DCT Quantization Matrices Visually Optimized for Individual Images

Andrew B. Watson
NASA Ames Research Center

Abstract

This presentation describes how a vision model incorporating contrast sensitivity, contrast masking, and light adaptation is used to design visually optimal quantization matrices for Discrete Cosine Transform image compression. The Discrete Cosine Transform (DCT) underlies several image compression standards (JPEG, MPEG, H.261). The DCT is applied to 8×8 pixel blocks, and the resulting coefficients are quantized by division and rounding. The 8×8 "quantization matrix" of divisors determines the visual quality of the reconstructed image; the design of this matrix is left to the user.

Since each DCT coefficient corresponds to a particular spatial frequency in a particular image region, each quantization error consists of a local increment or decrement in a particular frequency. After adjustments for contrast sensitivity, local light adaptation, and local contrast masking, this coefficient error can be converted to a just-noticeable-difference (jnd). The jnds for different frequencies and image blocks can be pooled to yield a global perceptual error metric. With this metric, we can compute for each image the quantization matrix that minimizes bitrate for a given perceptual error, or perceptual error for a given bitrate.

Implementation of this system demonstrates its advantages over existing techniques. A unique feature of this scheme is that the quantization matrix is optimized for each individual image. This is compatible with the JPEG standard, which requires transmission of the quantization matrix.

$$
\begin{aligned}
& \text { Contrast Masking } \\
& \hline \text { - Thresholds increase as contrast increases } \\
& \text { - Masking greatest within block and coeff } \\
& \text { - Define Contrast-Masked threshold } \\
& m_{i j k}=\operatorname{Max}\left[t_{i j k},\left|c_{i j k}\right|^{w_{i j}} t_{i j k}^{1-w_{i j}}\right] \\
& \text { - } w_{i j}(0-1) \text { defines strength of masking } \\
& \text { - } w_{i j} \text { may differ for different frequencies } i, j
\end{aligned}
$$

Perceptual Error
- Define elementary perceptual error as jnd
- Quantization error divided by masked threshold

$d_{i j k}=e_{i j k} / m_{i j k}$

