergence in a triangle is computed

from modified normal wind components, resulting from a

weighted average, including normal winds on edges of adja-

cent cells. Further divergence damping is applied to the nor-

mal wind at every substep. Rayleigh damping is applied to

the vertical wind in layers close to the model top in order

to avoid the reflection of gravity waves. The horizontal dif-

fusion, which is applied at full model time steps, combines

a flow-dependent Smagorinsky scheme with a background

fourth-order Laplacian diffusion operator (Sect. 6.7). For

tracer transport, a flux-form semi-Lagrangian scheme with

monotone flux limiters is used, which leads to local mass

conservation and consistency with the air motion. Specifi-

cally, the average air mass flux of the dynamical substeps is

provided to the tracer transport to allow for mass-consistent

transport. These numerical methods have been chosen for

high numerical efficiency, and they rely on next-neighbor

communication only, thus allowing massive parallelization.

2.8 Model for Prediction Across Scales (MPAS)

The Model for Prediction Across Scales (MPAS) (Ska-

marock et al., 2012) is a finite-volume model that solves

the non-hydrostatic Euler equations using an Arakawa C-

grid staggering on a centroidal Voronoi tessellation mesh

(Sect. 3.5) and the mimetic TRiSK discretization (Thuburn

et al., 2009; Ringler et al., 2010). In the vertical, MPAS

employs a Lorenz-type second-order nodal finite volume

method with a smoothed terrain-following height coordinate.

Advection is nominally third- to fourth-order and is handled

in accordance with Skamarock and Gassmann (2011). The

prognostic variables are dry air pseudo-density (ρ̃d), dry mo-

mentum (ρ̃du), and a modified moist potential temperature.

Integration in time is handled via the split-explicit method of

Klemp et al. (2007). Various filters are available for control-

ling spurious oscillations, including Smagorinsky-type eddy

viscosity, fourth-order hyperdiffusion, and 2-D and 3-D di-

vergence damping operators (Sect. 6.8).

2.9 Non-hydrostatic ICosahedral Atmospheric Model

(NICAM)

Non-hydrostatic ICosahedral Atmospheric Model (NICAM)

is a finite-volume model that solves the non-hydrostatic Eu-

ler equations using a geodesic grid (Sect. 3.4) optimized with

spring dynamics using the method of Tomita et al. (2002). A

terrain-following height coordinate system is used in the ver-

tical (Tomita and Satoh, 2004) with Lorenz staggering. In-

stead of temperature or potential temperature, total energy is

prognosed following the method of Satoh (2002, 2003). All

prognostic variables are collocated horizontally at the mass

centroid of each hexagonal/pentagonal cell to mitigate ac-

curacy reduction under cell averaging, which is required in

converting cell-integrated quantities to point values at cell

centroids. The use of cell centroids ensures quasi-second-

order accuracy of the gradient and divergence operators of

NICAM (Tomita et al., 2001). For integration in time, a

two-stage Runge–Kutta scheme is usually employed because

of low computational cost, although a three-stage Runge–

Kutta scheme (Wicker and Skamarock, 2002) is available

and recommended. The split-explicit time discretization is

used for the horizontally propagating sound waves with the

3-D divergence damping term (Skamarock and Klemp, 1992)

(Sect. 6.9). An implicit time discretization is adopted for the

vertically propagating wave modes. A variant of the piece-

wise linear transport scheme (Miura, 2007; Niwa et al., 2011)

is used with a flux limiter of Thuburn (1997) for passive

tracer transports.

2.10 Ocean–Land–Atmosphere Model (OLAM)

Ocean–Land–Atmosphere Model (OLAM) (Walko and Avis-

sar, 2008a, b, 2011) is a finite-volume model that solves

the deep-atmosphere non-hydrostatic Euler equations in mo-

mentum conservation form on a hexagonal Voronoi mesh

(Sect. 3.4) with Arakawa C-grid staggering. The model sup-

ports optional local mesh refinement, which introduces some

pentagons and heptagons to the grid. Height is the vertical

coordinate, and a Lorenz vertical grid staggering is used. A

unique feature of OLAM is that grid levels are horizontal

Geosci. Model Dev., 10, 4477–4509, 2017 www.geosci-model-dev.net/10/4477/2017/



P. A. Ullrich et al.: DCMIP2016: a review of non-hydrostatic dynamical core design and intercomparison 4483

and intersect topography (Sect. 4.2.4). This avoids a number

of well-documented errors associated with terrain-following

grids and also eliminates the need for evaluation of coordi-

nate transformation terms. Topography is represented as a

smooth (non-stepped) surface by means of cut cells whose

surfaces and volume are reduced according to the portion of

each cell that is below ground. The OLAM cut-cell formu-

lation conserves mass and momentum. Acoustic modes are

solved explicitly in the horizontal, using time splitting and

a second-order Lax–Wendroff method, and implicitly in the

vertical. Tracer transport is second order in space and time,

using the scheme of Miura (2007), with consistent fluxes ob-

tained by time averaging over the acoustic time steps.

2.11 Tempest

The Tempest model (Ullrich, 2014a; Guerra and Ullrich,

2016) is an experimental test bed for high-performance nu-

merical methods that solves the non-hydrostatic Euler equa-

tions on a cubed-sphere grid (Sect. 3.2) using a horizontally

co-located spectral element discretization. In the vertical,

Tempest uses an Eulerian finite-volume discretization with

Lorenz staggering and terrain-following height coordinates.

The implementation includes both fully explicit time inte-

gration and a horizontally explicit vertically implicit formu-

lation that is solved with a third-order implicit–explicit addi-

tive Runge–Kutta scheme from Ascher et al. (1997). Fourth-

order hyperviscosity is used in the horizontal to prevent a

buildup of energy at the grid scale (Sect. 6.1). The model

further provides an optional upwind-biased transport scheme

in the vertical column. Tracer transport is performed using

the spectral element method with the same time step as the

hydrodynamics and using the tracer mass density as a prog-

nostic variable. As with the hydrodynamics, tracer transport

is performed explicitly in the horizontal and implicitly in the

vertical.

3 Horizontal discretization and model grids

The horizontal discretization determines how the atmo-

sphere, which consists of a set of approximately continuous

fields, is mapped into a very limited and discrete computa-

tional space. The horizontal discretization essentially con-

sists of two major choices: the model grid, which deter-

mines the density and connectivity of discrete regions (Stani-

forth and Thuburn, 2012), and the arrangement of prognostic

and diagnostic variables around each grid region (Arakawa

and Lamb, 1977). In order to meet demands for high com-

putational efficiency and equal partitioning of computation

across large parallel systems, modern dynamical cores have

explored a number of options for model grids. The choice

of model grid can be motivated by simplicity, as in the case

of the latitude–longitude grid; by a desire to maintain a lo-

cal Cartesian structure, as with the cubed-sphere grid; or

to support grid isotropy and homogeneity, as with many of

the hexagonal or Voronoi grids that have been employed.

The choice of grid may be further decided by the numeri-

cal method; for instance, finite element models that use ten-

sor products to define basis functions require grids consisting

entirely of quadrilaterals. Inevitably, a choice must be made,

and the pros and cons of that choice will impact other deci-

sions related to the model. To better understand the options

that are available to dynamical core developers, we begin

by reviewing many of the model grids that have been em-

ployed in global dynamical cores around the world. Then, in

Sect. 3.8, we discuss the “staggering” of model variables, re-

ferring to the distribution of variables within and around each

grid cell.

3.1 Latitude–longitude grid

The classic latitude–longitude grid is produced by subdivid-

ing the sphere along lines of constant latitude and longitude.

The latitude–longitude grid has the benefits of being globally

rectilinear, which simplifies data access and subdivision of

computation across processors, and yields a vector basis that

is locally orthogonal nearly everywhere. This structure accu-

rately maintains purely zonal flows and simplifies data post-

processing for visualization. Because of the convergence of

grid lines near the poles, the operational use of this grid re-

quires that the associated numerical scheme be resilient to ar-

bitrarily small Courant numbers, or that polar filtering be em-

ployed to remove unstable computational modes (Lin, 2004).

This grid is presently employed in many global models, in-

cluding the UK Met Office New Dynamics and ENDGame

dynamical cores (Davies et al., 2005; Wood et al., 2014). The

latitude–longitude grid is also an option in the GEM model.

3.2 Cubed-sphere grid

The equiangular, gnomonic cubed-sphere grid (Sadourny,

1972; Ronchi et al., 1996; Putman and Lin, 2007) consists

of six Cartesian patches arranged along the faces of a cube

which is then inflated onto a spherical shell. More informa-

tion on this choice of grid can be found in Ullrich (2014a).

On the equiangular cubed-sphere grid, coordinates are given

as (α,β,p), with central angles α,β ∈ [−π
4
, π

4
] and panel in-

dex p. The structure of this grid supports refinement through

stretching (Schmidt, 1977; Harris et al., 2016) or nesting

(Harris and Lin, 2013). The Cartesian structure of cubed-

sphere grid panels is advantageous for numerical methods

that are formulated in Cartesian coordinates or that utilize di-

mension splitting. Nonetheless, special treatment of the panel

boundaries is often necessary since they represent coordinate

discontinuities. This grid is depicted in Fig. 1a. Among the

DCMIP2016 models, the cubed-sphere grid is employed by

the ACME, FV3, and Tempest dynamical cores.
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Figure 1. (a) A cubed-sphere grid. (b) An icosahedral (triangular) grid with additional refinement over Europe, as indicated in red. (c) An

icosahedral (hexagonal) grid.

3.3 Icosahedral (triangular) grid

The icosahedral triangular grid is derived from the spheri-

cal icosahedron that consists of 20 equilateral spherical trian-

gles, 30 great circle edges, and 12 vertices. These initial tri-

angles are then subdivided repeatedly until the desired mean

resolution is obtained. For a single subdivision, each edge

is divided in n arcs of equal length, thus defining new ver-

tices, which by proper connection to other new vertices re-

sult in n2 triangles filling the original triangle. By construc-

tion, the new vertices share six triangles; thus, the refinement

process brakes the initial isotropy of the icosahedron and re-

sults in non-equilateral triangles of different sizes. Among

the DCMIP2016 models, the icosahedral (triangular) grid is

employed operationally in the ICON dynamical core.

Several methods are available for subdividing the triangu-

lar regions. One such approach is implemented by the ICON

grid generator, which allows an “arbitrary” subdivision fac-

tor n for the first refinement step only, the so-called root re-

finement. Typical choices are n= 2, 3, or 5. All additional

m refinement steps use n= 2; i.e., they are bisection steps.

A global grid resulting from a root division factor n and m

bisections, denominated as RnBm grid, has nc = 20 ·n2 · 22m

cells, ne = 3/2 ·nc edges, and nv = 10 ·n2 · 22m+ 2 vertices.

The anisotropy of global grids is reduced by the spring dy-

namics of Tomita et al. (2001). An example of such a grid

is depicted in Fig. 1b. A discussion of the effective reso-

lution of such grids is given in Dipankar et al. (2015). The

ICON grid generator further allows for inset regional grids,

produced by additional refinement steps that are only applied

over a limited region or set of regions. The dynamical core

then allows for either one-way or two-way coupling of the

refined region to the parent model. The current operational

numerical weather prediction of the Deutscher Wetterdienst

(German Weather Service, DWD), for instance, uses a R3B7

global grid with 2 949 120 cells and 13 km mean resolution

in combination with a refined region over Europe at 6.5 km

resolution.

3.4 Icosahedral (hexagonal) grid/geodesic grid

The icosahedral (hexagonal) grid, also commonly referred to

as the geodesic grid, is most directly obtained by taking the

dual to the icosahedral (triangular grid) – that is, by replac-

ing grid nodes with spherical polygons. The resulting grid’s

cells are hexagonal, except for 12 pentagonal cells. Given

an icosahedral–triangular mesh, vertices of the correspond-

ing icosahedral–hexagonal mesh are then defined as either

circumcenters or barycenters of triangles, leading to either a

Voronoi mesh, used by DYNAMICO (see also Sect. 3.5), or

a barycentric mesh, used by NICAM. A Voronoi mesh has

the property that triangular edges are perpendicular to edges

of hexagons/pentagons, facilitating the formulation of cer-

tain finite-difference and finite-volume numerical schemes.

The resulting highly homogeneous and isotropic grid then

appears analogous to the grid in Fig. 1c. Unlike the cubed-

sphere and icosahedral (triangular) grids, grid cells on this

geodesic grid are guaranteed to be edge neighbors (cells that

share a given edge) if they are also node neighbors (cells

that share a given node). Among the DCMIP2016 models,

the geodesic grid is employed by the CSU, DYNAMICO,

NICAM, and OLAM dynamical cores.

It is often useful to optimize icosahedral–hexagonal grids

as well. DYNAMICO applies a number of iterations of

Lloyd’s algorithm (Lloyd, 1982), following by replacing

the vertices of the original triangular mesh by the centroid

of hexagons/pentagons, then regenerating the icosahedral–

hexagonal mesh. This improves the homogeneity of the grid

(e.g., ratio of largest cell area to smallest cell area), but sev-

eral thousand iterations can be required for a significant im-

provement.

OLAM optimizes by applying the spring dynamics

method of Tomita et al. (2001) to the dual triangular mesh

prior to its mapping to the Voronoi mesh. When local mesh

refinement is applied, which OLAM achieves in a series of

one or more resolution-doubling steps, each spanning a tran-

sition zone that is three grid rows wide (Fig. 2), the equilib-

rium spring length is scaled to the target grid cell size in each

refinement level and is varied incrementally across the tran-

sition zone. Spring dynamics is further modified by forcing
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Figure 2. Detail of one step of local mesh refinement used by the

OLAM Voronoi mesh. The transition zone is constructed by explicit

topological reconnection of the grid lines, which produces pairings

of heptagons (red dots) and pentagons (blue dots) along the refine-

ment perimeter.

angles on the dual triangular mesh in the transition zone in

order to move the triangle edges closer to the centers of the

hexagon edges they intersect.

3.5 Constrained centroidal Voronoi tessellation

(CCVT) meshes

Given a set of N distinct points on the sphere xi (referred to

as the generators, 1 ≤ i ≤N ), the Voronoi tessellation (or the

Voronoi diagram) associated with the generators is the set of

polygons �i consisting of all points that are closer (in the

sense of great-circle distance) to xi than any other xj with

i 6= j (Okabe et al., 2009). For a given set of generators, this

tiling is unique and completely covers the sphere, and thus

can be employed in conjunction with many finite volume

methods. However, for an arbitrary set of generators, it is

easy to produce highly distorted polygons, particularly if the

density of generators varies substantially. This has led to the

development of the constrained centroidal Voronoi tessella-

tion (CCVT) (Du et al., 2003), which imposes the additional

requirement that the set of generators be coincident with the

centroids of each polygon. Given a desired polygonal density

function, several algorithms have been developed to generate

CCVTs both in Cartesian and spherical geometry (i.e., for

ocean basins or ice sheets) (Ringler et al., 2008). Figure 3 de-

picts one such CCVT grid that is compatible with the MPAS

model. CCVT grids are often confused with deformations of

the icosahedral (hexagonal) grid described in Sect. 3.4, since

both typically contain a large number of hexagonal elements;

however, CCVT grids are fundamentally constructed using a

Figure 3. A constrained centroidal Voronoi tessellation mesh with

localized grid density that could be employed in the MPAS model.

very different technique. Although hexagons are, by far, the

most common polygon on CCVT grids, CCVT grids on the

sphere will also include at least 12 pentagons and sometimes

other polygons with more than six sides. Quadrilateral ele-

ments are theoretically possible but are never found in prac-

tice on the final grid due to this being a locally unstable so-

lution of the underlying CCVT system of equations.

3.6 Octahedral reduced Gaussian grid

As with the classical reduced Gaussian grid of Hortal

and Simmons (1991), the octahedral reduced Gaussian grid

(Malardel et al., 2016; Smolarkiewicz et al., 2016) specifies

the latitudes according to the roots of the Legendre polyno-

mials. The two grids differ in the arrangement of the points

along the latitudes, which follows a simple rule for the octa-

hedral grid: starting with 20 points on the first latitude around

the poles, 4 points are added with every latitude towards the

Equator, whereby the spacing between points along the lati-

tudes is uniform and there are no points at the Equator. The

octahedral reduced Gaussian grid is suitable for transforma-

tions involving spherical harmonics and has been introduced

for operational weather prediction with the spectral dynam-

ical core of the IFS at ECMWF in 2016. Figure 4 depicts

the octahedral reduced Gaussian grid nodes together with the

edges of the primary mesh as applied in the context of the

finite-volume discretization of FVM (Sect. 2.5).

3.7 Yin–Yang grid

The overset Yin–Yang grid (Kageyama and Sato, 2004)

has two Cartesian grid components (subsets of a latitude–

longitude grid) which are geometrically identical (see Fig. 5).

These components are combined to cover a spherical surface

with partial overlap along their borders. The Yin component

covers the latitude–longitude region

(
−
π

4
− δθ ≤ θ ≤

π

4
+ δθ

)
∩

(
−

3π

4
− δλ ≤ λ≤

3π

4
+ δλ

)
,
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(a) (b)

Figure 4. Locations of the octahedral reduced Gaussian grid nodes (a), and the edges of the primary mesh connecting the nodes as applied

with the finite-volume discretisation in FVM (b). A coarse octahedral grid with only 24 latitudes between each pole and the Equator (“O24”)

is used for illustration. The dual mesh resolution of the octahedral reduced Gaussian grid is about a factor of 2 finer at the poles than at the

Equator; see Smolarkiewicz et al. (2016).

(1)

where δλ,δθ are small buffers that are proportional to the re-

spective grid spacings and are required to enforce a minimum

overlap in the overset methodology. For instance, a common

configuration employed by the GEM model for DCMIP fixes

δθ = 2◦ and δλ = 3δθ . The Yang component covers an analo-

gous area but is rotated perpendicularly so as to cover the

region of the sphere outside of the Yin grid. This grid is

employed by the GEM model, utilizing a pair of local area

models based with the numerics from the GEM latitude–

longitude model.

3.8 Horizontal staggering

The horizontal placement of variables impacts a number of

properties of the numerical method, including how energy

and enstrophy conservation is managed, any computational

modes that might arise due to differencing, dispersion prop-

erties, and the maximum stable time-step size for explicit

time-stepping schemes (Randall, 1994; Ullrich, 2014b). The

original four Arakawa grids (Arakawa and Lamb, 1977), de-

noted with letters A through D, were initially designed for

rectilinear meshes but were later adapted for a variety of un-

structured grids. Later, other grid types were added, includ-

ing the Z grid, which used the vertical component of vor-

ticity and the horizontal divergence in place of the velocity

components (Randall, 1994), and the ZM grid, which extends

the B grid to hexagons by placing the velocity at hexagonal

nodes (Ringler and Randall, 2002). By interpreting “stagger-

ings” to be analogous to a choice of finite element basis, new

staggerings are under development in the context of mixed

finite element methods (Cotter and Shipton, 2012). Among

the models that participated in DCMIP, only four grids were

represented: the A grid, which involves simple co-location of

all velocity components and scalar fields; the C grid, which

places perpendicular velocity components on grid edges; the

D grid, which places parallel velocity components on grid

edges; and the Z grid, which co-locates the vorticity, diver-

gence, and buoyancy variables (see Fig. 6).

Arguments in favor or against particular staggerings have

generally emerged from linear analyses and typically in the

absence of either implicit or explicit diffusion. In this con-

text, the A grid tends to support large time-step sizes but pro-

duces unphysical phase speeds and negative group velocities

at high wavenumbers, including a stationary 21x wavelength

mode (even in the context of finite element methods); the C

grid better represents short wave modes and does not sup-

port extraneous computational modes (as long as the number

of horizontal faces is equal to twice the number of volumes)

but typically has a more restrictive time step with explicit

time-stepping schemes than the A grid; the D grid provides a

better representation of vorticity but produces unphysical ef-

fects analogous to those on the A grid at high wavenumbers

that must be controlled with divergence damping; finally, the

Z grid yields optimal dispersion properties but requires the

inversion of a Poisson problem at each time step to extract

the velocity field from the divergence and vorticity.

Other specialized staggerings have been developed that

couple horizontal staggering with the formulation of the time

integrator. In the FV3 model, although velocities are stored

in accordance with the D-grid arrangement, at the interme-

diate stages of the forward–backward time-stepping scheme,

velocities are actually prognosed on the C grid. The inter-

mediate velocities then act as a simplified Riemann solver:

the intermediate stage velocities are time centered and can

be used to compute the fluxes and advance the flux terms by

a full acoustic time step. More details on this approach can

be found in Lin and Rood (1997).
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Figure 5. The Yin–Yang grid is a combination of two limited-domain latitude–longitude grids assembled to provide complete coverage of

the sphere.

(a) A-grid staggering

u, v, η u, v, η

(c) C-grid staggering

η uu

v

v

η

(d) D-grid staggering

η

u

u

v

v

η

(z) Z-grid staggering

ζh, D, η ζh, D, η

Figure 6. Horizontal staggering options represented among DCMIP models, in this case depicted on a rectilinear grid and geodesic grid.

Here, η denotes the buoyancy variable.

4 Vertical discretization

Because of the vast differences between horizontal and ver-

tical scales in global simulations, most atmospheric models

use dimension splitting in order to separate the horizontal

discretization from the vertical discretization. In this section,

design considerations related to the vertical column are dis-

cussed, including the staggering of prognostic and diagnostic

variables, and the choice of vertical coordinate.

4.1 Vertical staggering

Along with the choice of prognostic variables, the verti-

cal discretization of the equations of motion also allows for

the staggered placement of prognostic variables. As with

hydrostatic models, certain discretizations give rise to spu-

rious computational modes that can contaminate the so-

lution (Tokioka, 1978; Arakawa and Moorthi, 1988). The

choice of vertical staggering may also impact many phys-

ically relevant properties of the model near the grid scale,

such as the phase speed of Rossby waves (Thuburn and

Woollings, 2005). Finally, the choice of vertical staggering

can have impacts on the physics–dynamics coupling (Hold-

away et al., 2013a, b). Taken altogether, these issues sug-

gest care should be taken when selecting the discretization.

Since co-located discretizations of the non-hydrostatic equa-

tions generally require some additional effort to control spu-

rious computational modes, it is more common to employ

either (a) a Lorenz-type staggering (Lorenz, 1960), which

places horizontal velocity, buoyancy, and thermodynamic

variables on model levels, and vertical velocity on model

interfaces; or (b) a Charney–Phillips-type staggering (Char-

ney and Phillips, 1953), which places horizontal velocity and

buoyancy variables on model levels and vertical velocity and

thermodynamic variables on model interfaces (see Fig. 7).

These approaches can be further augmented as needed, for

instance, by shifting the vertical velocity and thermodynamic
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Figure 7. (a) A Lorenz-type variable staggering for a model utilizing height coordinates, (b) a Charney–Phillips-type variable staggering

for a model utilizing height coordinates, and (c) a modified Charney–Phillips-type staggering used in the GEM model that introduces a new

near-surface level for vertical velocity and temperature.

variables from the bottom boundary to an intermediate level,

as in the GEM model. Note that, in general, tracer variables

are co-located with the buoyancy variable.

4.2 Vertical coordinates

In the context of dimension splitting, the “horizontal” typ-

ically refers to either the contravariant basis, which is per-

pendicular to the vertical, or the covariant basis, which is di-

rected along coordinate (e.g., terrain-following) surfaces. In

contrast, the vertical dimension is strictly aligned with the

radial vector pointing from the center of the Earth. Verti-

cal position is typically labeled using an arbitrary function

s(t,x,z) that is monotonic in z, so that model interfaces are

equally spaced with respect to s. Typically, s is chosen so

that the Earth’s surface (the bottom boundary of the atmo-

sphere) is a coordinate surface, allowing for easy specifica-

tion of boundary conditions for the prognostic equations; this

leads to the so-called “terrain-following” family of vertical

coordinates. Perhaps the most common terrain-following co-

ordinate is from Gal-Chen and Somerville (1975), which is

in terms of the altitude z and takes the form

s(x,z)= ztop

[
z− zs(x)

ztop − zs(x)

]
, (2)

where x denotes the horizontal position, zs(x) is the height

of the topography at that position, and ztop denotes the height

of the model top (typically independent of position). Analo-

gous formulations are available for mass-based (σ coordi-

nates) and entropy-based vertical coordinates. Because the

sharp variations in the coordinate surfaces are preserved far

above a rough lower boundary, new coordinate formulations

have been proposed that smooth coordinate surfaces, such as

Schär et al. (2002) or Klemp (2011). All models in this pa-

per except for OLAM use some variant of terrain-following

coordinates, although work on developing modern cut-cell,

embedded boundary and immersed boundary representations

is ongoing (e.g., Lock et al., 2012). Note that time-dependent

vertical coordinates are allowed and are typically referred to

as “floating” coordinates. Several examples of vertical coor-

dinates are now given.

4.2.1 Mass-based coordinates

Mass-based coordinates (Laprise, 1992) are a generaliza-

tion of pressure-based coordinates to non-hydrostatic mod-

els, with a vertical coordinate defined as the total gravity-

weighted overhead mass,

s =

∞∫

z

ρgdz. (3)

Under this definition,

∂s

∂z
= −ρg. (4)

4.2.2 GEM ζ coordinate

The vertical coordinate in the GEM model, denoted ζ , is

a hybrid terrain-following coordinate of a log-hydrostatic-

pressure type. Taking s (denoted π in GEM documentation)

as given in Eq. (3), ζ is given by the relation

logs = A(ζ )+B(ζ )
[
logs(zs)− ζs

]
, (5)

with

A(ζ )= ζ, and B(ζ )=

(
ζ − ζtop

ζs − ζtop

)r
. (6)

Here, ζs = log(105), ζtop = log(stop), stop is the coordinate

value at the uppermost interface, and r is a variable expo-

nent providing added freedom for adjusting the thickness of

model layers over high terrain.
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4.2.3 Floating Lagrangian coordinates (ACME-A,

DYNAMICO, and FV3)

In the floating Lagrangian formulation (Starr, 1945; Lin,

2004), the vertical coordinate is chosen to represent an artifi-

cial tracer with monotonically increasing or decreasing mix-

ing ratio s in the vertical. The actual mixing ratio at initia-

tion is arbitrary and can be constructed to be height-like (i.e.,

s = z) or mass-like, i.e.,

s =

∞∫

z

ρ0gdz, (7)

in which case a 3-D reference density field ρ0 can be im-

posed. Of primary importance is the fact that the vertical co-

ordinate satisfies

ṡ =
ds

dt
= 0, (8)

which greatly simplifies the associated prognostic velocity

and continuity equations. Floating Lagrangian coordinates

are often paired with a vertical remapping operation that cor-

rects for strong grid distortions that may occur after suffi-

ciently long model integrations.

4.2.4 Cut cells in OLAM

A pure z coordinate with horizontal grid levels is used

in OLAM (Walko and Avissar, 2008b) in order to com-

pletely avoid topographic imprinting on the model grid lev-

els (Fig. 8). This implies that grid levels intersect the topo-

graphic surface, leading to some grid cells being partially

above and partly below the surface. The face areas of these

so-called cut cells are reduced accordingly, which in turn reg-

ulates cell-to-cell flux transport in accordance with the kine-

matic constraint imposed by the topography. Cut-cell vol-

umes are also reduced, and volumes and surface areas of all

cells appear explicitly in the finite-volume formulation of the

mass and momentum conservation equations. One or more

methods are used to avoid the so-called small cell problem

where volume to area ratios of cut cells are much smaller

than those for full cells and therefore can lead to instabil-

ity. The smallest cells are eliminated by adjusting topography

slightly, which is usually justified by noting that local topo-

graphic sampling is approximate. In larger cut cells, volumes

can be increased (without changing surface areas) which sta-

bilizes the cell at the expense of slowing its response to

advected transients. When either of the above adjustments

is unacceptable for a particular application, a flux-balance

method based partly on Berger and Helzel (2012) is used to

stabilize small cut cells.

5 Prognostic equations and treatment of moisture

The Navier–Stokes equations that govern atmospheric mo-

tion can take on many forms, depending on the choice of

prognostic variables and coordinate system. A derivation of

many forms of these equations can be found in Appendix A.

The particular prognostic equations used by the model can

impact the presence of computational modes, the accuracy

of the model in representing the physical modes of the at-

mosphere (Thuburn and Woollings, 2005), and the ability of

the model to conserve important invariants such as energy

(Dubos and Tort, 2014). The remainder of this section gives

some specific examples of prognostic equations used by the

DCMIP models, including any special treatment of terms re-

lated to moist physics.

5.1 ACME-A

ACME-A presently solves the compressible shallow-

atmosphere equations using a hybrid terrain-following pres-

sure vertical coordinate η, similar to the model of Laprise

(1992). The 2-D vector-invariant form of the prognostic hor-

izontal velocity Eq. (A62) is employed, in conjunction with

prognostic potential temperature (Eq. A57), pseudo-density

(Eq. A55), and geopotential (Eq. A27). The vertical velocity

equation is formulated analogous to that of GEM:

dw

dt
= −gc

(
1 −

∂p

∂s

)
. (9)

5.2 CSU

The CSU model uses the vorticity divergence form of the

equations of motion, as described in Sect. A10, discretized on

the geodesic mesh with absolute vorticity and velocity diver-

gence scalars stored at cell centers. The unified approxima-

tion of the equations of motion (Arakawa and Konor, 2009)

is employed to avoid vertically propagating sound waves.

5.3 DYNAMICO

The prognostic equations employed by DYNAMICO are

based on a Hamiltonian formulation (Dubos and Tort, 2014).

The specific prognostic variables employed are pseudo-

density ρs, mass-weighted tracers (potential temperature, wa-

ter species), geopotential 8, horizontal covariant compo-

nents of momentum, and mass-weighted vertical momen-

tum W = ρsg
−2d8/dt = ρsg

−1w. Prognostic equations are

in flux form for mass (Eq. A55) and W (Eq. A23), in advec-

tive form for 8 (Eq. A27), and in vector-invariant form for

covariant horizontal momentum (Eq. A76).

5.4 FV3

The hydrostatic FV3 model uses a mass-based floating La-

grangian coordinate along with the shallow-atmosphere ap-

proximation (Lin, 2004). Prognostic equations include hor-

izontal velocity in 2-D vector-invariant form (Eq. A38),

pseudo-density (Eq. A55), and virtual potential temperature

(Eq. A57). The non-hydrostatic model further incorporates
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Figure 8. (a) A terrain-following coordinate passing over rough topography. (b) A cut-cell coordinate used for representing the same topog-

raphy.

prognostic geopotential (Eq. A27) and vertical momentum

(Eq. A37).

5.5 FVM

The FVM formulation is based on conservation laws for

dry mass (Eq. 10a), momentum (Eq. 10b), and dry entropy

(Eq. 10c) in Eulerian flux form, which are similar to Eq. (A9)

for ρd, Eq. (A23), and Eq. (A13) for θ , respectively. More-

over, underlying the conservation laws in FVM is a pertur-

bational form with respect to a balanced ambient state and a

generalized curvilinear coordinate formulation in a geospher-

ical framework. Following Smolarkiewicz et al. (2017), the

FVM governing equations can concisely be written as

∂Gρd

∂t
+ ∇ · (vGρd)= 0, (10a)

∂Gρdu

∂t
+ ∇ · (vGρdu)

= Gρd

(
−θρG̃∇φ′ − k g

(
θ ′

θa
+ εb q

′
v − qc − qr

)

−2� ×

(
u −

θρ

θρ a
ua

)
+M′

]
, (10b)

∂Gρdθ
′

∂t
+ ∇ ·

(
vGρd θ

′
)
= −Gρd G̃T u · ∇θa , (10c)

φ′ = cpd

[(
Rd

p0
ρd θ (1 + qv/ε)

)Rd/cvd

−πa

]
. (10d)

Dependent variables in Eq. (10) are dry density ρd, 3-D

physical velocity vector u, potential temperature perturbation

θ ′, and a modified Exner pressure perturbation φ′, with the

thermodynamic variables related by the gas law Eq. (10d).

Primes indicate perturbations with respect to the prescribed

ambient state denoted by subscript “a”; see Prusa et al.

(2008) and Smolarkiewicz et al. (2014) for discussions. The

symbol g in Eq. (10b) denotes the gravitational accelera-

tion and εb = 1/ε− 1. As far as geometric aspects are con-

cerned, the nabla operator ∇ represents the 3-D vector of

partial derivatives with respect to the curvilinear coordi-

nates, along with the Jacobian G, a matrix of metric coef-

ficients G̃, its transpose G̃T , and the contravariant velocity

v = G̃T u, where a contribution from optional time depen-

dency of the curvilinear coordinates is neglected for sim-

plicity (Kühnlein and Smolarkiewicz, 2017). The symbol

M′ = M′(u,ua,θρ/θρ a) in Eq. (10b) subsumes the metric

forces in the spherical domain (Smolarkiewicz et al., 2017).

5.6 GEM

In GEM, the non-hydrostatic equations are written explicitly

as deviations from hydrostatic balance represented by

µ=
∂p

∂s
− 1, (11)

where s (denoted π in GEM documentation) is given by

Eq. (3). In this case, the equations of GEM model (Girard

et al., 2014) are concisely given by

duh

dt
+ f k × uh +RdTv∇ζ logp+ (1 +µ)∇ζ8= 0, (12)

dw

dt
− gcµ= 0, (13)

d

dt
log

(
∂s

∂ζ

)
+ ∇ζ · uh +

∂ζ̇

∂ζ
= 0, (14)

d logTv

dt
−
Rd

cp

dlogp

dt
= 0, (15)

∂8

∂s
+
RdTv

p
= 0, (16)

d8

dt
− gcw = 0. (17)

Here, ∇ζ denotes the horizontal gradient along ζ surfaces.

With respect to the treatment of moisture in GEM, the cloud

water and all non-gases are embedded in the total air density

ρ, affecting the virtual temperature defined in Eq. (A7). Also,

specific mass is used in GEM (not mixing ratio).
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5.7 ICON

ICON solves a non-hydrostatic equation set based on

Gassmann and Herzog (2008) using terrain-following z co-

ordinates. The governing equations describe the mixture of

a two-component system of dry air and water, where wa-

ter is allowed to occur in all three phases, including pre-

cipitating constituents. Following Wacker et al. (2006), the

barycentric (bc) velocity ubc =
∑
kρkuk/

∑
kρk – that is, the

mass-weighted sum of all constituent-specific velocities (in-

cluding sedimentation velocities) – is used as a prognos-

tic variable. In contrast to Gassmann and Herzog (2008), a

vector-invariant form is only used for the horizontal velocity

Eq. (A33), whereas the vertical velocity equation is solved

in advective form. The pressure-gradient force is formulated

according to Eq. (A20).

Additional prognostic variables include total air density

(Eq. A10), virtual potential temperature (Eq. A57), and mass

fractions qk = ρk/ρ of all constituents (except for dry air) for

which the prognostic equation reads

∂ρqk

∂t
+ ∇ · (ρqkubc)= −∇ · Jk + σk, (18)

with σk describing sources/sinks due to phase changes, and

Jk = ρqk (uk − ubc) denoting diffusion fluxes, which ac-

count for the motion of constituents relative to the frame of

reference set by ubc.

The specific heat capacities and ideal gas constant are ap-

proximated to be equal to their dry valuesR∗ ≈ Rd, c∗p ≈ cpd,

c∗v ≈ cvd. The model also uses a prognostic equation for

Exner pressure to simplify the treatment of vertical sound

wave propagation, given by

∂π

∂t
+
Rd

cvd

π

ρθv
∇ · (ubcρθv)= Q̂, (19)

where Q̂ is an appropriately formulated diabatic heat term.

The horizontal uses a Arakawa C-grid formulation on the

triangular grid to prognose horizontal velocities normal to

triangle edges vn, making use of reconstructed tangential ve-

locity components vt.

In the current implementation, the following simplifica-

tions are made with regard to the treatment of moisture: the

atmospheric mass loss/gain due to precipitation/evaporation

is neglected in the total mass continuity Eq. (A10) by setting

the vertical component of ubc to zero at the lower bound-

ary:wbc|sfc = 0. In addition, only the vertical diffusion fluxes

Jk of sedimentation constituents and the surface evaporation

flux Jv|sfc are taken into account. The counter flux of non-

sedimentation constituents is discarded. Since in the given

framework the continuity Eq. (A10) is only valid if the con-

straint
∑
kJk = 0 holds, it is (implicitly) assumed that a ficti-

tious counter flux of dry air compensates for the considered

vertical diffusion fluxes. As a consequence, ICON currently

conserves the global integral of total air mass rather than dry

air mass.

5.8 MPAS

The evolution equations used by MPAS are fully described in

Skamarock et al. (2012), based on the formulation of Dutton

(1986). The MPAS model uses the momentum form of the

update equations, as described in Sect. A11, with dry mass

utilized for the density variable ρ̃s. MPAS further evolves dry

mass using a continuity equation of Eq. (A10) and moist po-

tential temperature following Eq. (A13).

5.9 NICAM

NICAM prognoses horizontal and vertical momentum anal-

ogous to the approach described in Sect. A11. It further

evolves the density perturbation from the background refer-

ence state using Eq. (A10) and sensible heat part of internal

energy. A detailed explanation of the evolution equations can

be found in Satoh et al. (2008).

5.10 OLAM

OLAM solves the deep-atmosphere, fully compressible

equations in mass- and momentum-conserving finite-volume

form using Eqs. (A10), (A23), and (A13). Prognostic vari-

ables are the three components of momentum, ice–liquid

potential temperature θil (Walko et al., 2000), total density

ρ, specific density of total water, and specific bulk density

and/or bulk number concentration of various scalar quantities

including liquid and ice hydrometeors, aerosols, and trace

gases. For DCMIP, the latter are limited to cloud and rain

specific bulk densities. Water vapor density is diagnosed by

subtracting bulk densities of all liquid and ice hydrometeors

from the total water density, dry air density is diagnosed by

subtracting total water density from total density, and pres-

sure is diagnosed based on the equation of state and values

of dry air density, water vapor density, and potential temper-

ature θ . The latter is in turn diagnosed from θil and from the

latent heat required to convert any hydrometeors present to

the vapor phase. Velocity components are diagnosed by di-

viding momentum components by total density.

Momentum is C-staggered in the horizontal and vertical

(Lorenz vertical staggering is used), meaning that prognosed

components live on the grid cell faces and are each normal

to the respective face, and the pressure-gradient force is eval-

uated and applied at those locations. However, evaluation of

advective and turbulent momentum transport (as well as the

Coriolis force) involves a diagnostic reconstruction of the to-

tal momentum vector at the centers of scalar grid cells (Perot,

2000), and cell-to-cell flux of momentum is computed from

that reconstruction using the same A-grid control volumes as

for scalars. This arrangement is particularly convenient for

the cut-cell formulation at the topographic surface where re-

duced cell face areas and volumes regulate momentum and

scalar fluxes in an identical manner.
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5.11 Tempest

Tempest is a shallow-atmosphere Eulerian model with

terrain-following z coordinates with prognostic density

(Eq. A55), virtual potential temperature (Eq. A57), and

vector-invariant form for covariant horizontal velocity

(Eq. A76) and vertical momentum (Eq. A32).

6 Diffusion, stabilization, filters, and fixers

Most dynamical cores implement specialized techniques for

diffusion or stabilization (see Table 5). Diffusion is a numer-

ical technique that removes spurious numerical noise from

the simulation, where the numerical noise typically arises be-

cause of inaccuracies in the treatment of waves with wave-

lengths near the grid scale. Diffusion also includes mech-

anisms for damping vertically propagating internal gravity

waves, such as model-top Rayleigh layers, which are fairly

ubiquitous across models and hence not discussed in detail

here. Stabilization is a numerical technique that prevents en-

ergy growth and allows the model to be run over long pe-

riods. Diffusion or stabilization options include physically

motivated turbulence parameterizations, added viscosity or

hyperviscosity terms with tunable coefficients, off-centering,

or wave-mode filters. Since the discretization can also lead

to an unphysical loss of mass or energy, mass or energy

fixers are also employed to replace lost mass or energy to

the system. A comprehensive overview of schemes for diffu-

sion and stabilization schemes can be found in Jablonowski

and Williamson (2011). In this section, we discuss some of

the diffusion and stabilization strategies employed by the

DCMIP suite of dynamical cores.

6.1 ACME-A/Tempest

In both ACME-A and Tempest, scalar hyperviscosity is em-

ployed for ρ, θ , and tracer variables via repeated application

of a scalar Laplacian (Dennis et al., 2012; Ullrich, 2014a).

Vector hyperviscosity is also applied by decomposing the

horizontal vector Laplacian into divergence damping and

vorticity damping terms via the vector identity

∇2uh = ∇∇ ·uh + ∇ × ∇ ×uh. (20)

Both viscosity operations are applied after the completion of

all Runge–Kutta subcycles. Several limiter options are avail-

able for tracer transport, including a sign-preserving limiter

and a monotone optimization base limiter described in Guba

et al. (2014).

6.2 CSU

The CSU model utilizes an explicit diffusion scheme that

consists of fourth-order hyperdiffusion (∇4) applied to the

vorticity, divergence, and potential temperature. The model

does not include any explicit diffusion in the vertical col-

umn. However, for the idealized DCMIP test cases, explicit

diffusion was disabled.

6.3 DYNAMICO

In DYNAMICO, (hyper-)diffusive filters are used to elimi-

nate spurious noise due to the energy-conservative centered

discretization. Filters are applied every Ndiff Runge–Kutta

time step in a forward-Euler manner, with Ndiff as large as

allowed by stability. The scalar Laplacian is computed as the

divergence of the gradient, and the vector Laplacian is de-

composed into its divergent (grad div) and rotational (curl

curl) parts. The strength of filtering is controlled by dissipa-

tion timescales τ : given τ , the hyperviscous coefficient that

multiplies operator Dp is δ2pτ−1, where δ−2 is the largest

eigenvalue of operator D. For DCMIP, DYNAMICO uses

p = 2 (fourth-order hyperviscosity) for all filters.

6.4 FV3

Explicit dissipation in FV3 is applied separately to the diver-

gence and to the horizontal fluxes in the governing equations.

The D-grid discretization applies no direct implicit dissipa-

tion to the divergence, so divergence damping is an intrinsic

part of the solver algorithm since otherwise there are no pro-

cesses by which energy contained in the divergent modes is

removed at the grid scale. FV3 has options for fourth-, sixth-,

or eighth-order divergence damping; a second-order option

is also available for use in idealized convergence tests, which

can be applied in addition to the higher-order diffusion. The

monotonicity constraint used in computing the fluxes in the

momentum, thermodynamic, and mass continuity equations

is sufficient to damp and stabilize the non-divergent compo-

nent of the flow. The model also supports an option to ap-

ply hyperdiffusion to the fluxes in each of these equations,

with the exception of the tracer transport, which always uses

monotonic transport with no explicit diffusion. The hyper-

diffusion is of the same order as but much smaller than the

divergence damping. Both divergence damping and hyper-

diffusion are applied along the Lagrangian surfaces and are

recomputed every acoustic time step.

FV3 is constructed with a flexible-lid (constant-pressure)

upper boundary that is effective at damping internal gravity

wave modes; however, FV3 also applies second-order dif-

fusion to all fields, except the tracers, to create a sponge

layer, typically comprising the top two layers of the do-

main, to damp other signals reaching the top of the domain.

An energy-conserving Rayleigh damping is also available,

applied consistently to all three components of the winds,

which is strongest in the top layer of the domain and becomes

weaker with distance until it reaches a runtime-specified cut-

off pressure.

FV3 has an option to restore lost energy by the adia-

batic dynamics, in whole or a fraction thereof (decided by
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a namelist option at runtime), by globally adding a Exner-

function weighted potential temperature increment. This is

only done before the physics is called and is not used in ide-

alized simulations.

6.5 FVM

Within the dynamical core, FVM does not apply any explicit

dissipation/diffusion. For the DCMIP test cases, the implicit

regularization of the monotonic MPDATA provides sufficient

dissipation/diffusion needed to remove excess energy from

the finest scales and maintain model stability. An absorb-

ing layer is also available for damping vertically propagating

waves near the model top.

6.6 GEM

An explicit hyperviscosity in GEM is handled via applica-

tions of the Laplacian operator for both wind components

and tracers. A vertical sponge layer, which uses a Lapla-

cian operator, is employed on wind components and Tv

with a vertical modulation on the topmost levels. For stabi-

lization purposes, the temporal discretization of GEM also

uses an off-centering parameter. The quasi-monotone, semi-

Lagrangian (QMSL) method (Bermejo and Staniforth, 1992)

is used operationally to ensure tracer monotonicity for spe-

cific humidity and different hydrometeors. Other options are

now available in GEM, including a mass-conserving mono-

tonic scheme (Sørenson et al., 2013) and a global mass

fixer (Bermejo and Conde, 2002). Those approaches have

been evaluated using chemical constituents such as ozone

(de Grandpré et al., 2016).

6.7 ICON

The ICON model employs damping and diffusion operators

for numerical stabilization and dynamic closure. The details

of this scheme appear in Sect. 2.4 and 2.5 of Zängl et al.

(2015), and are summarized here. For damping, in the cor-

rector step, a fourth-order divergence damping term Fd(v) is

applied in order to allow calling the (relatively) computation-

ally expensive diffusion operator (see below) at the physics

time steps without incurring numerical stability problems un-

der extreme conditions:

Fd(v)= −fdac
2∇∇̃·

{
∇

[
∇̃ · v+

1

1z

(
w−wcc

ci
)]}

. (21)

fd typically attains values between 1
10001t

and 1
2501t

, and ac

is the global mean cell area.

ICON also includes Rayleigh damping on w following

Klemp et al. (2008), which serves to prevent unphysical re-

flections of gravity waves at the model top. The Rayleigh

damping is restricted to a fixed number of levels below the

model top, and the damping coefficient is given by a hyper-

bolic tangent.

The horizontal diffusion consists of a flow-dependent

second-order Smagorinsky diffusion of velocity (FD2(vn))

and potential temperature (FD2(θ)) combined with a fourth-

order background diffusion of velocity FD4(vn), defined via

FD2(vn)= 4Kh∇̃
2(vn), FD2(θ)= ac∇̃ ·

(
Kh
1θ

1n

)
,

FD4(vn)= −k4a
2
e ∇̃2(∇̃2(vn)) , (22)

where ac and ae denote the area associated with the cell and

edge under consideration, respectively. An empirically de-

termined offset of 0.75k4ae is subtracted from Kh in order to

avoid excessive diffusion under weakly disturbed conditions.

A fourth-order computational diffusion is also available

for vertical wind speed w. This filter term is needed at res-

olutions of O(1 km) or finer because the advection of verti-

cal wind speed has no implicit damping of small-scale struc-

tures. This term appears as

FD(w)= −kwa
2
c ∇2(∇2(w)). (23)

6.8 MPAS

The MPAS model applies fourth-order hyperdiffusion and

Smagorinsky diffusion (Smagorinsky, 1963), as described in

Skamarock et al. (2012). When applied to the momentum,

the Laplacian is evaluated as

∇2ui =
∂

∂xi
∇s · v −

∂η

∂xj
, (24)

where ui is the edge-normal velocity defined on cell edge

i, η is the vertical component of the relative vorticity, com-

puted on vertices, and ∇s · v is the horizontal divergence

on s surfaces, computed on edges. The evaluation of diver-

gence and vorticity in this expression is described in Ringler

et al. (2010). The fourth-order hyperdiffusion operator is then

computed by twice applying the above Laplacian operator to

the momentum.

Smagorinsky diffusion, which is often applied in atmo-

spheric models to parameterize turbulent processes, uses a

second-order Laplacian and a physically motivated eddy vis-

cosity Kh, defined in terms of Cartesian velocities (u,v):

Kh = c2
s ℓ

2
√
(ux − vy)2 + (uy + vx)2, (25)

where cs is a constant parameter and ℓ is the grid scale. The

diffusion operator then takes the form ∇·(Kh∇ψ) for a scalar

field ψ .

6.9 NICAM

NICAM implements three types of diffusion: 3-D diver-

gence damping, fourth-order horizontal hyperdiffusion, and

sixth-order vertical hyperdiffusion, as described in Tomita

and Satoh (2004). Specifically, the divergence damping term
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(Skamarock and Klemp, 1992) aims to suppress instabilities

that arise due to the time-splitting scheme and is applied to

both horizontal and vertical velocities. The hyperdiffusion

operators are applied to all prognostic variables. For tracer

advection, upwinding is used to remove spurious oscillations,

as described in Miura (2007) and Niwa et al. (2011).

6.10 OLAM

OLAM requires two types of artificial damping. In the upper

layers of the model, vertical velocity and small-scale hori-

zontal divergence are damped in order to attenuate gravity

waves and thereby mitigate their reflection off the rigid top

boundary of the domain. The damping layer is commonly ap-

plied in the uppermost 10 km of the domain, where the model

top is 35 or 40 km above sea level. The damping rate is zero

at the bottom of the damping layer and increases upward,

usually linearly. Throughout the model domain, vertical vor-

ticity is filtered horizontally at the smallest resolvable scale

in order to control a spurious computational mode. This ver-

tical vorticity mode is inherent in C-staggered momentum

formulations on hexagonal meshes because horizontal ve-

locities are more numerous than twice the number of scalar

(mass) values and are thus underconstrained (Weller et al.,

2012; Weller, 2012). The vorticity filter is constructed so as

to have zero impact on divergence at any scale. Upwinding

in the Lax–Wendroff formulation of the advection operator

provides sufficient damping so that no other type of filtering

is required.

7 Temporal discretizations

Temporal discretizations are important for capturing the

discrete dynamical evolution of the global atmosphere.

In the past two decades, a variety of new temporal dis-

cretizations have been developed, leaving behind the days

when the leapfrog scheme was ubiquitous across models.

This diversity is in part because of the demands of non-

hydrostatic models: unlike their hydrostatic counterparts,

non-hydrostatic atmospheric models must include a mech-

anism for dealing with vertically propagating sound waves.

These waves are meteorologically insignificant, but with a

vertical grid spacing of 100 m, a purely explicit temporal

discretization of the unmodified fluid equations would re-

quire a time-step size on the order of 1 s or less. Conse-

quently, sound waves are either filtered explicitly through

the use of an alternative equation set or artificially slowed

through the use of implicit temporal discretizations. Some

commonly employed alternative equation sets include the

anelastic (Ogura and Phillips, 1962), quasi-hydrostatic (Or-

lanski, 1981), pseudo-incompressible (Durran, 1989), or uni-

fied approximation (Arakawa and Konor, 2009). These fil-

tered equation sets generally require that a global elliptic

solve be performed as prognostic variables are updated. In

this section, we discuss the time-stepping schemes that have

been employed across the DCMIP suite of models.

7.1 Mixed implicit–explicit, forward–backward,

semi-implicit, and additive Runge–Kutta schemes

Implicit–explicit schemes are a broad category of time-

integration schemes that divide the terms of the prognos-

tic equations into a set of explicitly integrated terms and

implicitly integrated terms. At the very least, terms associ-

ated with vertically propagating sound waves are included

among the implicit terms. For the remaining terms, there

is some freedom in choosing how to integrate terms asso-

ciated with vertical advection and horizontally propagating

sound waves. Semi-implicit schemes are one such class of

schemes that typically incorporate horizontally propagating

sound waves into the implicit solve and thus rely on a global

Helmholtz-type solve. Additive Runge–Kutta schemes are

another mechanism to ensure high-order temporal accuracy,

and many such schemes have been described throughout the

literature (see, for example, Weller et al., 2013; Ullrich and

Jablonowski, 2012b). Several examples of these schemes can

be found among the DCMIP models.

ACME-A and Tempest both use the ARS(2,3,2) scheme

described in Ascher et al. (1997), with all horizontal and ver-

tical advection terms treated explicitly and the remaining ver-

tical terms, associated with sound wave propagation, treated

implicitly. A number of different ARK schemes have been

compared and contrasted in this framework, with significant

implications for model performance and stability (Gardner

et al., 2017).

CSU uses a semi-implicit time-integration scheme with

third-order Adams–Bashforth scheme for explicit integration

of the continuity equation, potential temperature equation,

and terms related to advection. Since potential temperature

is updated prior to the computation of the pressure-gradient

force, this term can be thought of as implicit in time. The

horizontal wind field is then predicted through integration

of the vorticity and divergence of the horizontal wind and a

multi-grid method applied to solve a pair of two-dimensional

Poisson equations for the stream function and velocity poten-

tial, which are then differentiated to obtain the velocity field.

Horizontal diffusion is then applied forward in time.

FV3 and its predecessors are integrated using a forward–

backward integration for the Lagrangian dynamics. With the

exception of the pressure-gradient force, all of the terms

in the momentum, energy, and mass equations are express-

ible as fluxes and thus can be integrated using the ex-

plicit forward-in-time algorithm described by Lin and Rood

(1997). The horizontal component of the pressure-gradient

force is evaluated backward in time using the algorithm of

Lin (1997); the non-hydrostatic component of the vertical

pressure-gradient force is evaluated using a semi-implicit

solver. This forward–backward time step is referred to as the

“acoustic” time step, although the full solver is advanced on
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each of these acoustic time steps. Physics tendencies are ap-

plied impulsively at prescribed intervals, consistent with the

forward-in-time discretization; the physics time step is typi-

cally much longer than the acoustic time step.

DYNAMICO uses an additive Runge–Kutta time scheme

with two Butcher tableaus, one explicit and one implicit.

A Hamiltonian splitting decides which terms of the equa-

tions of motion are treated explicitly or implicitly (Dubos

and Dubey, 2017). As a result, the implicit terms couple the

vertical acceleration due to the pressure gradient and the adi-

abatic pressure change due to vertical displacements of fluid

parcels. The resulting implicit problem reduces to indepen-

dent, scalar, purely vertical, non-linear problems which are

solved to machine precision in two Newton iterations involv-

ing one tridiagonal solve each. The overall time scheme has

a HEVI (horizontally explicit, vertically implicit) structure.

Currently, the second-order, three-stage ARK(2,3,2) scheme

is used (Giraldo et al., 2013).

ICON consists of a two-time-level predictor–corrector

scheme, which is explicit for all terms except for those de-

scribing the vertical propagation of sound waves. No time

splitting is used with respect to sound waves, because the

ratio between the speed of sound and the maximum wind

speed in the mesosphere, which is in part covered by the ver-

tical domain, can be close to 1. Instead, time splitting is em-

ployed to dynamics on the one hand and horizontal diffusion,

tracer transport, and fast physics on the other hand. Typically,

a full time step consists of four or five dynamical substeps in

which a constant forcing originating from the slow physics

is applied. Mass-consistent transport is achieved by pass-

ing time-averaged air-mass fluxes from the dynamical sub-

steps to the transport scheme. The details of the predictor–

corrector scheme, including measures to increase the numer-

ical efficiency and to optimize the accuracy, are described in

Sect. 2.4 of Zängl et al. (2015).

MPAS and NICAM use a split-explicit formulation

(Klemp et al., 2007) consisting of an outer Runge–Kutta loop

(typically RK3) and inner acoustic loop. At the beginning

of each Runge–Kutta subcycle, tendencies are computed for

each of the prognostic variables and stored for the duration

of the subcycle. Several iterations of an acoustic loop are

then performed with a time step much smaller than required

for the Runge–Kutta subcycle. Within the acoustic loop, an

implicit solve for vertically integrated sound waves is per-

formed to avoid time-step constraints that may arise from

vertically propagating sound waves.

OLAM uses a unique temporal discretization that com-

bines elements of the Adams–Bashforth (AB2) scheme and

a Lax–Wendroff formulation for advected quantities. How-

ever, instead of extrapolating all prognostic tendencies for-

ward to the half-future time level as in AB2, the horizontal

momentum components alone (not their tendencies) are ex-

trapolated in time at the cell boundaries where they reside.

The extrapolated momentum provides the time-centered cell-

to-cell total mass flux across the grid cell faces that is re-

sponsible for advective transport. Advection of all quanti-

ties, including all three velocity components that are diag-

nostically reconstructed at scalar cell centers, and advance-

ment in time from the current to the future time level is

based on the time- and space-centered Lax–Wendroff formu-

lation. This scheme is horizontally explicit, but a trapezoidal-

implicit formulation is used in the vertical for stable integra-

tion of vertically propagating sound waves. A byproduct of

the implicit formulation is an implicit time-centered vertical

momentum that joins the time-extrapolated horizontal mo-

mentum to form a complete set of mass fluxes for advection.

The vertical momentum equation is solved first so that the

time-centered vertical momentum is available for computing

transport of horizontal momentum and all scalar quantities. A

time-split scheme is most often used where momentum and

potential temperature are updated more frequently than other

scalar fields in order to accommodate horizontally propagat-

ing sound waves.

7.2 The FVM semi-implicit method

A characteristic feature of the FVM (Sect. 2.5) time-stepping

scheme is the 3-D implicit treatment of the fast buoyant and

acoustic modes, and the slow rotational modes. Therefore,

the model time step is identical for all processes and typically

selected with regard to the stability of the advective transport

scheme; i.e., the time step is continuously adapted according

to a given maximum advective Courant number permitted by

the MPDATA scheme. A comprehensive discussion of the in-

tegration scheme can be found in Smolarkiewicz et al. (2014,

2016) and Kühnlein and Smolarkiewicz (2017) for dry dy-

namics, whereas it can be found in Kurowski et al. (2014)

and Smolarkiewicz et al. (2017) for extension to moist-

precipitating dynamics. Here, we provide a short outline of

the solution procedure for the compressible Euler Eq. (10). It

employs the two-time-level, second-order-accurate template

algorithm given as

ψn+1
i = Ai(ψ̃

n,vn+1/2,Gn,Gn+1)+ 0.51t Rψ |n+1
i ,

ψ̃n ≡ ψn+ 0.51t Rψ |n, (26)

where ψ represents the solution variable, Rψ is the respec-

tive right-hand side, A symbolizes the advective transport

operator given by the non-oscillatory, finite-volume MP-

DATA scheme (Smolarkiewicz and Szmelter, 2005; Kühn-

lein and Smolarkiewicz, 2017), and the spatial mesh vector

index i ≡ (k, i) denotes the position on the hybrid horizon-

tally unstructured, vertically structured computational mesh.

The solution procedure of Eq. (10) can then be divided into

three steps. First, the homogenous mass continuity Eq. (10a)

is integrated with ψ ≡ ρd, v ≡ vG, G≡ G, and Rρd ≡ 0 in

Eq. (26). Second, given already updated moisture variables

(Smolarkiewicz et al., 2017), the thermodynamic (Eq. 10c)

and momentum (Eq. 10b) equations enter Eq. (26) with ψ =

u,v,w,θ ′, v ≡ vGρd, G≡ Gρd, and the right-hand-side Rψ
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which generally depends on all these prognostic variables.

The high degree of implicitness in the representation of the

right-hand-side forcings is achieved by inverting the overall

discrete system (Eq. 26) to obtain closed-form expressions

for the velocity updates; this procedure is facilitated by the

co-located arrangement of all variables on the computational

mesh. Retained on the right-hand side of the derived closed-

form velocity expressions is the pressure-gradient term. The

subsequent third step in the solution procedure is to for-

mulate an implicit boundary value problem for the pressure

variable φ′ using an advective form of the equation of state

(Eq. 10d). An O(1t2) integration of this equation with a

Euler backward scheme, in the spirit of Eq. (26), leads to a

Helmholtz equation (Smolarkiewicz et al., 2014). The associ-

ated 3-D elliptic boundary value problem is solved iteratively

using a preconditioned generalized conjugate residual ap-

proach; see Smolarkiewicz and Szmelter (2011) for a recent

overview and comprehensive list of references. Non-linear

terms in Rψ |n+1 and the solution-dependent coefficients of

the Helmholtz equation are lagged behind and executed in an

outer iteration.

7.3 A semi-Lagrangian implicit time discretization in

the GEM model

GEM differs from the approaches above by using a semi-

Lagrangian advection. Any model equations, prognostic or

diagnostic, are written in the form

dF

dt
+G= 0, (27)

where d/dt is the Lagrangian derivative, F contains the

terms subject to this operator, and G contains the remaining

terms. The semi-Lagrangian approach consists in the follow-

ing space–time discretization of Eq. (27):

FA −FD

1t
+

(
1

2
+ ǫ

)
GA +

(
1

2
− ǫ

)
GD = 0, (28)

where “A” stands for the arrival position at model grid point

(rh,ζ, t) and “D” for the departure position (rh −1rh,ζ −

1ζ,t −1t) due to the displacements 1rh,1ζ having oc-

curred during the time step 1t . G is averaged between these

two positions with a possible slight off-centering ǫ. The dis-

placements are themselves calculated by solving, again using

the Lagrangian method, the following equations:

drh

dt
− uh = 0;

dζ

dt
− ζ̇ = 0, (29)

discretized in the same way (trapezoidal method) though

without off-centering:

1rh

1t
−

uh
A + uh

D

2
= 0;

1ζ

1t
−
ζ̇A + ζ̇D

2
= 0. (30)

The process is of course a multi-step iterative one, since

both positions and velocities at departure positions (past time

t −1t) are unknown as well as, of course, the velocities at

arrival positions (time t). Once a first estimate of the depar-

ture positions is obtained, the model equations are solved to

obtain a first estimate of the velocities at time t . The model

equations must be solved simultaneously and this is only pos-

sible for the linear part L which becomes a matrix inver-

sion problem. Hence, a suitable linearization is considered.

The unknown (arrival) linear L and non-linear N parts are

then separated from the known (first departure estimate) re-

maining R part. Thus, first separating space–time, Eq. (28) is

rewritten as follows:

FA

τ
+GA =

FD

τ
−βGD ≡ RD, (31)

where τ = (1/2 + ǫ)1t and β = (1/2 − ǫ)/(1/2 + ǫ). Sec-

ondly, separating linear from non-linear parts, we get

LA +NA = RD, (32)

with

LA =

[
FA

τ
+GA

]

linear

, and

NA ≡
FA

τ
+GA −

[
FA

τ
+GA

]

linear

. (33)

Note that both F and G may require linearization. LA may

then be obtained if NA is first guessed; once LA is found, an

estimate of NA is obtained and LA is recalculated. This is

called the non-linear iteration process (one iteration is usu-

ally sufficient). The overall process is then repeated once,

starting from a new estimate of the departure positions.

There are two intensive calculation sections in this pro-

cess: the so-called semi-Lagrangian calculations (twice es-

timating departure positions, twice interpolating right-hand

side R on departure positions) and solution of the linear sys-

tem (four times). Each time, the linear system is reduced

to a Helmholtz problem for one composite variable. For

this problem, a direct solver is involved using the Schwarz-

type domain decomposition method on a Yin–Yang grid

(Qaddouri et al., 2008). The composite variable solution is

then used to update the prognostic variables (back substitu-

tion). At the end of the time step, the static halo region of

both panels of the Yin–Yang grid is updated (Qaddouri and

Lee, 2011). All required interpolations throughout the semi-

Lagrangian process and between Yin and Yang grids are cu-

bic interpolations.

8 Summary and conclusions

As discussed earlier, this paper represents the first in a se-

ries of papers documenting the results from the 2016 Dy-

namical Core Model Intercomparison Project workshop and

summer school. In this paper, we have provided a descrip-

tion of the differences and similarities between participating
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models, including the choice of computational grid, horizon-

tal staggering, vertical staggering, vertical coordinates, prog-

nostic equations, choice of diffusion, stabilization, filters and

fixers, and temporal discretization. The literature on dynam-

ical core development is vast, with origins that go back over

half a century. Consequently, the models discussed in this

paper only represent a sample of the many dynamical cores

that have been developed for general circulation modeling.

Some of the models that have not been discussed include

Fox-Rabinovitz et al. (1997), Prusa et al. (2008), Nair et al.

(2009), Baba et al. (2010), Donner et al. (2011), Ullrich and

Jablonowski (2012a), Gassmann (2013), Wood et al. (2014),

and Doyle (2014).

The vast diversity within the modern dynamical core

ecosystem suggests that there is no consensus on a single ap-

proach that is intrinsically superior to other options. Choices

made in the dynamical core confer advantages that include

parallel scalability (Dennis et al., 2012), conservation of in-

variants (Thuburn, 2008), or representation of the kinetic en-

ergy spectrum (Skamarock, 2004). The repercussions that

emerge from these choices can then be explored in the con-

text of idealized test cases, such as the ones that have been

proposed as part of DCMIP. The remaining papers in this se-

ries investigate how the models described in this paper are

able to simulate three idealized test cases, each of which

incorporates simplified model physics: a moist baroclinic

wave, an idealized tropical cyclone, and a splitting super-

cell storm on a small planet. Where appropriate, metrics have

been included that may be indicative of model performance.

These tests can also be used for future dynamical core de-

velopment to identify where a new dynamical core diverges

from a suite of modern models.

Code availability. Information on the availability of source code

for the models featured in this paper is tabulated below.

Short Name Code availability

ACME-A ACME, including ACME-A, is under ac-

tive development funded by the US De-

partment of Energy. ACME version 1.0 is

scheduled to be publicly released under

an open-source license in 2018 but is not

available at present.†

CSU CSU model source code is available

under the Berkeley Software Distribu-

tion (BSD) three-clause license. The

release used for DCMIP2016 can be

found via Zenodo (http://dx.doi.org/10.

5281/zenodo.580099).

Short Name Code availability

DYNAMICO DYNAMICO is open source and

available online from IPSL Forge

(http://forge.ipsl.jussieu.fr/dynamico)

or directly by request to Thomas Du-

bos (dubos@lmd.polytechnique.fr).

The release used for DCMIP2016

can be found via Zenodo (http:

//dx.doi.org/10.5281/zenodo.583718).

FV3 FV3 model source code is available

through the GFDL Virtual Lab (https:

//vlab.ncep.noaa.gov/web/fv3gfs). Access

requires users to create a Virtual Lab ac-

count.

FVM Model codes developed at ECMWF, in-

cluding the IFS and FVM, are intellec-

tual property of ECMWF and its mem-

ber states. Although the FVM code is

not publicly available at present, it is

expected that FVM will be available in

the near future under the OpenIFS li-

cense (http://www.ecmwf.int/en/research/

projects/openifs). The repo tag for the ver-

sion of FVM that applies for DCMIP is

“v0.1”.a

GEM Due to licensing requirements, GEM

model code is only available by re-

quest to Abdessamad Qaddouri (ab-

dessamad.qaddouri@canada.ca) or Vi-

vian Lee (vivian.lee2@canada.ca).

ICON ICON is freely available to the scien-

tific community for non-commercial

research under an institutional license

issued by project partners DWD and

MPI-M. Because of the restrictions

of this license, access to the code

is only available by request to Gün-

ther Zängl (guenther.zaengl@dwd.de)

or Marco Giorgetta

(marco.giorgetta@mpimet.mpg.de).

MPAS MPAS is an open-source model avail-

able under the BSD three-clause li-

cense via GitHub (https://github.com/

MPAS-Dev/MPAS-Release). The release

used for DCMIP2016 can be found

via Zenodo (http://dx.doi.org/10.5281/

zenodo.583316).

NICAM NICAM source code is available under

the BSD two-clause license via Zen-

odo (http://dx.doi.org/10.5281/zenodo.

580128). Further information on collab-

orating with the NICAM team can be

found at http://nicam.jp/hiki/?Research+

Collaborations.

OLAM OLAM is open source and avail-

able online via SourceForge (https:

//sourceforge.net/projects/olam-model/).

The release used for DCMIP2016

can be found via Zenodo (http:

//doi.org/10.5281/zenodo.582308).
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Short name Code availability

Tempest Tempest source code is avail-

able under the Lesser GNU Pub-

lic License on GitHub (https:

//github.com/paullric/tempestmodel).

The release used for DCMIP2016

can be found via Zenodo (http:

//dx.doi.org/10.5281/zenodo.579649).

a In compliance with the GMD editorial requirements, this code has been

made available to the topical editor in charge of the paper.
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Appendix A: Moist non-hydrostatic equation sets

In this Appendix, we provide a detailed derivation of the fluid

equations utilized by non-hydrostatic models. The physical

constants which are used throughout this document are given

in Table A1. The material derivative is used for quantities in

the Lagrangian frame (following individual air parcels) and

is given by

d

dt
=
∂

∂t
+ u · ∇, (A1)

where u denotes the 3-D vector velocity. Note that tracer

variables qi , including specific humidity q, in the absence of

sources and sinks satisfy the simple Lagrangian relationship

dqi

dt
= 0. (A2)

A1 Diagnostic relationships

The atmospheric fluid is assumed to be an ideal gas. For

moist air, the ideal gas constant R∗, specific heat capacity

at constant pressure c∗p , and specific heat capacity at constant

volume c∗v are given by

R∗ = Rd + (Rv −Rd)q, c∗p =cpd + (cpv − cpd)q,

c∗v = cvd + (cvv − cvd)q. (A3)

Note that in many models, R∗, c∗p , and c∗v are approximated

by Rd, cpd, and cvd, respectively. Dry air, water vapor, and

moist air quantities all satisfy the linear relationship R =

cp − cv. For a two-fluid system (dry air plus water vapor),

two independent variables plus the specific humidity q are

needed to describe the thermodynamic state of the system.

Key thermodynamic variables include dry air density ρd,

moist density ρ, pressure p, vapor pressure e, temperature

T , virtual temperature Tv, Exner pressure π , potential tem-

perature θ , and virtual potential temperature θv. Common ra-

tios κ = R∗/c∗p , ε = Rd/Rv, and γ = c∗p/c
∗
v are adopted here.

Note that as additional water species are added (cloud water,

rain water, etc.) additional independent variables are needed

to capture the thermodynamic effects of these species, and

the “virtual” quantities need to be modified accordingly, for

instance, through the adoption of density potential tempera-

ture θρ .

Relationships between key thermodynamic variables arise

from the ideal gas law, along with definitions of Exner pres-

sure, potential temperature, and virtual potential tempera-

ture:

p =ρRdTv, π =

(
p

p0

)κ
, θ =T

(
p0

p

)κ
,

θv =Tv

(
p0

p

)κ
, (A4)

which further give rise to

p =

(
ρRdθv

pκ0

)γ
,π =

(
ρRdθv

p0

)R∗/c∗v

,θ =
T

π
,θv =

Tv

π
.

(A5)

Note that virtual temperature is typically written as

Tv = T

(
1 +

(1 − ε)

ε
q

)
, (A6)

which arises from the relationship

Tv =
T

1 − e
p
(1 − ε)

, (A7)

upon applying e/p = q/ε.

A2 Prognostic equations for thermodynamic variables

Note that, as a consequence of Eq. (A2), the following sim-

plifications can be applied:

1

Tv

dTv

dt
=

1

T

dT

dt
,

dR∗

dt
= 0,

dc∗p

dt
= 0,

dc∗v

dt
= 0. (A8)

Mass conservation is typically represented through the conti-

nuity equation, which can be written in the Lagrangian frame

as

dρ

dt
= −ρ∇ ·u, (A9)

or equivalently in the Eulerian frame:

∂ρ

∂t
= −∇ · (ρu). (A10)

Further prognostic relationships can be derived from the ther-

modynamic equation, including the diabatic heating rate J :

1

T

dT

dt
−
κ

p

dp

dt
=

J

T c∗p
, (A11)

which can be alternatively written as

dθ

dt
=
Jθ

T c∗p
, or

dθv

dt
=
Jθv

T c∗p
. (A12)

These equations can then be combined with Eq. (A9) to ob-

tain

∂

∂t
(ρθv)+ ∇ · (ρθvu)=

Jρθv

T c∗p
, (A13)
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Table A1. A list of physical constants used in this document.

Constant Description Value

aref Radius of the Earth 6.37122 × 106 m

�ref Rotational speed of the Earth 7.292 × 10−5 s−1

gc Gravitational acceleration 9.80616ms−2

p0 Reference pressure 1000hPa

cpd Specific heat capacity of dry air at constant pressure 1004.5Jkg−1 K−1

cpv Specific heat capacity of water vapor at constant pressure 1930.0Jkg−1 K−1

cvd Specific heat capacity of dry air at constant volume 717.5Jkg−1 K−1

cvv Specific heat capacity of water vapor at constant volume 1460.0Jkg−1 K−1

Rd Gas constant for dry air 287.0Jkg−1 K−1

Rv Gas constant for water vapor 461.5 Jkg−1 K−1

ε Ratio of Rd to Rv 0.622

Mv Constant for virtual temperature conversion 0.608

ρwater Reference density of water 1000 kgm−3

or similarly for θ . In conjunction with the material derivative

of the ideal gas law,

1

p

dp

dt
=

1

ρ

dρ

dt
+

1

Tv

dTv

dt
, (A14)

the thermodynamic equation can be written in the form

c∗v

R∗Tv

dTv

dt
−

1

ρ

dρ

dt
=

J

T R∗
. (A15)

Then, substituting Eq. (A9) gives a prognostic equation for

virtual temperature:

c∗v

R∗

dTv

dt
+ Tv∇ ·u =

JTv

T R∗
. (A16)

The prognostic equation for temperature is identical except

with T substituted for Tv. An analogous equations for pres-

sure can be obtained through a similar procedure:

c∗v

c∗p

dp

dt
+p∇ ·u =

Jp

T c∗p
, (A17)

and similarly for Exner pressure:

c∗v

R∗

dπ

dt
+π∇ ·u =

Jπ

T c∗p
. (A18)

A3 Momentum equations

In coordinate-invariant form, the prognostic velocity equa-

tions may be written in either the Lagrangian or Eulerian

frame as

du

dt
=
∂u

∂t
+ u · ∇u = −

1

ρ
∇p− 2� × u − ∇8, (A19)

where � denotes the planetary vorticity vector and 8 is the

geopotential function. The three terms on the right-hand side

of this expression correspond to pressure gradient, Coriolis,

and gravitational force, respectively. In Eulerian form, one

must be careful with the treatment of the momentum advec-

tion term u · ∇u, since in an arbitrary coordinate frame this

term will give rise to Christoffel symbols associated with

derivatives of the vector basis. Note that it is common to

rewrite the pressure-gradient force using the relationship

−
1

ρ
∇p = −c∗pθ

[
∇π −π ln

(
p

p0

)
∇κ

]
, (A20)

which follows from Eq. (A4). Note that often in non-

hydrostatic models, κ is assumed constant and the ∇κ term

neglected. A second form of Eq. (A19) emerges on substitut-

ing the vector calculus identity

u · ∇u = ∇K + ζ × u, (A21)

where K = 1
2
(u · u) is the 3-D specific kinetic energy and

ζ = ∇ ×u is the 3-D relative vorticity vector. This gives rise

to the 3-D vector-invariant form,

∂u

∂t
= −

1

ρ
∇p− ∇(K +8)− (ζ + 2�)× u. (A22)

Because no gradients of vectors appear in this equation, it

avoids derivatives of the coordinate basis that would arise

from the momentum transport term u · ∇u in Eq. (A19). In

conjunction with Eq. (A9), Eq. (A19) also gives rise to the

flux-form momentum equations,

∂

∂t
(ρu)= −∇ · (u ⊗ u + Ip)− 2� × (ρu)− ρ∇8, (A23)

where u ⊗ u denotes the outer product and I is the identity

matrix.

The equations above still provide some flexibility with re-

gard to the choice of8 and �. For deep-atmosphere models,

one typically chooses

8= gca
2

[
1

a
−

1

a+ z

]
, and � =�(k sinϕ+ j cosϕ),
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(A24)

where gc is gravitational acceleration at the surface, a is the

radius of the planet,� is the rotation rate (in s−1), ϕ is the lat-

itude, j is the unit vector oriented in the meridional direction,

and k is the unit vector oriented in the vertical direction. For

models that do not utilize a height-based vertical coordinate,

the geopotential is generally treated as a prognostic variable,

with an evolution equation that emerges from the definition

w = dz/dt ,

d8

dt
=

a2gcw

(a+ z)2
. (A25)

For shallow-atmosphere models, the geopotential takes the

simpler form

8= gcz, and � =�sinϕk, (A26)

where z is the altitude above the surface. In this case,

we write 2� = f k, where f = 2�sinϕ is the Coriolis pa-

rameter. The evolution equation for the shallow-atmosphere

geopotential is then

d8

dt
= gcw. (A27)

A4 Orthogonal formulation

Under the orthogonal formulation, projection of a vector field

b onto its horizontal components is defined via

[b]z = b − (b · k)k. (A28)

When applied to the velocity vector, this gives rise to the

decomposition

u = uh +wk, (A29)

where k = ∇z is the unit vector in the vertical direction and

uh = [u]z (uh is aligned with surfaces of constant z). In the

orthogonal formulation, the material derivative expands as

d

dt
=
∂

∂t
+ uh · ∇ +wk · ∇. (A30)

For the special case of the material derivative applied to

scalars, this equation can also be written as

d

dt
=
∂

∂t
+ uh · ∇z +w

∂

∂z
. (A31)

where ∇zb = [∇b]z denotes the gradient along constant z

surfaces. From here, the vector-invariant form velocity equa-

tion obtained by multiplying Eq. (A22) by k expands as

∂w

∂t
= −

1

ρ

∂p

∂z
−
∂

∂z
(K +8)−

[
(ζ + 2�)× u

]
· k, (A32)

which, from uh = u −wk, then gives rise to

∂uh

∂t
= −

1

ρ
∇zp− ∇z(K +8)−

[
(ζ + 2�)× u

]
z
. (A33)

Due to its association with hydrostatic models, it is common

to use the 2-D kinetic energy, K2 = 1
2
(uh · uh). Decompos-

ing the momentum transport term into horizontal and vertical

components gives

u · ∇u = uh · ∇uh + (∇ ×uh)× (wk)+ (u · ∇w)k. (A34)

The first term in this expression admits the relationships

[uh · ∇uh]z = ∇zK2 + ζhk × uh, (A35)

(uh · ∇uh) · k = −uh · (uh · ∇k)

= −K2(∇ · k)−
1

2
[uh · (∇ ×ut )

+(∇ ×uh) · ut ] , (A36)

where ζh = (∇ ×u) ·k = (∇ ×uh) ·k is the relative vorticity

scalar and ut = k×uh. Note that this equation does incorpo-

rate metric terms associated with horizontal advection of k,

which must be accounted for.

Thus, the vertical velocity equation, obtained by taking

Eq. (A19)·k, is

∂w

∂t
=uh · (uh · ∇k)−w

∂w

∂z
− uh · ∇zw−

∂8

∂z

−
1

ρ

∂p

∂z
− (2� × uh) · k. (A37)

Then, subtracting Eq. (A37) ·k from Eq. (A19) gives

∂uh

∂t
= −w(uh · ∇k)−w

∂uh

∂z
− ∇z(K2 +8)

−
1

ρ
∇zp− ζhk × uh − [2� × u]z. (A38)

Note that, under the shallow-atmosphere approximation, the

metric term uh · (uh · ∇k) in Eq. (A37) is set equal to zero in

accordance with Phillips (1966).

A5 Arbitrary vertical coordinates

The dynamical equations are now formulated in terms of the

vertical coordinate s(t,x,z)with ∂s/∂z 6= 0 everywhere, i.e.,

following Kasahara (1974) (hereafter K74). Since x and t are

shared between the two coordinate systems, the chain rule

can be applied to obtain expressions

∂

∂z
=
∂s

∂z

∂

∂s
, ∇s =∇z + (∇sz)(k · ∇),

(
∂

∂t

)

s

=
∂

∂t
+

(
∂z

∂t

)

s

(k · ∇), (A39)

which correspond to derivatives in the vertical, in the hori-

zontal, and in time. This final expression is used to describe
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the rate of change of a quantity on s surfaces. These operators

then yield the useful identities

∂s

∂z
=

(
∂z

∂s

)−1

,∇zs = −

(
∂s

∂z

)
∇sz,

∂s

∂t
= −

∂s

∂z

(
∂z

∂t

)

s

.

(A40)

From here, Eq. (A39) also gives rise to

∇z = ∇s −
∂s

∂z
(∇sz)

∂

∂s
, (A41)

which can be used directly to rewrite Eq. (A33) or Eq. (A38)

in terms of derivatives over s. Note that the operators ∇z
and ∇s are usually introduced in the context of 2-D flows;

however, the construction described here has the advantage

of working seamlessly in a 3-D context, while admitting the

properties k ·∇zA= 0 and k ·∇sA= 0 for any scalar field A.

From Eq. (A39), it can be shown that the 2-D divergence

on s surfaces (given by K74 Eq. 3.17) is

∇s · uh = ∇z · uh +

(
∂s

∂z

)
(∇sz) ·

(
∂uh

∂s

)
, (A42)

and that the 2-D curl is given by

∇s × uh = ∇z × uh +

(
∂s

∂z

)
(∇sz)×

(
∂uh

∂s

)
, (A43)

where ∇z×uh = k(k · (∇ ×uh)). Notably, these expressions

are valid for both shallow- and deep-atmosphere formula-

tions.

The generalized velocity ṡ following a fluid parcel is de-

fined by

ṡ ≡
ds

dt
=
∂s

∂t
+u ·∇s = uh ·∇zs+

[
w−

(
∂z

∂t

)

s

]
∂s

∂z
. (A44)

Then, using Eqs. (A39) and (A44) to rewrite Eq. (A31) gives

an expression for the material derivative for scalars on s sur-

faces:

dA

dt
=

(
∂A

∂t

)

s

−
∂s

∂z

(
∂z

∂t

)

s

∂A

∂s

+uh ·

[
∇sA+ (∇zs)

∂A

∂s

]
+w

∂s

∂z

∂A

∂s
(A45)

=

(
∂A

∂t

)

s

+ uh · ∇sA+ ṡ
∂A

∂s
. (A46)

A similar expression arises for vectors, although in this case

uh · ∇a 6= uh · ∇za implies we cannot use the operator ∇s in

the form (A39), and instead obtain

da

dt
=

(
∂a

∂t

)

s

+ [uh · ∇a + (uh · ∇sz)(k · ∇a)]+ ṡ
∂a

∂s
. (A47)

A6 Conservation laws in arbitrary vertical coordinates

Using Eq. (A42), we observe that the 3-D divergence on the

sphere takes the form

∇ ·u = ∇z · uh +
1

α

∂

∂z
(αw), (A48)

where α = 1 for shallow-atmosphere models and α = r2 =

(a+ z)2 for deep-atmosphere models. Using w = dz/dt , this

last term also takes the form

1

α

∂

∂z
(αw)=

∂w

∂z
+
w

α

∂α

∂z
=
∂w

∂z
+

1

α

dα

dt
. (A49)

Using Eq. (A40) to rewrite Eq. (A44) gives rise to

w =

(
∂z

∂t

)

s

+ uh · ∇sz+ ṡ

(
∂s

∂z

)−1

, (A50)

which is then differentiated to yield K74 Eq. (3.16),

∂w

∂z
=

(
∂s

∂z

)[
d

dt

(
∂s

∂z

)−1

+

(
∂uh

∂s

)
· (∇sz)

]
+
∂ṡ

∂s
= 0.

(A51)

Substituting this expression into continuity Eq. (A9) and us-

ing Eqs. (A48), (A49), and (A51) then leads to

d

dt

[
α

(
∂s

∂z

)−1

ρ

]
+α

(
∂s

∂z

)−1

ρ
[
∇z · uh

+

(
∂s

∂z

)(
∂uh

∂s

)
· (∇sz)

]
+α

(
∂s

∂z

)−1

ρ
∂ṡ

∂s
= 0. (A52)

Defining the pseudo-density as

ρs = α

(
∂s

∂z

)−1

ρ, (A53)

and using Eq. (A46) in the form

dρs

dt
=

(
∂ρs

∂t

)

s

+ uh · ∇sρs + ṡ
∂ρs

∂s
, (A54)

along with Eq. (A42), leads to

(
∂ρs

∂t

)

s

+ ∇s · (ρsuh)+
∂

∂s
(ρsṡ)= 0. (A55)

Hence, for any quantity that is conserved following a fluid

parcel (i.e., dq/dt = 0),

(
∂ρsq

∂t

)

s

+ ∇s · (ρsquh)+
∂

∂s
(ρsqṡ)= 0. (A56)

In particular, the prognostic equation for virtual potential

temperature (or equivalently for potential temperature) reads

(
∂ρsθv

∂t

)

s

+ ∇s · (ρsθvuh)+
∂

∂s
(ρsθvṡ)=

Jρsθv

c∗p
. (A57)
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A7 2-D vector-invariant form

The prognostic equations utilizing horizontal kinetic energy

K2 in place of K are derived by applying Eq. (A39) to

Eq. (A37), yielding
(
∂w

∂t

)

s

=uh · (uh · ∇k)− uh · ∇w

+

(
∂s

∂z

){[(
∂z

∂t

)

s

−w

]
∂w

∂s

−
∂8

∂s
−

1

ρ

∂p

∂s

}
− (2� × uh) · k. (A58)

Similarly, from Eq. (A38),
(
∂uh

∂t

)

s

= −w(uh · ∇k)+

[(
∂z

∂t

)

s

−w

](
∂s

∂z

)
∂uh

∂s

− ζhk × uh − ∇z(K2 +8)−
1

ρ
∇zp− [2� × u]z.

(A59)

Observe that both of these equations simplify when w =

(∂z/∂t)s , i.e., model levels are advected with the vertical

wind.

An alternative form of these equation can similarly be ob-

tained in terms of ṡ. Substituting Eq. (A44) into Eq. (A58)

then gives
(
∂w

∂t

)

s

=uh · (uh · ∇k)− uh · ∇sw− ṡ
∂w

∂s

+

(
∂s

∂z

)[
−
∂8

∂s
−

1

ρ

∂p

∂s

]
− (2� × uh) · k.

(A60)

Similarly, substituting Eq. (A44) into Eq. (A59) and using

the identity

(uh · ∇sz)

(
∂s

∂z

)
∂uh

∂s
= (∇s × uh)× uh

− ζhk × uh + (∇sz)
∂K2

∂z
(A61)

then gives
(
∂uh

∂t

)

s

= −w(uh · ∇k)− ∇sK2 − ζsk × uh − ṡ
∂uh

∂s

− ∇z8−
1

ρ
∇zp− [2� × u]z, (A62)

where

∇s × uh = kζs, and ζs = k · (∇s × uh). (A63)

In this case, the vertical advection terms are removed when

ṡ = 0, i.e., the vertical coordinate is advected with the 3-D

wind u.

Note that under the shallow-atmosphere approximation,

the first metric terms (those that include (uh · ∇k)) in

Eqs. (A58)–(A62) are typically dropped.

A8 3-D vector-invariant form

From Eqs. (A22) and (A39), the evolution equation for the

3-D velocity vector takes the form

(
∂u

∂t

)

s

=

(
∂z

∂t

)

s

(k · ∇u)− ∇(K +8)

−
1

ρ
∇p− (ζ + 2�)× u. (A64)

Then, taking the dot product of this expression with k gives

(
∂w

∂t

)

s

=

(
∂s

∂z

)[(
∂z

∂t

)

s

∂w

∂s
−
∂

∂s
(K +8)−

1

ρ

∂p

∂s

]

−
[
(ζ + 2�)× u

]
· k, (A65)

where we have used k ·(k ·∇u)= k ·∇w. Similarly, the prog-

nostic equation for horizontal velocity from Eq. (A33) is re-

formulated as

(
∂uh

∂t

)

s

=

(
∂z

∂t

)

s

(
∂s

∂z

)
∂uh

∂s
− ∇z(K +8)

−
1

ρ
∇zp−

[
(ζ + 2�)× u

]
z
. (A66)

Note that the vorticity term in this expression can be simpli-

fied further using

[(ζ +2�)×u]z = −(ζh +k ·2�)(uh ×k)−wk × (ζ +2�),

(A67)

and

−k×ζ = k ·∇u−∇(k ·u)+u ·∇k =
∂uh

∂z
−∇zw+uh ·∇k.

(A68)

A9 Covariant component formulation

In conjunction with Eq. (A41), the horizontal momentum

equation (in 2-D vector-invariant form as Eqs. A59 or A62,

or in 3-D vector-invariant form as Eq. A66) with an arbitrary

vertical coordinate gives rise to a two-term pressure gradient.

This can be avoided by prognosing the covariant components

of the velocity in place of the physical velocity components.

We define a horizontal covariance operator by

[b]s ≡ [b]z + (∇sz)(k · b). (A69)

Applying this operator to the horizontal velocity gives

vh ≡ [u]s = uh + (∇sz)w. (A70)

For a time-dependent s coordinate, we obtain the identity

[
∂

∂t
(∇sz)

]

s

= ∇s

(
∂z

∂t

)

s

, (A71)
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and so can write
(
∂vh

∂t

)

s

=

(
∂uh

∂t

)

s

+ (∇sz)

(
∂w

∂t

)

s

+w∇s

(
∂z

∂t

)

s

. (A72)

Then, using Eqs. (A72), (A65), and (A66) and identity

(
∂z

∂t

)

s

(
∂s

∂z

)[
∂uh

∂s
+ (∇sz)

∂w

∂s

]
+w∇s

(
∂z

∂t

)

s

=

(
∂s

∂z

)(
∂z

∂t

)

s

{
∂vh

∂s
− ∇s

[(
∂s

∂z

)−1

w

]}

+ ∇s

[(
∂z

∂t

)

s

w

]
, (A73)

gives

(
∂vh

∂t

)

s

= −∇s

[
K −w

(
∂z

∂t

)

s

+8

]
−

1

ρ
∇sp

−
[
(ζ + 2�)× u

]
s

(A74)

+

(
∂s

∂z

)(
∂z

∂t

)

s

{
∂vh

∂s
− ∇s

[(
∂s

∂z

)−1

w

]}
.

(A75)

Finally, we can expand the vorticity term and hence obtain

(
∂vh

∂t

)

s

= −∇s

[
K −w

(
∂z

∂t

)

s

+8

]
−

1

ρ
∇sp− [2� × u]s

+ [k · ∇s × vh](uh × k)

− ṡ

{
∂vh

∂s
− ∇s

[(
∂s

∂z

)−1

w

]}
−

(
∂z

∂t

)

s

uh · ∇k.

(A76)

A10 Vorticity divergence form

The vorticity divergence form of the dynamical equations in

an arbitrary vertical coordinate predicts the absolute vorticity

(ζ ∗
h ) and velocity divergence (D) given by

ζ ∗
h = (∇s × uh + 2�) · k, (A77)

and

D ≡ ∇s · uh, (A78)

respectively, instead of the horizontal velocity. The horizon-

tal velocity can be obtained from the stream function ψ and

the velocity potential χ following

uh = k × ∇sψ + ∇sχ. (A79)

By using Eq. (A79) in Eqs. (A77) and (A78), we obtain the

elliptic equations that diagnose the stream function and ve-

locity potential from the predicted velocity and divergence

as

∇2
s = ζ ∗

h − 2� · k, and ∇2
s χ =D, (A80)

respectively.

By taking the material derivative (Eq. A46) of Eq. (A77)

and using horizontal momentum Eqs. (A38), (A79), and

(A80), the absolute vorticity prediction equation emerges:

(
∂ζ ∗

h

∂t

)

s

− Js(ζ
∗
h ,ψ)+ ∇s · (ζ ∗

h ∇sχ)+ ∇s ·

(
ṡ
∂

∂s
∇sψ

)

+ k · ∇s ×

(
ṡ
∂

∂s
∇sχ

)
+ Js(ρ

−1,p)= 0, (A81)

where Js(a,b)= k · ∇s × (a∇sb) is the Jacobian operator. It

can also be shown that ṡ relates to the vertical velocity w

through

ṡ =

(
∂s

∂z

)
(w−wc), (A82)

where

wc ≡

(
∂z

∂t

)

s

+ (k × ∇sψ + ∇sχ) · (∇sz). (A83)

By taking the material derivative of Eq. (A78) and using

Eqs. (A38), (A79), and (A80), we can obtain the divergence

prediction equation

(
∂D

∂t

)

s

− Js(ζ
∗
h ,χ)− ∇s · (ζ ∗

h ∇sψ)+ ∇s ·

(
ṡ
∂

∂s
∇sχ

)

+

(
k ×

∂

∂s
∇sψ

)
· ∇s ṡ (A84)

+ ∇s · (∇sK2 + g∇sz)+ ∇s ·

(
1

ρ
∇sp

)
= 0, (A85)

where K2 can be reformulated in terms of stream function

and velocity potential as

K2 =
1

2

[
∇s · (ψ∇sψ)−ψ∇2

sψ + ∇s · (χ∇sχ)−χ∇2
s χ

]

+ Js(ψ,χ). (A86)

A11 Momentum form

The momentum form of the prognostic equations emerges by

combining the prognostic velocity equations with a continu-

ity equation. Essentially, any of the continuity equations can

be chosen, as long as the mass field represented by the equa-

tion is everywhere non-zero. However, the most common

options are moist pseudo-density (Ullrich and Jablonowski,

2012a) or dry pseudo-density (Skamarock et al., 2012). Here,

we denote our density variable by ρ̃s and assume no external

sources or sinks of ρ̃. Multiplying Eq. (A60) by ρ̃s and using
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Eq. (A55) gives

(
∂ρ̃sw

∂t

)

s

=ρ̃suh · (uh · ∇k)− ∇s · (ρ̃suhw)−
∂

∂s
(ρ̃s ṡw)

+ ρ̃s

(
∂s

∂z

)[
−
∂8

∂s
−

1

ρ

∂p

∂s

]
− (2� × ρ̃suh) · k.

(A87)

Similarly, from Eq. (A62), we have

(
∂ρ̃suh

∂t

)

s

= − ρ̃sw(uh · ∇k)− ρ̃s∇sK2 − ζsk × ρ̃suh

− uh∇s · (ρ̃suh)−
∂

∂s
(ρ̃s ṡuh)

− ρ̃s

(
∇z8+

1

ρ
∇zp

)
− [2� × ρ̃su]z. (A88)
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