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Abstract

We extend patch based methods to work on patches in

3D space. We start with Coherency Sensitive Hashing [12]

(CSH), which is an algorithm for matching patches between

two RGB images, and extend it to work with RGBD im-

ages. This is done by warping all 3D patches to a com-

mon virtual plane in which CSH is performed. To avoid

noise due to warping of patches of various normals and

depths, we estimate a group of dominant planes and com-

pute CSH on each plane separately, before merging the

matching patches. The result is DCSH - an algorithm that

matches world (3D) patches in order to guide the search for

image plane matches. An independent contribution is an ex-

tension of CSH, which we term Social-CSH. It allows a ma-

jor speedup of the k nearest neighbor (kNN) version of CSH

- its runtime growing linearly, rather than quadratically, in

k. Social-CSH is used as a subcomponent of DCSH when

many NNs are required, as in the case of image denoising.

We show the benefits of using depth information to image re-

construction and image denoising, demonstrated on several

RGBD images.

1. Introduction

Patch based methods rely on the observation that local

image patches occur frequently within an image. This ob-

servation led to great progress in various applications such

as texture synthesis and image denoising.

Virtually all patch based methods use square patches

and measure similarity between patches using the Sum-of-

Squared-Distances (SSD), no doubt for computational effi-

ciency. But these image patches are the deformed projec-

tions of patches in 3D. We therefore propose to use patches

in 3D space, in order to increase the quantity and the quality

of similar patches. In particular we propose to extend patch

based methods to work on RGBD images.

Clearly, patch matching in 3D induces patch matches

in the 2D image plane, which are defined by homogra-

phies (projective transformations). This richer search space

defines a better pool of potential matches, but requires a

highly efficient search scheme. As a core technology we

develop DCSH, a method for matching patches between

(a) (b)

Figure 1. DCSH: (a) Each image pixel represents a point in 3D

space and a normal direction according to the depth map. (b) Each

world patch (Pi) is projected to some quadrilateral (pi) on the im-

age plane, by some homography (Hi). The fact that world patches

are repetitive in the scene is used to guide the search of similar

(projected) patches in the image plane.

two RGBD images that extends Coherency Sensitive Hash-

ing [12]. CSH is a method for computing an Approximate

Nearest Neighbor Field between two RGB images, or be-

tween an image and itself. Specifically, given an RGBD

image we use the depth values to compute the depth and

normal of every patch and warp the patches to some virtual

reference plane. CSH is carried out in this virtual plane.

Experiments show that this depth information considerably

improves the quality of patch matching.

Still, a single virtual plane might introduce strong warp-

ing and resampling artifacts that will affect matching, es-

pecially for patches with orientation that is perpendicular to

that of the virtual plane. DCSH minimizes these artifacts by

estimating several dominant planes in the 3D space and re-

peating CSH on each plane separately. Matching results are

then merged and sorted to produce a list of unique matching

patches.

So far we focused on the ability to retrieve the best match

but in practice one is often interested in retrieving the k best

matches. Unfortunately, the running time of CSH grows

quadratically with k. To mitigate that, we propose Social-

CSH, whose runtime grows only linearly with k. Social-

CSH finds only a small number of matches for each patch

and enriches the list of matching candidates by incorporat-

ing their own candidate matches. We observe a consider-

able speedup of about ×20, accompanied with an improve-

ment in accuracy, compared to standard CSH. An accu-

racy/efficiency tradeoff can be controlled, allowing for in-

stance, a ×40 speed up at the cost of a slight degradation in

accuracy.
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We show the advantages of our contributions for image

reconstruction, which is a common building block in texture

synthesis algorithms as well as for image denoising. Ob-

taining the RGBD images is not the focus of our work and

we rather aimed at getting the highest quality ground data.

To do so, we used high quality color images, aligned using

a multi-view stereo algorithm, resulting in a single RGBD

image with reliable depth and high quality RGB compo-

nents1. We expect that the rise of range sensors, such as

Kinect, will increase the availability of high quality RGBD

images in the future.

2. Background

At their core, patch-based methods require efficient Ap-

proximate Nearest Neighbor (ANN) algorithms to find sim-

ilar patches to each query patch. Traditional approaches

rely on ANN methods such as KD-trees [3] or LSH [2]. Al-

ternatively, one might consider more recent algorithms such

as Barnes et al’s. PatchMatch [4], which is an extremely ef-

ficient algorithm that works by randomly finding possible

patch candidates and propagating good matches across the

image plane. Korman and Avidan [12] proposed Coherency

Sensitive Hashing (CSH) that combines the strengths of

LSH and PatchMatch.

Such algorithms consider matching patches under 2D

translations only, though some recent works have consid-

ered wider classes of transformations. The higher dimen-

sional search space has a significant impact on the algo-

rithms’ runtime to approximation-accuracy tradeoff. One

example, is the Generalized PatchMatch algorithm [5] that

extends [4] to consider also rotations and uniform scales.

Such a generalized Nearest Neighbor Field (NNF) has been

later shown to be useful in image enhancement applica-

tions [10].

Nevertheless, these additional degrees of freedom (e.g.

scale, rotation) do not suffice to capture the repetitive nature

of patches in the 3D world. An alternative method could

search for matches on a dense SIFT [14] field, and since

SIFT is a stable descriptor under affine transformations this

can be seen as a proxy to patch matching in 3D space. How-

ever, RGBD images contain depth information, so we can

model the 3D geometry explicitly and obtain better match-

ing results.

Image reconstruction has become a customary applica-

tion for evaluating the quality of NNFs. Given only a

target image B and an NNF from a source image A to

B, the goal is to reconstruct image A using the patches

of B. This is a standard building block in many patch

based methods for image enhancement, such as denoising,

super-resolution and retargetting. The most recent state-

of-the-art ANN matching algorithms, TreeCann [15] and

1Figure 5 shows a sample of the RGBD images we use in the paper.

Propagation-Assisted KD-Trees [11], evaluate their recon-

struction capabilities, both visually and in terms of RMS

error.

Image denoising made tremendous progress in the last

decade using various different techniques. We consider

patch-based methods such as Non-Local-Means [7] and its

many extensions, as reviewed in Buades et al. [8], includ-

ing the popular BM3D algorithm [9] that produces state-

of-the-art results. These algorithms work on a single noisy

image, and recent theoretical analysis [13] suggests we are

approaching the limits of patch-based techniques.

One way to improve results is to add information and

Zhang et al. [17] proposed a Multi-View Image Denois-

ing algorithm where the goal is to collect similar patches

across multiple views with independent noise, where depth

is treated as a latent variable to be estimated from the data.

In recent years, active IR sensors such as Kinect and other

Time of Flight sensors have become wide spread. They are

today an important source for RGBD images. With RGBD

images there are no multiple views available to aid the de-

noising process, but we show that single image denoising

can still benefit from the use of depth information.

There is also some research on denoising Kinect images,

where the goal is to denoise the depth map produced by the

sensor. For example, Park et al. [16] produce a high quality

depth map by upsampling the original depth map using the

high quality RGB image. We deal with a different setting of

denoising the RGB component of an RGBD image, using

depth as a cue.

3. DCSH (Depth CSH) matching

DCSH extends Coherency Sensitive Hashing (CSH) [12]

to work with RGBD images. The general idea is to use

the better matchings that occur between real-world patches

in order to find correspondences between their projected

image-patches. This can be done by mapping the area

around each image pixel by a very particular warp, simulat-

ing a camera scanning the surface at a fixed distance from a

fixed direction. In Section 3.1 we will first be interested in

a particular case, where each surface location will be nor-

malized as if it was viewed from the direction of the surface

normal, at a fixed depth. In Section 3.2 we present a more

general patch normalization scheme, which will be used in

the final DCSH matching algorithm, which is described in

Algorithm 1.

3.1. Simulating a (per pixel) fronto-parallel view

Given the 3D world coordinates ra = (Xa, Ya, Za) asso-

ciated with each image pixel a, we first use a standard robust

estimation of the normal direction na at the 3D point. That

is, we take na to be the least-squares solution to the stack of

49 equations of the form rb · na = 1 for each pixel b in the

7× 7 neighborhood of a.
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(a) (b)

Figure 2. Simulating a (per pixel) fronto-parallel view: (a) For

each (green) pixel in the image, we simulate its local appearance,

as if the surface was captured from a fronto-parallel view at a dis-

tance of zref . For doing so, consider an origin based world-patch

(blue, on left), which faces the z axis. We rotate it in 3D to face the

associated normal na, translate it to the associated 3D location ra,

and finally - project it to a quadrilateral on the image plane. The

combined transformation defines a homography ha. (b) The in-

verse homography h−1

a can be used to sample a normalized patch

(green) around the pixel. We then (in-plane) rotate the normal-

ized patch (by a rotation matrix Ra) such that it faces its dominant

RGB texture orientation (white arrow). A new normalized patch

can be sampled using R−1

a · h−1

a (further details in text).

Once we know the 3D location ra and normal na, we

turn to compute the homography Ha that will enable sam-

pling the surface at ra from the direction of na at a fixed dis-

tance of zref . The main steps of the homography construc-

tion are illustrated in Figure 2(a). A world-patch, located

at the origin and facing direction of z = (0, 0, 1), is first

rotated in 3D so that its normal coincides with the surface

normal direction na. This is done using a rotation matrix

R = I + [ŵ]× sin θ + (1 − cos θ)[ŵ]2
×

, where w = n̂ × ẑ,

θ = cos−1(n̂ · ẑ) 2 and [·]× denotes the skew symmetric

matrix of a vector. Then, it is shifted from the origin to

ra = (Xa, Ya, Za) and finally - projected to a quadrilat-

eral on the image plane, using the intrinsic matrix K. The

combined transformation ha can be formalized by:

ha =

[

f 0 0

0 f 0

0 0 1

]

·
[

Ra
11

Ra
12

Xa

Ra
21

Ra
22

Ya

Ra
31

Ra
23

Za

]

·
[

1/f 0 0

0 1/f 0

0 0 1/zref

]

(1)

One remaining degree of freedom of the warp is the sur-

face in-plane rotation (perpendicular to the normal) which

determines the orientation of the normalized patch. We use

the orientation normalization technique of SIFT [14], where

a prominent orientation is chosen according to a weighted

voting scheme, based on orientations and magnitudes of

grayscale intensity gradients in a neighborhood of the cen-

tral pixel. The recovered in-plane rotation Ra is used to

produce the final homography Ha = ha ·Ra.

3.2. Simulating (several) general views

In the previous section we normalized each pixel lo-

cation to a patch, representing a canonical fronto-parallel

2For any vector v, v̂ is the its unit normalized version.
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Figure 3. Example of DCSH viewpoint clustering. The Dress

image clustered to 10 prototypical viewpoints, color-coded from 1

to 10 (Areas with invalid depth are coded with 0, dark blue).

view. Since pixel resolution in the image is limited, the

normalization process for areas in the surface whose nat-

ural camera viewpoint is very different from being both

fronto-parallel and at depth zref , will introduce warping

and resampling errors that affect the quality of the match-

ing. For example, areas that are close to the camera (with

depth smaller than zref ) will be compared based on their

normalized versions, which lack relevant information, e.g.,

due to downsampling. In general, any possible reference

plane will work well for areas that undergo only a mild de-

formation under the normalization. The normalization to

different viewpoints results in a rich variety of candidate

patches which will enable improved patch matching.

The gold standard, in this sense, would be to normal-

ize all of the image patches to every single viewing point

of each of the image’s patches (leaving the target image

patch unchanged under the normalization). This of course

is infeasible, and we therefore compromise between speed

and accuracy by selecting a set of L prototypical view-

points, which are found by a clustering process on the sur-

face normals and depths (these determine the natural view-

point). Specifically, each pixel is represented by a 5D vector

[x, y, z, nx, ny], where [x, y, z] are its associated 3D coordi-

nates and [nx, ny] are the x and y components of the normal

at the 3D point. We normalize all values to the range [0, 1],
except for x, y that are normalized to the range [0, 0.5]. This

serves to encourage nearby pixels in the image plane to be-

have similarly. We then run k-means in this 5D space and

each cluster center induces a different reference plane.

Each representative cluster center [xi, yi, zi, ni
x, n

i
y] rep-

resents a specific prototypical viewpoint and induces a ho-

mography Hi (following the exact formulation in the Sec-

tion 3.1). See Figure 3 for an example of clustering an im-

age to L=10 areas with prototypical viewpoints. The nor-

malization of any patch a to the i’th viewpoint can now

be synthesized by resampling through the concatenated ho-

mography: Na = Hi ·H−1
a .

3.3. Nearest neighbor search

The procedure above produces a (square) normalized

patch for each location in images A and B. The CSH al-
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Algorithm 1 DCSH: Matching Patches in RGBD Images

Input: RGBD images A and B, intrinsic matrix K

Output: k patch mappings (homographies) per pixel a ∈ A

Step 1: Homographies to a fronto-parallel plane zref

1. For each pixel a ∈ A (and b ∈ B):

(a) Estimate the normal na, using LS (see Sec. 3.1).

(b) Compute the homography ha (Eqn. 1).

(c) Find the (orientation normalizing) in-plane rota-

tion Ra (see Sec. 3.1).

(d) Compute the final homography: Ha = ha ·Ra.

Step 2: Prototypical Viewpoint Fitting

1. Using K-means (see Sec. 3.2) - Fit L homographies

{Hi}Li=1 (each induced by a prototypical viewpoint).

Step 3: Nearest Neighbor Search

1. For each prototypical homography Hi:

(a) Create a normalized patch per location a ∈ A

(and b ∈ B) by sampling: Na = Hi ·H−1
a · pa .

(b) Run a kNN CSH search between the arrays of

normalized patches: {Na}a∈A and {Nb}b∈B .

(c) For each match Na ⇒ Nb (k per location), com-

pute the direct mapping Hab =: H−1
a ·Hb and the

associated error ‖Hab · pa − pb‖2 (see Sec. 3.3).

2. Return the k lowest-error transformations per a ∈ A

(out of the kL possible candidates).

gorithm [12] is then naturally used to match these normal-

ized patches, but it requires two simple adaptations. While

it usually works with the entire set of overlapping square

patches of an image, here, one patch per location is given

to the algorithm, but these patches do not overlap in the

regular sense. This fact required the preprocessing stage

of Walsh-Hadamard-Kernel patch projections to be com-

puted directly (rather than using the more advanced Grey-

Code Kernel method [6], which requires true overlapping).

In addition, since neighboring patches underwent different

homographies and orientation corrections, patch matches

in the image plane are propagated in all four directions

(up/down/left/right) rather than in the single expected di-

rection.

Once matches have been found, we no longer need the

’bridging’ normalized patches and we turn back to the

original image patches and construct direct mappings be-

tween them, avoiding excess interpolation and resampling.

Namely, if the normalized version H−1

b (pb) of the patch

pb ∈ B was matched to H−1
a (pa) (a normalized version of

a patch pa ∈ A), we directly link the corresponding loca-

tions using the combined homography: Hab =: H−1
a ·Hb.

4. Social-CSH

The main computational effort of the DCSH algorithm is

spent on its NN search stage. The burden of this stage be-

comes even worse, when we use many simulated viewpoints

or are required to find a large number, k, of NNs. Although

CSH is a fast algorithm for approximate k-ANN Field es-

timation, it inherently scales quadratically with k. Simply

put, this happens since each patch evaluates the k NNs of

its k NNs. This deems the algorithm impractical in cases

where k is large (e.g. in the order of hundreds). In order to

overcome this obstacle, we introduce Social-CSH, which is

a standalone improvement of kNN CSH, independent of the

DCSH framework.

Social-CSH runs standard CSH as a subroutine, and it

is based on sharing matches across NNs. Social-CSH is

configured by two parameters - k (the desired number of

NNs) and k̃ (the number of NNs to be computed by the CSH

subroutine). The process is as follows: standard CSH is

used to get k̃ seed NNs per patch. This core list is extended

by taking the NNs of NNs, forming a merged list of k̃2 +
k̃ NNs. The merged list is scanned to remove duplicates

and sorted by RMSE to take the best k candidates as a final

output.

We chose k̃ to be 2
√
k, as it results in an expanded list

of ∼ 4k patches, which is a large enough set from which

a high quality set of k distinct NNs may be obtained. As

a result of this selection, Social-CSH grows linearly, rather

than quadratically, in k. Our experiments validate this speed

up (being 10 to 50 times faster for k in the range of 100
and 200) and show that Social-CSH typically improves on

accuracy as well. In addition, we will demonstrate how the

choice of k̃ trades-off between speed and accuracy.

4.1. Social-CSH experiments

We evaluated Social-CSH on three RGB images (Dress,

Cup and Friends) from our RGBD image collection, ignor-

ing the depth component. In the first setup, we seek to get

k = 100 nearest neighbors (NNs). we run the standard

CSH kNN with k = 100 and compare it to Social-CSH with

k̃ = 20 (which is 2
√
k, our default choice). In the second

and third setups, we seek to get k = 200 NNs. we run the

standard CSH kNN with k = 200 and compare it to Social

-CSH with 2 different choices of k̃ = 30 and k̃ = 20 (above

and below 2
√
k, respectively), which result in the choice of

the best 200 out of 900 or 400 NNs. These two configu-

rations of Social-CSH will demonstrate its speed-accuracy

tradeoff.

The results are shown in the top (RMSE gain in map-

ping) and bottom (runtime speedups) tables of Figure 4.
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Considering first the comparisons for the first setup (k =
100), which appears in the left side of both tables, we can

see an average improvement in RMSE of 2.59% along with

a major average speedup factor of 13.2.

In the right hand side of each of the tables, where k =
200, the results in the parentheses are those of the second

configuration (with k̃ = 20) of Social-CSH. Comparing

CSH to the first configuration of Social-CSH (using k̃ = 30)

the average gain of 3% in RMSE is similar to that of the

previous setup, however, as expected - the average runtime

speedup jumps to 22.6. The second configuration (with

k̃ = 20) gives a boost in speed to a factor of 41.2, but results

in accuracy loss of -1.2%. This clearly shows the trade-

off between speed and accuracy, which can be controlled

through the k̃ parameter of Social-CSH.

k = 100 k = 200

image CSH S-CSH gain CSH S-CSH gain

Dress 35.3 34.4 2.6% 35.6 34.7 (35.9) 2.5% (-0.8%)

Cup 36.8 36.0 2.1% 36.9 36.2 (37.3) 1.8% (-1.3%)

Friends 40.7 39.4 3.0% 40.9 39.9 (41.5) 2.5% (-1.5%)

avg.: 37.6 36.6 2.6% 37.8 36.9 (38.2) 2.3% (-1.2%)

k = 100 k = 200

image CSH S-CSH speedup CSH S-CSH speedup

Dress 927 69.6 13.3 2986 133 (69.6) 22.5 (43.0)

Cup 894 68.1 13.1 2988 133 (68.1) 22.7 (42.6)

Friends 1021 77.4 13.2 2899 128 (77.4) 22.5 (38.3)

avg.: 947 71.7 13.2 2959 131 (71.7) 22.6 (41.3)

Figure 4. kNN performance: CSH versus Social-CSH. Top:

RMSEs (in graylevels) and gain factors. Bottom: Runtimes (sec-

onds) and speedup factors. See text for full details.

5. DCSH Applications

The iPhone data-set The iPhone data-set consists of 8

RGBD images3, five of which can be seen in rows 1 (RGB),

2 (depth) and 3 (estimated normals) of Figure 5. The images

include a variety of indoor and outdoor scenes, taken under

different conditions, where most are characterized by large

amounts of detailed texture, which appear across different

depths or surfaces in the scene.

5.1. Image Reconstruction

In this experiment, we demonstrate the added value of

using real-world patches, as opposed to standard square im-

age patches, in the clean process of image reconstruction.

In this process, given only a target image B and an NNF

from a source image A to B, it is required to reconstruct

image A using only the patches of B.

We use Coherency-Sensitive-Hashing (CSH) [12] as the

NNF search engine in our reconstruction alternatives. The

baseline method computes an ordinary NNF, using CSH,

3The full set of 8 images appears in the project webpage [1].

(a) Friends (b) Cup (c) Paper (d) Dress (e) Book

Figure 5. Five representative images of the iPhone dataset.

Rows 1-2: input RGBD images. Row 3: Estimated normals maps,

where gray areas are invalid due to noisy or missing depth values.

between square 8 × 8 image patches. In the reconstruc-

tion process, each patch is replaced by its nearest neighbor

patch and since the NNF is dense, each final pixel will be

an average of the 64 pixel values it receives through the 64

patches that contain it. A standard improvement (following

Non-Local-Means (NLM) [7]) is achieved by introducing

a spatial gaussian weight kernel G (with a spatial σ of 5)

over each NN patch, giving higher weight to pixels closer

to the center of the patch. The final result is a weighted

average, per pixel, of 64 color samples. We term this base-

line method CSH-NLM. On the other hand, replacing CSH

by DCSH, we obtain an equivalent reconstruction pipeline,

DCSH-NLM. A delicate adjustment is needed, regarding

the NLM gaussian weighting scheme. This is due to the

fact that the matches were retrieved in a normalized plane,

so the gaussian weighing should be done in the normalized

plane itself, rather than on the image plane. We therefore

use at each patch p centered at pixel a, the same Gaussian

weight kernel G after warping it back to image A, using the

relevant inverse homography Ha, namely, H−1
a ·G.

In addition, we were interested in the contribution of

the orientation normalization step (see step 1(c) in Algo-

rithm 1). To that end, we run two versions - DCSH-NLM-

Orient and DCSH-NLM, with and without the orientation

step. Some examples of running both methods (baseline

CSH-NLM vs. DCSH-NLM with/without color texture ori-

entation normalization) on several image pairs from the

iPhone data-set appear in detail (focusing on specific en-

larged areas) in Figure 6. Also, in Table 1, we compare the

performance of the 3 methods on the full images.

method/image Dress Plane1 Plane2 Building Rocks

CSH-NLM 13.31 10.74 4.8 10.32 9.76

DCSH-NLM 8.03 7.86 2.09 8.81 6.99

DCSH-NLM-Orient 6.86 7.52 1.68 6.65 6.26

Table 1. RMSEs (in graylevels) of reconstructions. We compare

DCSH (with and without orientation normalization) to the base-

line CSH. The introduction of patch normalization reduces the re-

construction error dramatically, while the addition of orientation

normalization (as done in SIFT) gives an additional improvement.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)
Figure 6. Three reconstruction examples. For each example: (a) RGB images - source (top), target (bottom) (b) normal maps (c)

original subimage, (d) CSH-NLM reconstruction (top) and RMSE (bottom), (e) DCSH-NLM reconstruction (top) and RMSE (bottom), (f)

DCSH-NLM-Orient reconstruction (top) and RMSE (bottom), (g)-(j): another subimage reconstruction example.

5.2. RGBD image denoising

We choose to demonstrate the added value of us-

ing world 3D patch matches through a simple denoising

pipeline. It first finds, for each patch, a set of similar

patches. These patches are then used to construct a low-

rank PCA space, and denoising the original patch amounts

to projecting it on the subspace and storing the denoised

patch back in the image. Since each pixel is covered by

multiple patches, averaging is used to obtain the denoised

image. And optionally - a Bilateral Filter is applied as post

processing step. We give further details on each of the steps.

Step 1: Find K NNs per patch In this stage we find

k=200 NNs per image patch. In the first alternative, we

compute the 200 NNs directly with CSH and in the second

- we run both CSH and DCSH to find 200 NNs each and

choose the best 200 (with lowest SSD errors) of the two

sets of patches. The reason we use the combination is that

the 2D CSH patches have the advantage of not undergoing

any kind of warping.4

Step 2: Denoise each image patch using PCA Formally,

let p be the query RGB patch (represented as a flat vector

of length L) and let P = {pi}mi=1 be the set of m match-

ing patches found in step 1. We then create the matrix A =
[p−u, p1−u, · · · , pm−u], where u = 1

m+1
(p+

∑m
i=1

pi)

4Both CSH and DCSH are run in their ’Social’ version (see Section 4)

is the patch mean. We take an SVD decomposition of

A = UDV T , and project p on the eigenvectors of the top c

eigenvalues to obtain the denoised patch p′:

p′ = u+ UDcV
T (p− u) (2)

where Dc is a diagonal matrix (with A’s singular values

{λd}Ld=1
on its diagonal) where the singular values beyond

c are set to zero. We use the method of Zhang et al. [17]

to automatically find the preferred dimensionality c, sepa-

rately for each set of matching patches

Step 3: Integrate the denoised patches to form the de-

noised image Using 8×8 patches, 64 values are assigned

to each pixel and are averaged to obtain the denoised image.

Step 4: Bilateral filtering This is an optional step, which

isn’t needed for comparing the denoising scheme with and

without the usage of depth. It is intended to handle the

smooth areas of the image, which aren’t handled specifi-

cally by our pipeline. This is required in order to compare

against dedicated algorithms, such as BM3D.

We experiment with three versions of this pipeline:

• CSH-PCA: Steps 1-3, where in step 1 we use 200 2D

patches, found by CSH.

• DCSH-PCA: Steps 1-3, where in step 1 we use the

best 200 patches out of: 200 2D patches (found by

CSH) in addition to 200 3D patches found by DCSH.
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• DCSH-PCA-BI: Like DCSH-PCA, with the addition

of Bilateral filtering (step 4)

5.2.1 RGBD image denoising experiments

In this section, we experiment with the 3 denoising versions.

Throughout the experiments, we compare our method with

the BM3D [9] algorithm, which is considered a state of the

art method in the field. The input to our algorithm is an

RGBD image with synthetic noise added to the RGB image,

while assuming the depth image is left intact. In all experi-

ments we create the noisy image, by adding white gaussian

noise with a standard deviation of σ = 25 graylevels to each

color channel independently.

It is a well known property of natural images, that the

higher the textureness (e.g. mean gradient magnitude) of a

patch - the lower the density of similar patches in the im-

age (see e.g. [18]). One implication of this fact is that NNs

methods tend to under-smooth low texture area, since they

fit the noise rather than the signal. These areas dominate

an image’s area and therefore such methods need to specif-

ically handle non-textured areas. To that end, we use the

Bilateral Filter, which further smoothes these areas. An-

other implication is that textured patches typically have few

good NNs throughout the image. For such patches, the in-

troduction of normalized (3D) patches allows to increase the

density of similar patches in the image, by searching across

general homographies (image plane scales and orientations

as well as out-of-image-plane rotations). We therefore ex-

pect the main impact of depth normalization to occur in tex-

tured areas of the image.

This assumption can be validated, when inspecting

in which regions of the images our method outperforms

BM3D. These regions are shown, for example, in Figure 7

(c) colored in green (BM3D is superior in red areas), and

are evidently highly correlated with the textured areas of

the image. An insight into the contribution of 3D patches

to the denoising process can be observed by examining the

statistics of the patches that manage to get into the final list

of 200 patches fed to the PCA process. Over all images, an

average of around 80% of the patches originated from the

(a) (b) (c)

Figure 7. A detailed example (see text for discussion): (a) noisy

image (b) fraction of normalized (as opposed to regular) patches

automatically chosen by the algorithm (the range [0,1] color coded

by [blue,red]), (c) ’winner’ areas - DCSH (green) vs. BM3D (red).

list of normalized (3D) patches. This can be seen visually

in Figure 7 (b), where the per-patch ratio (in [0,1]) of 3D

patches vs. regular image patches is color-coded [blue to

red]. Namely, red areas are those where the vast majority of

contributing patches came from the normalized list.

in Table 2, we compare the different versions of our

pipeline to that of BM3D. Comparing the first and second

columns (CSH-PCA vs. DCSH-PCA) the contribution of

adding depth normalization is evident across all examples

and amounts to an average of 0.5dB. In order to compare

with BM3D, we added the post-processing bilateral filter

smoothing (DCSH-PCA-BI). Here as well, our method im-

proves on BM3D with a significant average gain of 0.5 dB5.

image CSH-PCA DCSH-PCA CSH-PCA-BI BM3D

Paper 29.70 30.53 31.56 30.32

Friends 28.82 29.01 29.70 28.66

Dress 29.16 29.63 30.70 29.67

Cup 30.16 30.42 32.15 31.97

Book 28.71 29.35 30.09 29.28

Rocks 28.15 28.85 29.49 29.91

Tree 27.80 28.29 28.87 29.19

Mosaic 27.89 28.47 29.19 28.68

Avg.: 28.80 29.32 30.22 29.71

Table 2. PSNR denoising results on iPhone data-set: The usage

of 3D patches results in significantly improved denoising (compar-

ing CSH-PCA to DCSH-PCA) across all images with an average

gain of 0.5 dB. Also, our method equipped with the final bilateral

filter post-processing improves on BM3D across all images, with

an average gain of 0.5 dB.

Figure 8 gives a close look at the qualities of our different

denoising results (also compared to BM3D) on several im-

ages from our iPhone dataset. Across the different images,

the contribution of (3D) patch normalization can be seen

by comparing columns ’2D’ (CSH-PCA) and ’3D’ (DCSH-

PCA) (notice especially the doll’s ear, where fine details are

revealed, or the cleaner letters in the text). Also, in com-

parison to BM3D, our full pipeline ’3D-BI’ better preserves

fine details (e.g. in dress flowers) and introduces less hallu-

cinated artifacts (e.g. around text letters).

6. Conclusions

We extended patch based methods to work on patches in

3D space. In particular, we extended the CSH patch match-

ing algorithm to work with RGBD images. The novel al-

gorithm, DCSH, runs CSH on a set of planes, representing

prototypical viewpoints in the image. We also developed

Social-CSH, an independent contribution, which improves

kNN CSH to allow quick computations of ANN fields for

large values of k (e.g. in the hundreds), at lower error rates.

We showed the added value of using depth information

for improving the quality of patch matching and in partic-

5Note that our method uses depth information, which BM3D does not.
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C&N 2D 3D 3D-BI BM3D C&N 2D 3D 3D-BI BM3D
Figure 8. iPhone dataset denoising examples. Each example contains: the clean RGB image and 4 enlarged areas, each with 5 columns.

’C&N’: Clean patch (top) and Noisy patch (bottom), ’2D’: CSH-PCA denoised (top) and RMSE (bottom), and similarly for the others:

’3D’: DCSH-PCA, ’3D-BI’: DCSH-PCA-BI, ’BM3D’: BM3D. Additional results appear in the project webpage [1].

ular, we experimented with DCSH in the context of image

reconstruction and image denoising. The results point to

depth as a new source of information in patch based meth-

ods and suggest that DCSH could prove useful in other ap-

plications, such as super-resolution, inpainting and retar-

getting. In addition, the algorithmic improvement used in

Social-CSH can be applied to other existing 2D algorithms.
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