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ABSTRACT

We propose an efficient, general-purpose, distortion-agnostic,

blind/no-reference image quality assessment (NR-IQA) algo-

rithm based on a natural scene statistics model of discrete

cosine transform (DCT) coefficients. The algorithm is com-

putationally appealing, given the availability of platforms

optimized for DCT computation. We propose a general-

ized parametric model of the extracted DCT coefficients.

The parameters of the model are utilized to predict image

quality scores. The resulting algorithm, which we name

BLIINDS-II, requires minimal training and adopts a simple

probabilistic model for score prediction. When tested on the

LIVE IQA database, BLIINDS-II is shown to correlate highly

with human visual perception of quality, at a level that is even

competitive with the powerful full-reference SSIM index.

Index Terms— No-reference image quality assessment,

discrete cosine transform, natural scene statistics, generalized

Gaussian density.

1. INTRODUCTION

The ubiquity of transmitted digital visual information (in the

form of images and video) in every economic sector, and the

broad range of applications that rely on it, such as PDAs, high

definition televisions, internet video streaming, and video on

demand, to name a few, necessitates means to evaluate the

visual quality of this information. The various stages of the

pipeline through which an image passes, introduce distortions

to the image or modify it in one way or another, starting from

its capture until its consumption by a viewer. The capture,

digitization, compression, storage, transmission, and display

processes all introduce modifications to the original image.

These modifications, also termed distortions or impairments,

may or may not be perceptually visible to the viewer. If they

are visible, quantifying how perceptually annoying they are is

an important process for improving Quality of Service (QoS)

in the applications listed above. Since human raters are gener-

ally unavailable or too expensive for these applications, there

is a significant need for objective IQA algorithms.

Only recently did full-reference image quality assessment

(FR-IQA) methods reach a satisfactory level of performance,

as demonstrated by high correlations with human subjective

judgements of visual quality. SSIM [1], MS-SSIM [2], VSNR

[3], and the VIF index [4] are examples of FR-IQA algo-

rithms, to name a few. These methods require the availability

of a reference signal against which to compare the test sig-

nal. In many applications, however, the reference signal is not

available to perform a comparison against. This strictly limits

the application domain of FR-IQA algorithms and points up

the need for reliable blind/NR-IQA algorithms. However, no

current NR-IQA algorithm exists that has been proven con-

sistently reliable in performance.

Presently, NR-IQA algorithms generally follow one of

three trends: 1) Distortion-specific approaches: These algo-

rithms quantify one or more distortions such as blockiness

[5], blur [6], or ringing [7] and score the image accordingly.

2) Training-based approaches: these train a model to predict

the image quality score based on a number of features ex-

tracted from the image [8], [9]. 3) Natural scene statistics

(NSS) approaches: these rely on the hypothesis that images

of the natural world (i.e. distortion free images) occupy a

small subspace in the space of all possible images and seek

to find a distance between the test image and the subspace of

natural images [10].

In this paper, we propose a framework that derives entirely

from a simple statistical model of local DCT coefficients. We

name our algorithm BLIINDS-II (BLind Image Integrity

Notator using DCT Statistics). The new BLIINDS-II index

greatly improves upon a preliminary algorithm (BLIINDS-I)

[11], which uses no statistical modeling and a different set of

sample DCT statistics. BLIINDS-I was a successful experi-

ment to determine whether DCT statistics could be used for

blind IQA. BLIINDS-II fully unfolds this possibility and pro-

vides a leap forward in both performance and in the use of an

elegant and general underlying statistical model. We derive

a generalized NSS-based model of local DCT coefficients,

and transform the model parameters into features used for

perceptual image quality score prediction. It is observed that

the statistics of the DCT features change as the image quality

changes. A generalized probabilistic model is obtained for

these features, and is used to make probabilistic predictions

of visual quality. We show that the method correlates highly
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with human subjective judgements of quality.

The rest of the paper is organized as follows. In Section

2, we provide an overview of the method. In Section 3, we

describe the model-based features. In Section 4, we describe

the generalized probabilistic prediction model. We present

the results in Section 5, and we conclude in Section 6.

2. OVERVIEW OF THE METHOD

The framework of the proposed approach is summarized in

Fig. 1. An image entering the IQA ”pipeline” is first sub-

jected to local 2-dimensional DCT-transform coefficient com-

putation. This stage of the pipeline consists of partitioning the

image into equally sized nxn blocks, henceforth referred to

as local image patches, and computing a local 2-dimensional

DCT transform on each of the blocks. The coefficient extrac-

tion is performed locally in the spatial domain in accordance

with the HVS’s property of local spatial visual processing (i.e.

in accordance with the fact that the HVS processes the visual

space locally) [12]. As will be seen, this nxn DCT decompo-

sition may be accomplished across scales. The second stage

of the pipeline applies a generalized Gaussian density model

to each block of DCT coefficients, as well as for specific par-

titions within each DCT block.

We next briefly describe the nxn DCT block partitions

that are used. In order to capture directional information from

the local image patches, the DCT block is partitioned direc-

tionally as shown in Fig. 2(a) into 3 oriented subregions.

A generalized Gaussian fit is obtained for each of the ori-

ented DCT-coefficient subregions. Another configuration for

the DCT block partition is shown in Fig. 2(b). The parti-

tion reflects 3 radial frequency subbands in the DCT block.

The upper, middle, and lower partitions correspond to the low

frequency, mid-frequency, and high frequency DCT subbands

respectively. A generalized Gaussian fit is obtained for each

of the subregions as well.

The third step of the pipeline computes functions of the

derived model parameters. These are the features used to pre-

dict image quality scores and are derived from the model pa-

rameters.

The fourth and final stage of the pipeline uses a simple

Bayesian model to predict a quality score for the image. The

Bayesian approach maximizes the probability that the image

has a certain quality score given the model-based features ex-

tracted from the image. The posterior probability that the im-

age has a certain quality score given the extracted features is

modeled as a multidimensional generalized Gaussian distri-

bution.

2.1. The Generalized Probabilistic Model

We model image features using a generalized Gaussian family

of distributions which encompasses a wide range of observed

behavior of distorted DCT coefficients.
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Fig. 1. High level overview of the BLIINDS-II framework
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Fig. 2. (a) DCT coefficients, 3 bands, (b) DCT coefficients along 3

orientations

The univariate generalized Gaussian density is given by

αe−(β|x−µ|)γ

, (1)

where µ is the mean, β is the scale parameter, γ is the shape

parameter, and Γ denotes the gamma function given by

Γ(z) =

�

∞

0

tz−1e−tdt, (2)

and α and β are normalizing and scaling constants given by

α =
βγ

2Γ(1/γ)
, (3)

β =
1

σ

�

Γ(3/γ)

Γ(1/γ)
. (4)

This family of distributions includes the Gaussian distribution

(β = 2) and the Laplacian distribution (β = 1). As β → ∞

the distribution converges to a uniform distribution.

3. MODEL-BASED DCT DOMAIN NSS FEATURES

3.1. The Generalized Gaussian Model Shape Parameter

We deploy a generalized Gaussian model of the non-DC
DCT coefficients. In other words, we model the DCT coef-

ficients in an nxn block, omitting the DC coefficient. The

generalized Gaussian density in (1) is parametrized by mean

µ, scale parameter β, and shape parameter γ. The shape

parameter γ is used as a model-based feature. This feature is

computed over all blocks in the image.
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The overall shape parameter-based quality feature used is

found by computing the lowest 10th percentile average of the

local block shape scores (γ) across the image. The reason

for this pooling of the local histogram shape features, as op-

posed to simple averaging, is that percentile pooling has been

observed to result in high correlations with subjective percep-

tion of quality [13]. Percentile pooling is motivated by the

observation that the ”worst” distortions in an image dominate

subjective impressions. We choose 10% as a round number

to avoid the possibility of ”training”. In addition, we com-

pute the 100th percentile average (regular mean) of the local

γ scores across the image.

3.2. The Coefficient of Frequency Variation

The next feature is the coefficient of frequency variation fea-

ture:

ζ =
σ|X|

µ|X|
, (5)

The feature ζ is computed for all blocks in the image. The

highest 10th percentile average and the mean (100th per-

centile) of the local block scores across the image are then

computed. Both pooling results (10% and 100%) are used

as pooled features, since the difference between these is a

compact but rich form of information.

3.3. Energy Subband Ratio Measure

Image distortions often modify the local spectral signatures of

an image in unnatural ways. Towards measuring this, define

a local DCT energy-subband ratio measure. Moving along

diagonal lines on Fig. 2(b) from the top-left corner of the ma-

trix to the bottom-right corner, the DCT coefficients represent

higher radial spatial frequencies in the block. Consequently,

we define 3 frequency bands in the block, as depicted in Fig.

2(b). Let Ωn denote the set of coefficients belonging to band

n, where n = 1, 2, 3, (lower, middle, higher). Then define the

average energy in frequency band n as the model variance σ2
n

corresponding to band n:

En = σ2
n. (6)

This is found by fitting the DCT data histogram in each band

to the generalized Gaussian density model (1), then using the

σ2
n value from the fit. We then compute the ratio of the differ-

ence between the average energy in frequency band n and the

average energy up to frequency band n, over the sum of these

two quantities:

Rn =
|En −

1
n−1

�

j<n Ej |

En + 1
n−1

�

j<n Ej

(7)

This feature is computed for all blocks in the image. We com-

pute the highest 10th percentile average and the 100th per-

centile average (regular mean) of the local block scores across

all the image.

3.4. Orientation Model-Based Feature

Image distortions often modify local orientation energy in

an unnatural manner. To capture directional information in

the image that may correlate with changes in human subjec-

tive impressions of quality, we model block DCT coefficients

along 3 orientations as shown in Fig. 2(a) below. The 3
shaded areas represent the DCT coefficients along 3 orien-

tations. A generalized Gaussian model is fit to each shaded

region in the block, and γ and ζ are obtained from the model

histogram fits for each orientation. We then compute the vari-

ance of ζ along the 3 orientations. The variance of ζ across

the 3 orientations from all the blocks in the image is then aver-

aged (highest 10th percentile and 100th percentile) to obtain

two numbers per image.

4. PREDICTION MODEL

We have found that a simple probabilistic predictive model is

quite adequate for training the features used in BLIINDS-II.

The efficacy of this simple predictor points up the power

of the NSS-based features we have defined. Let Xi =
[x1, x2, ...xm] be the vector of features extracted from the

image, where i is the index of the image being assessed, and

m is the number of features extracted (in our case m = 10 per

scale). Additionally, let DMOSi be the subjective DMOS
associated with the image i. We model the distribution of the

pair (Xi, DMOSi).
The probabilistic model is trained on a subset of the LIVE

IQA Database, which includes DMOS scores, to determine

the parameters of the probabilistic model by distribution fit-

ting. A multivariate generalized Gaussian model is used to

model the data. Parameter estimation of the model only re-

quires the mean and covariance of the empirical data from

the training set. The probabilistic model P (X, DMOS) is

designed by distribution fitting to the empirical data of the

training set. The training and test sets are completely content

independent, in the sense that no two images of the same

scene are present in both sets. The probabilistic model is

then used to perform prediction by maximizing the quan-

tity P (DMOSi|Xi). This is equivalent to maximizing the

joint distribution of X and DMOS, P (X, DMOS) since

P (X, DMOS) = P (DMOS|X)p(X).

5. EXPERIMENTS AND RESULTS

It is well understood that images are naturally multiscale [4],

[14], and that the early visual system involves decomposi-

tions over scales [12]. Towards this end, we implement the

BLIINDS-II concept over multiple scales. Specifically, the

feature extraction is repeated after lowpass filtering the image

and subsampling it by a factor of 2. Prior to downsampling,

the image is filtered by the rotationally symmetric discrete

3x3 Gaussian filter kernel. This defines a multiscale feature

2011 18th IEEE International Conference on Image Processing

3156



LIVE Subset BLIINDS-II BIQI SSIM PSNR

JPEG2000 0.9506 0.7995 0.9496 0.8658

JPEG 0.9411 0.8914 0.9664 0.8889

White Noise 0.9783 0.9510 0.9644 0.9791

GBlur 0.9435 0.8463 0.9315 0.7887

Fast Fading 0.9268 0.7067 0.9415 0.8986

ALL 0.9202 0.8190 0.9225 0.8669

Table 1. Median SROCC correlations for 1000 iterations of train

and test sets (subjective DMOS vs predicted DMOS)

extraction approach, which enables BLIINDS-II to deal with

changes in the image resolution, with distance from the im-

age display to the observer, and with variations in the acuity

of the observer’s visual system.

BLIINDS-II was rigorously tested on the LIVE IQA

Database [15] which contains 29 reference images, each

impaired by many levels of 5 distortion types: JPEG2000,

JPEG, white noise, Gaussian blur, and fast-fading channel

distortions (simulated by JPEG2000 compression followed

by channel bit errors.). The total number of distorted images

(excluding the 29 reference images) is 779 images. Multiple

train-test sequences were run. In each, the image database

was subdivided into distinct training and test sets (completely

content-separate). In each train-test sequence, 80% of the

LIVE IQA Database content was chosen for training, and the

remaining 20% for testing. Specifically, each training set con-

tained images derived from 23 reference images, while each

test set contained the images derived from the remaining 6 ref-

erence images. 1000 randomly chosen training and test sets

were obtained and the prediction of the quality scores was run

over the 1000 iterations. The code for BLIINDS-II is avail-

able at http://live.ece.utexas.edu/research/

quality/BLIINDS release.zip.

The Spearman rank-order correlation coefficient (SROCC)

between predicted DMOS and subjective DMOS is reported

in Table 1 for BLIINDS-II (at 3 scales), BIQI [16] (a recent

NR-IQA method), and the full-reference SSIM and PSNR.

6. CONCLUSION

We have proposed a model-based, general (non-distortion

specific) approach to NR-IQA using a minimal number of

features extracted entirely from the DCT-domain which is

also computationally convenient. We have shown that the

new BLIINDS-II algorithm can be easily trained and it em-

ploys a simple probabilistic model for prediction. The method

correlates highly with human visual perception of quality, and

outperforms the full-reference PSNR measure and the recent

no-reference BIQI index, and approaches the performance of

the full-reference SSIM index.
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