
DDG: An Efficient Prefetching Algorithm for

Current Web Generation

Josep Domènech, José A. Gil, Julio Sahuquillo, Ana Pont

Department of Computer Engineering (DISCA)

Universitat Politècnica de València.

Camı́ de Vera, s/n. 46022 València (Spain)

jodode@doctor.upv.es; {jagil,jsahuqui,apont}@disca.upv.es

Abstract— Web prefetching is one of the techniques proposed
to reduce user’s perceived latencies in the World Wide Web.
The spatial locality shown by user’s accesses makes it possible to
predict future accesses based on the previous ones. A prefetching
engine uses these predictions to prefetch the web objects before
the user demands them. The existing prediction algorithms
achieved an acceptable performance when they were proposed
but the high increase in the amount of embedded objects per
page has reduced their effectiveness in the current web. In
this paper we show that most of the predictions made by the
existing algorithms are useless to reduce the user’s perceived
latency because these algorithms do not take into account how
current web pages are structured, i.e., an HTML object with
several embedded objects. Thus, they predict the accesses to
the embedded objects in an HTML after reading the HTML
itself. For this reason, the prediction advance is not enough to
prefetch the objects and therefore there is no latency reduction.
As a result of a wide analysis of the behaviour of the most
commonly used algorithms, in this paper we present the DDG
algorithm that distinguishes between container objects (HTML)
and embedded objects to create a new prediction model according
to the structure of the current web. Results show that, for
the same amount of extra requests to the server, DDG always
outperforms the existing algorithms by reducing the perceived
latency between 15% and 150% more without increasing the
computing complexity.

I. INTRODUCTION

Despite the high amount of research works and the improve-

ments of the infrastructures, the latency that users perceive

when exploring the Web is still high. Web prefetching is one of

the techniques proposed in the literature to hide latencies, i.e.,

to reduce the perceived latency. It takes benefit from the spatial

locality inherent to the users’ accesses to web objects. In this

way, it is possible to predict future accesses from the past

ones. The prefetching engine makes use of these predictions

to preprocess the predicted objects before the user actually

demands them, so reducing the perceived latency.

To predict the users’ accesses, researchers usually adapt

prediction algorithms from other fields of computing to deal

with web accesses. For instance, the DG algorithm, which

was firstly used in web prefetching by Padmanabhan and

Mogul [1], lies in a predictor of accesses to a local file

system [2]. PPM algorithm, mainly used for lossless data

compression [3], has been also used to predict web accesses

by several authors [4], [5], [6], [7]. With these algorithms,

web prefetching achieved an acceptable performance when

they were proposed. However, the Web has changed noticeably

during the last decade. There are two main differences between

old and current Web generations: the increasing dynamism

and customization of the content [8], and the increase in the

complexity of the web sites design. Despite this fact, to the

knowledge of the authors, no prefetching algorithms taking

into account the new Web sites characteristics have been

proposed.

By analyzing an important set of current Web sites, we

found that there is an noticeable increase in the amount of

embedded objects per page [9]. In this context, most of the

predictions made by the existing algorithms are useless to

reduce the user’s perceived latency because these algorithms

do not take into account how web pages are structured, i.e.,

an HTML object with several embedded objects. Thus, they

predict the accesses to the objects embedded in an HTML

after reading the HTML itself. In this paper we present a fair

performance evaluation study that shows that these predictions

are useless since the client already knows that the following

objects to be demanded are the embedded objects. However,

these objects are not still demanded because the amount of

simultaneous connections to a web server from the same client

is limited, as suggested in the standard HTTP/1.1 [10] and

implemented in the most commonly used web browsers (i.e.,

Internet Explorer and Mozilla Firefox). Therefore, there is

neither time to prefetch nor perceived latency to reduce.

In this context, this paper presents the DDG prediction

algorithm that considers the characteristics of the current web

sites to improve the performance achieved by web prefetching.

It is based on the Dependency Graph (DG) algorithm, but

it differentiates two classes of dependences: between objects

of the same page and between objects of different pages.

Performance evaluation results show that the latency reduction

can be dramatically increased in addition to dropping the need

of resources, i.e., extra bandwidth and extra server load.

The remainder of the paper is organized as follows. Sec-

tion II shows the experimental environment used to run the

experiments. Section III presents the methodology used to

evaluate prefetching algorithms. Section IV describes the ex-

isting algorithms implemented for comparison purposes. Sec-

tion V presents the proposed prediction algorithm. Section VI

analyzes the performance achieved by each algorithm. Finally,

Section VII presents some concluding remarks.

II. EXPERIMENTAL ENVIRONMENT

This section presents the experimental framework used for

the performance evaluation study and the workload used.

A. Framework

In [11] we proposed an experimental framework for testing

web prefetching techniques. In this section we summarize the

main features of such environment and the configuration used

to carry out the experiments presented in this paper.

The architecture consists of three main parts (as shown in

Fig. 1): the back end (server and surrogate), the front end

(client) and optionally the proxy server, which is not used

in the experiments presented in this paper. The framework

implementation combines both real and simulated parts in or-

der to provide flexibility and accuracy. To perform prefetching

tasks, a prediction engine implementing different algorithms

has been included in the server side. Clients take the generated

predictions to download those objects in advance.

The back end part includes the web server and the surrogate

server. The framework emulates a real surrogate, which is

used to access a real web server. Although the main goal of

surrogates is to act as a cache for the most popular server

responses, we use it as a predictor. To this end, the surrogate

adds new HTTP headers to the server response with the result

provided by the prediction algorithms.

The server in the framework is an Apache web server set

up to act as the original one. For this purpose, a CGI program

returns objects with the same size and MIME type as those

recorded in the traces.

The front end, or client part, represents the users’ behavior

exploring the Web with a prefetching enabled browser. To

model the set of users that access concurrently to a given

server, the simulator can be fed by using either real or

synthetically generated traces. Simulated clients obtain the

results of the prediction engine from the response, and prefetch

the hinted object in their idle times, as implemented in

Mozilla [12]. The simulator collects basic information for each

request performed to the web server and writes it to a log

file. By analyzing this log at post-simulation time, all the

performance metrics related to the user and to the prefetching

engine can be calculated.

The environment has been extended in several ways to per-

form the experiments presented in this paper, since originally

Fig. 1. Architecture of the simulation environment

TABLE I

TRACES CHARACTERISTICS

Trace

Characteristics A B

Users 300 1,379

Page Accesses 2,263 10,282

Objects Accesses 65,569 43,104

Training length (accesses) 35,000 23,104

Objects per Page 28.97 4.19

Bytes Transferred (MB) 218.09 386.05

Avg. Object Size (KB) 3.41 9.17

Avg. Page Size (KB) 98.68 38.44

Avg. HTML Size (KB) 32.77 12.94

Avg. Image Size (KB) 2.36 7.99

it did not obtain information regarding the prediction engine.

In this way, each hint received by the clients is also gathered

into the output log. Together with the prediction hits, it is

recorded the elapsed time since its prediction and since the

first time the user was idle; i.e. time from which it is possible

to prefetch objects.

B. Workload Description

The behavior pattern of users was taken from two different

logs. Trace A contains accesses to a news web server and was

collected during May 2003. It was obtained by filtering the

web server accesses in the log file of a Squid proxy of the

Polytechnic University of Valencia. Trace B includes users

accessing the institutional web site of the Computer Science

School of the Polytechnic University of Valencia. This trace

was collected during February 2006 from its Apache web

server log.

The main characteristics of the traces are shown in Table I.

The training length of each trace has been adjusted to optimize

the perceived latency reduction of the prefetching. The simula-

tion of the workload A considering that each user has 1 Mbps

of available bandwidth results in an average latency per page

of 3.01 seconds, as defined in Section III-A. By increasing

the user available bandwidth to 8 Mbps it is only possible

to reduce the perceived latency by about 2%. However, by

employing prefetching techniques the user’s perceived latency

can be reduced in higher extent with a reasonable cost, as

experimental results show below. The simulation of 1 Mbps

users under workload B results in an average latency per page

of 0.87 seconds. The increase of the user available bandwidth

to 8 Mbps only achieves the reduction of user’s perceived

latency by about 1%.

III. EVALUATION METHODOLOGY

This section is aimed at introducing the performance metrics

considered and the cost-benefit methodology used in the

evaluation of the algorithms.

A. Performance Indexes

One of the most important steps in a performance evaluation

study is the correct choice of the performance indexes. In this

work, the performance of the algorithms has been evaluated

by using the main metrics related to the user’s perceived per-

formance, prefetching costs and prediction performance [13].

Notice that prediction performance can be measured at dif-

ferent moments or in different elements of the architecture,

for instance when (where) the algorithm makes the prediction

and when (where) prefetching is applied in the real system.

Therefore, each prediction index has a dual index; e.g., we

can refer to the precision of the prediction engine and to the

precision of the prefetching engine.

• Recall (Rc): The percentage of objects requested by the

user that were previously predicted (or prefetched).

• Precision (Pc): The ratio of good predictions (or

prefetched objects) to the number of predictions (or

prefetched objects).

• Latency per page ratio (Lp): It is the ratio of the latency

per page that prefetching achieves to the latency with

no prefetching. The latency per page is calculated by

comparing the time between the browser initiation of an

HTML page GET and the browser reception of the last

byte of the last embedded image or object for that page.

• Traffic Increase (∆Tr): The bytes transferred through

the network when prefetching is employed divided by

the bytes transferred in the non-prefetching case. Notice

that this metric includes both the extra bytes wasted

by prefetched objects that the user will never use and

the network overhead caused by the transference of

the prefetch hints. The variant Object Traffic Increase

(∆Trob) measures this cost taking into account only the

amount of objects.

As it was demonstrated in [14], the metrics that concern the

prediction are interrelated as Equation 1 shows:

∆Trob = 1−Rc +
Rc

Pc
(1)

B. Cost-Benefit Analysis Methodology

Despite the fact that prefetching has been also used to

reduce the peaks of bandwidth demand [15], its primary goal;

i.e., the benefit, is usually the reduction of the user’s perceived

latency. Therefore, performance comparison between prefetch-

ing algorithms should be made from the user’s point of view

and using a cost-benefit analysis.

When predictions fail, prefetched objects waste user and/or

server resources, which can lead to a performance degradation

either to the user himself or to the rest of users. Since in

most proposals the client downloads the predicted objects in

advance, the main cost to achieve the latency reduction is the

increment of the network load. This increment has two effects:

the first is the increase in the amount of bytes transferred

(measured through the Traffic Increase metric), and the second

is the increase in the server requests (measured through

the Object Traffic Increase metric). As a consequence, the

performance analysis should consider the benefit of reducing

the user’s perceived latency at the expense of increasing the

network traffic and the amount of requests to the server. Each

simulation experiment in our prefetching environment consid-

ers as input the user’s behavior, their available bandwidth and

Fig. 2. State of the graph of the DG algorithm with a lookahead window
size of 2 after the accesses HTML1, IMG1, HTML2, IMG2 by one user; and
HTML1, IMG1, HTML3, IMG2 by other user

the prefetching parameters. The main results obtained are the

traffic increase, the object traffic increase and the latency per

page ratio.

Comparisons of two different algorithms can only be fairly

done if either the benefit or the cost have the same or close

value. For instance, when two algorithms present the same

or very close values of traffic increase, the best proposal is

the one that presents less user perceived latency, and vice

versa. For this reason, in this paper performance comparisons

are made through curves that include different pairs of traffic

increase and latency per page ratio for each algorithm. To

obtain each point in the curve we varied the aggressiveness

of the algorithm, i.e., how much an algorithm will predict.

This aggressiveness is controlled by a confidence threshold

parameter.

A plot can gather the curves obtained for each algorithm

in order to be compared. By drawing a line over the desired

latency reduction in this plot, one can obtain the traffic increase

of each algorithm. The best algorithm for achieving that

latency per page is the one having less traffic increase. We

can proceed in a similar way with the object traffic increase

metric.

IV. PREFETCHING ALGORITHMS

The experiments were run using two of the most widely

used prediction algorithms in the literature: one variant of

the Prediction by Partial Match (PPM) algorithm [16], [17],

[5], [18], [7], [19] and the Dependency Graph (DG) based

algorithm [1], [19].

A. Dependency Graph (DG)

The DG prediction algorithm constructs a dependency graph

that depicts the pattern of accesses to the objects. The graph

has a node for every object that has ever been accessed. There

is an arc from node A to B if and only if at some point in time

Fig. 3. State of the graph of a first-order PPM algorithm after the accesses
HTML1, IMG1, HTML2, IMG2 by one user; and HTML1, IMG1, HTML3,
IMG2 by other user

a client accessed to B within w accesses after A, where w is

the lookahead window size. The weight of the arc is the ratio

of the number of accesses to B within a window after A to the

number of accesses to A itself. The prefetching aggressiveness

can be controlled by a cutoff threshold parameter applied to

the weight of the arcs.

For illustrative purposes, we use an hypothetical exam-

ple. Let’s suppose that the algorithms are trained by two

user sessions. The first one contains the following accesses:

HTML1, IMG1, HTML2, IMG2. The second session includes

the accesses: HTML1, IMG1, HTML3, IMG2. Note that IMG2

is embedded both in HTML2 and in HTML3. We found this

behavior common through the analyzed workloads, especially

in workload A, where different pieces of news (i.e., HTML

files) contain the same embedded images, since they are

included in the site structure. Figure 2 shows the state of the

graph of the DG algorithm for a lookahead window size of

2 after the aforementioned training. Each node in the graph

represents an object whereas the weight of each arc is the

confidence level of the transition.

B. Prediction by Partial Matching (PPM)

The PPM prediction algorithm uses Markov models of m

orders to store previous contexts. Predictions are obtained

from the comparison of the current context to each Markov

model. PPM algorithm has been proposed to be applied either

to each object access [16], [17] or to each page (i.e., to

each container object) accessed by the user [5], [18], [7]. In

addition, two ways have been used to select which object or

page shall be predicted: predicting the top-n likely objects [16],

[18], [17] and using a confidence threshold [5], [19], [7]. In

the experiments presented in this paper, PPM algorithm has

been applied to objects instead of pages, and candidates are

selected by means of a confidence threshold, since this is the

configuration that performs better in the conditions we are

studying in this paper [20].

Figure 3 shows the graph obtained when applying the PPM

algorithm to the training used in the previous example. Each

node represents a context, where the root node is in the first

row, the order-0 context is in the second, and the order-1

context is in the third. The label of each node also includes the

counter of times a context has appeared, so one can obtain the

confidence of a transition by dividing the counter of a node

by the counter of its parent. The arcs indicate the possible

transitions. For instance, the label of the IMG2 in order-0

context is 2 because IMG2 appeared twice in the training;

once after HTML2 and another after HTML3, IMG2 has two

nodes in the order-1 context, i.e., one per each HTML on

which it depends.

C. Uselessness Analysis

Figures 4 and 5 show the values of predictions metrics

measured both at the prediction engine and at the prefetching

engine under the workload A and B respectively. By analyzing

the plots, we found that the prediction performance from the

predictor point of view is quite good. However, this good

performance is not transferred to the prefetching engine, and

therefore to the user’s benefit, i.e. perceived latency reduction.

As one can observe, precision and recall are substantially

lower when evaluated at the prefetching engine side. This fact

is more noticeably in the workload A than in the workload

B, mainly due to its higher amount of embedded objects per

page. The algorithm simulated to plot the figures is the DG

with a lookahead window size of 2. The same behavior was

observed in the plots for the PPM algorithm, but these results

are not included due to space restrictions.

We found that the prediction indexes measured at the

prediction engine differ so much from their values at the

prefetching engine in the fact that most of the predictions

made are useless. This is mainly due to the fact that the

algorithm predicts objects that the user has already requested,

but they are waiting for an available connection in the client to

be requested. Remember that, as the standard HTTP/1.1 [10]

recommends, the amount of simultaneous connections to a

server is limited to 2 per client. An unexpected situation

that can be observed in both workloads is that the prefetch

precision decreases when increasing the confidence threshold

(see Figures 4(b) and 5(b)). This situation is caused by the

useless predictions, which are hits from the point of view of

the prediction engine, but they are misses from the prefeching

engine perspective. In other words, the algorithms are mainly

predicting that a user will request the embedded objects of

an HTML file after requesting the HTML itself. Figure 6

illustrates this fact showing the amount of useless predictions

over the total amount of predictions. We consider that a

prediction is useless when the object predicted is already

requested by the user but it is still in the browser queue waiting

for an available connection. Figure 6 shows that, depending

on the cutoff threshold of the algorithm, between 50% and

85% of the predictions made under the workload A refer to

an embedded object. Under the workload B, the proportion is

not so high due to the lower amount of embedded objects, but

it is still high since it ranges from 35% to 75%.

The aforementioned findings encouraged us to propose

a novel algorithm aimed at dealing with the high amount

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

R
e
c
a
ll

Threshold

Algorithm: DG, Workload: A

Prefetch Recall
Prediction Recall

(a) Recall

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

P
re

c
is

io
n

Threshold

Algorithm: DG, Workload: A

Prefetch Precision
Prediction Precision

(b) Precision

Fig. 4. Predictive metrics when evaluated from the predictor point of view and from the prefetching point of view under workload A.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

R
e
c
a
ll

Threshold

Algorithm: DG, Workload: B

Prefetch Recall
Prediction Recall

(a) Recall

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

P
re

c
is

io
n

Threshold

Algorithm: DG, Workload: B

Prefetch Precision
Prediction Precision

(b) Precision

Fig. 5. Predictive metrics when evaluated from the predictor point of view and from the prefetching point of view under workload B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

U
s
e
le

s
s
 p

re
d
ic

ti
o
n
s
 (

%
)

Threshold

Workload: A

DG
PPM

(a) Workload A

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

U
s
e
le

s
s
 p

re
d
ic

ti
o
n
s
 (

%
)

Threshold

Workload: B

DG
PPM

(b) Workload B

Fig. 6. Ratio of predictions that are made too late under current algorithms

1: Objective: Build a DDG prediction model

2: Input:

3: S: set of users’ sessions

4: Output:

5: DDG: DDG prediction model

6: for each session s ∈ S do

7: create empty lookahead window l
8: for each object i ∈ s do

9: HTMLinWindow← 0

10: if i MIMEtype is ”text/html” then

11: increment HTMLinWindow
12: end if

13: for each object o ∈ l from the newest to the oldest do

14: if HTMLinWindow = 1 then

15: increment weight of primary arc from o to i in DDG
16: else

17: if HTMLinWindow = 0 then

18: increment weight of secondary arc from o to i in DDG
19: end if

20: end if

21: if o MIMEtype is ”text/html” then

22: increment HTMLinWindow
23: end if

24: end for

25: increment i access counter in DDG
26: if l is full then

27: remove the oldest object from l
28: end if

29: insert i in l
30: end for

31: end for

32: for each object t ∈ DDG do

33: for each output primary arc a ∈ t do

34: a confidence ← weight of primary arc from t to a / t access counter

35: end for

36: for each output secondary arc a ∈ t do

37: a secondary confidence ← weight of secondary arc from a / t access counter

38: end for

39: end for

40: return DDG

Fig. 7. Algorithm for making the prediction model in DDG

of embedded objects that exist in current web to improve

performance.

V. DOUBLE DEPENDENCY GRAPH ALGORITHM (DDG)

A. Description

The DDG algorithm is based on a graph that keeps track

of the dependences among the objects accessed by the user.

But unlike DG, it distinguishes two classes of dependences:

dependences to an object of the same page and dependences

to an object of another page. Like DG, the graph has a node

for every object that has ever been accessed. There is an arc

from node A to B, if and only if, at some point in time a client

accessed to B within w accesses to A after B, where w is the

lookahead window size. The arc is a primary arc if A and B

are objects of different pages, that is, either B is an HTML

object or the user accessed one HTML object between A and

B. If there is no HTML accesses between A and B, the arc

is secondary. The confidence of each primary or secondary

transition, i.e., the confidence of each arc, is calculated by

dividing the counter of the arc by the amount of appearances

of the node, both for primary and for secondary arcs. The

pseudo-code for building the DDG prediction model is shown

in Figure 7. As one can observe, the algorithm has the same

order of complexity as the DG, since it makes the same graph

but distinguishing two classes of arcs.

Fig. 8. State of the graph of the DDG algorithm with a lookahead window
size of 2 after the accesses HTML1, IMG1, HTML2, IMG2 by one user; and
HTML1, IMG1, HTML3, IMG2 by other user

Figure 8 shows the state of the DDG algorithm after the

training example presented in Section IV-A. Arrows with

continuous lines represent primary arcs while dashed lines

represent secondary arcs. Primary and secondary arcs represent

the relation between objects accesses of different pages and

between objects accesses of the same page, respectively.

The predictions are obtained by firstly applying a cutoff

threshold to the weight of the primary arcs that leaves from the

node of the last user’s access. In order to predict the embedded

objects of the following page, a secondary threshold is applied

to the secondary arcs that leave from the nodes of the objects

predicted in the first step.

The DDG algorithm includes another useful parameter: the

option of disabling the prediction of HTML objects. The

algorithm determines if a requested object is an HTML file

by looking at its MIME type in the response header given by

the web server. This parameter is specially interesting when

working in a dynamic web site. In this case, dynamic HTMLs

will not be predicted by the algorithm. Other web sites that

can benefit from disabling the prediction of HTMLs are those

in which the cost of downloading an HTML object, i.e., its

size, is very high when compared to the contained objects,

e.g. images. One can observe that this fact occurs in the

workload A (see Table I), where HTMLs are 13 times larger

than the embedded objects. The impact of this parameter on

the performance is quantified in Section V-B. The pseudo-code

of the algorithm for obtaining the predictions is illustrated in

Figure 9.

B. Selecting Parameters Values

In order to find the optimal values of the parameters of

the prefetching algorithms, we checked different lookahead

window sizes and secondary thresholds likewise DG and PPM

algorithms were set up in [20].

To find the best lookahead window size, experiments were

1: Objective: Obtain predictions of the next requests of the

user

2: Input:

3: DDG: DDG prediction model

4: u: last user’s access

5: th: primary threshold

6: thsec: secondary threshold

7: enableHTMLpred: enable/disable the prediction of

HTML objects

8: Output:

9: P : Set of predictions

10: for each output primary arc a ∈ u in DDG do

11: if a confidence > th then

12: if not enableHTMLpred or a MIMEtype is not

”text/html” then

13: P ← P
⋃
{a}

14: end if

15: for each output secondary arc e ∈ a in DDG do

16: if e secondary confidence > thsec then

17: P ← P
⋃
{e}

18: end if

19: end for

20: end if

21: end for

22: return P

Fig. 9. Algorithm for making predictions in DDG

run ranging it from 2 to 16. For the sake of clarity, only some

of those values are represented in Figure 10 for the workload A

and in Figure 11 for the workload B. Figure 10 shows minor

performance differences under the workload A between the

different window sizes considering both cost perspectives, i.e.,

traffic increase and object traffic increase. A window size of 12

has been selected to compare in Section VI the DDG algorithm

under the workload A in order to have an aggressiveness

similar to the DG and PPM algorithms. Under the workload

B (see Figure 11), performance gets worse as long as the

lookahead window size increases. For this reason, a window

size of 2 has been selected to compare the algorithm under

this workload. In addition, it is the one with less computing

complexity.

In a similar way, experiments to find out the optimal value

for the secondary threshold were carried out. This parameter

was ranged from 0.1 to 0.7 in steps of 0.1. As Figures 12

and 13 show, the best performance is achieved for a secondary

threshold of 0.3 under the two selected workloads. This better

behavior is evidenced both when comparing perceived latency

to the traffic increase in bytes and to the traffic increase in

amount of objects. Likewise when exploring the lookahead

window size, results for only part of the experiments are shown

in order to keep the plot readable.

Finally, experiments to determine the effect of not allowing

the prediction of HTML files were carried out. Figure 14

shows the performance achieved by the algorithms varying

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.1 1.2 1.3 1.4 1.5

L
a
te

n
c
y
 p

e
r

p
a
g
e
 r

a
ti
o

Traffic Increase

Workload: A

w=4
w=8

w=12
w=16

(a) Latency per page ratio as a function of Traffic increase

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.1 1.2 1.3 1.4 1.5

L
a
te

n
c
y
 p

e
r

p
a
g
e
 r

a
ti
o

Object Traffic Increase

Workload: A

w=4
w=8

w=12
w=16

(b) Latency per page ratio as a function of Object Traffic
increase

Fig. 10. Selection of the lookahead window size of the DDG algorithm under the workload A

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.1 1.2 1.3 1.4 1.5

L
a
te

n
c
y
 p

e
r

p
a
g
e
 r

a
ti
o

Traffic Increase

Workload: B

w=2
w=4
w=8

w=16

(a) Latency per page ratio as a function of Traffic increase

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.1 1.2 1.3 1.4 1.5

L
a
te

n
c
y
 p

e
r

p
a
g
e
 r

a
ti
o

Object Traffic Increase

Workload: B

w=2
w=4
w=8

w=16

(b) Latency per page ratio as a function of Object Traffic
increase

Fig. 11. Selection of the lookahead window size of the DDG algorithm under the workload B

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.1 1.2 1.3 1.4 1.5

L
a
te

n
c
y
 p

e
r

p
a
g
e
 r

a
ti
o

Traffic Increase

Workload: A

thsec=0.1
thsec=0.3
thsec=0.5
thsec=0.7

(a) Latency per page ratio as a function of Traffic increase

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.1 1.2 1.3 1.4 1.5

L
a
te

n
c
y
 p

e
r

p
a
g
e
 r

a
ti
o

Object Traffic Increase

Workload: A

thsec=0.1
thsec=0.3
thsec=0.5
thsec=0.7

(b) Latency per page ratio as a function of Object Traffic
increase

Fig. 12. Selection of the secondary threshold of the DDG algorithm under the workload A

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.1 1.2 1.3 1.4 1.5

L
a
te

n
c
y
 p

e
r

p
a
g
e
 r

a
ti
o

Traffic Increase

Workload: B

thsec=0.1
thsec=0.3
thsec=0.5
thsec=0.7

(a) Latency per page ratio as a function of Traffic increase

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.1 1.2 1.3 1.4 1.5

L
a
te

n
c
y
 p

e
r

p
a
g
e
 r

a
ti
o

Object Traffic Increase

Workload: B

thsec=0.1
thsec=0.3
thsec=0.5
thsec=0.7

(b) Latency per page ratio as a function of Object Traffic
increase

Fig. 13. Selection of the secondary threshold of the DDG algorithm under the workload B

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.1 1.2 1.3 1.4 1.5

L
a
te

n
c
y
 p

e
r

p
a
g
e
 r

a
ti
o

Traffic Increase

Workload: A

HTML prediction enabled
HTML prediction disabled

(a) Latency per page ratio as a function of Traffic increase

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.1 1.2 1.3 1.4 1.5

L
a
te

n
c
y
 p

e
r

p
a
g
e
 r

a
ti
o

Object Traffic Increase

Workload: A

HTML prediction enabled
HTML prediction disabled

(b) Latency per page ratio as a function of Object Traffic
increase

Fig. 14. Deciding whether to predict HTML files in the DDG algorithm under the workload A

this parameter under the workload A. Looking at plot 14(a),

it is better to disable the prediction of HTML objects since its

curve is always below the other one. However, when taking

into account the object traffic increase as the main cost metric

(see plot 14(b)), it is slightly better to predict the HTML files.

Therefore, since performance differences are smaller when

taking into account the object traffic increase, we selected the

algorithm version that does not predict the HTML files in

order to compare the algorithms (see Section VI). However, if

the bandwidth consumption is not a critical issue, the version

that predicts HTML objects should be selected. As one can

observe in Figure 15, the selection of the better value of the

parameter is easier under the workload B, since both plots give

the same order, that is, the algorithm that predicts HTML files

outperforms the version that does not predict them.

In short, the parameters that maximize the performance of

the DDG algorithm are a 12 sized lookahead window with

a secondary threshold of 0.3 with the prediction of HTML

disabled for the workload A, and a lookahead window size of

2 and a secondary threshold of 0.3 allowing the prediction of

HTML objects for the workload B.

The paremeters values of DG and PPM algorithms were

explored in [20]. We found that the best configuration for both

workloads is to use a lookahead window size of 2 in DG, and

a first-order Markov model in PPM.

VI. ALGORITHMS COMPARISON

Once the algorithms are tuned to have the best performance,

they are compared in order to check the performance differ-

ences. Figure 16(a) shows that given any traffic increase in

bytes, the algorithm that provides the lowest user’s perceived

latency under the workload A is always the DDG. Similar

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.1 1.2 1.3 1.4 1.5

L
a
te

n
c
y
 p

e
r

p
a
g
e
 r

a
ti
o

Traffic Increase

Workload: B

HTML prediction enabled
HTML prediction disabled

(a) Latency per page ratio as a function of Traffic increase

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.1 1.2 1.3 1.4 1.5

L
a
te

n
c
y
 p

e
r

p
a
g
e
 r

a
ti
o

Object Traffic Increase

Workload: B

HTML prediction enabled
HTML prediction disabled

(b) Latency per page ratio as a function of Object Traffic
increase

Fig. 15. Deciding weather to predict HTML files in the DDG algorithm under the workload B

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.1 1.2 1.3 1.4 1.5

L
a
te

n
c
y
 p

e
r

p
a
g
e
 r

a
ti
o

Traffic Increase

Workload: A

DG
PPM
DDG

(a) Latency per page ratio as a function of Traffic increase

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.1 1.2 1.3 1.4 1.5

L
a
te

n
c
y
 p

e
r

p
a
g
e
 r

a
ti
o

Object Traffic Increase

Workload: A

DG
PPM
DDG

(b) Latency per page ratio as a function of Object Traffic
increase

Fig. 16. Algorithms comparison under the workload A

results can be extracted when taking into account as a cost

factor the traffic increase measured in amount of objects (see

Figure 16(b)): DDG curve always falls below the other algo-

rithms curves. To highlight the benefits of the new algorithm,

it has been compared in Figure 17 against the DG algorithm

since it performs better than the PPM. Figure 17(a) shows that

given a value of latency per page ratio, the DDG algorithm

requires between 25% and 60% less of bytes transference and

between 15% and 65% less requests to the server than the DG.

On the other hand, given a value of traffic increase in bytes,

DDG achieves a latency reduction between 15% and 45%

higher than DG (see the continuous curve in Figure 17(b)).

The benefits could rise up to 60% of extra perceived latency

reduction when taking into account the object traffic increase,

as the dashed curve in Figure 17(b) shows.

Performance comparison under the workload B is presented

in Figure 18. Plot 18(a) shows that the selection of the best

algorithm depends on which range the analysis is focused. In

this context, for a traffic increase lower than around 1.15, the

best algorithm is the DDG, otherwise, the best performance

is achieved by the PPM, since its curve falls below the

others. However, when looking at the object traffic increase

(see plot 18(b)), the DDG always outperforms clearly the

DG and the PPM algorithms. Figure 19 presents the relative

comparison of the DDG algorithm against the PPM. By

looking at plot 19(a), one can observe that given a value of

latency per page ratio, DDG requires between about 60% less

and 30% more of traffic to achieve that latency reduction than

the PPM. The dashed line in the same plot reveals that the

DDG algorithm requires between about 35% and 90% less of

requests to the server than the PPM to reduce a given amount

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.88 0.9 0.92 0.94 0.96 0.98 1

R
e
la

ti
v
e
 t
ra

ff
ic

 s
a
v
in

g
s
 (

%
)

Latency per page ratio

DDG vs. DG (workload A)

Bytes
Objects

(a) Relative improvement in traffic increase as a function of
latency per page ratio

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1 1.1 1.2 1.3 1.4 1.5

R
e
la

ti
v
e
 l
a
te

n
c
y
 s

a
v
in

g
s
 (

%
)

Traffic Increase

DDG vs. DG (workload A)

Bytes
Objects

(b) Relative improvement in latency reduction as a function of
traffic increase

Fig. 17. Relative performance comparison of DDG vs DG algorithms under the workload A. Positive values mean that DDG outperforms DG, while negative
ones would mean that DG outperforms DDG in the selected metrics.

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.1 1.2 1.3 1.4 1.5

L
a
te

n
c
y
 p

e
r

p
a
g
e
 r

a
ti
o

Traffic Increase

Workload: B

DG
PPM
DDG

(a) Latency per page ratio as a function of Traffic increase

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 1.1 1.2 1.3 1.4 1.5

L
a
te

n
c
y
 p

e
r

p
a
g
e
 r

a
ti
o

Object Traffic Increase

Workload: B

DG
PPM
DDG

(b) Latency per page ratio as a function of Object Traffic
increase

Fig. 18. Algorithms comparison under the workload B

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.88 0.9 0.92 0.94 0.96 0.98 1

R
e
la

ti
v
e
 t
ra

ff
ic

 s
a
v
in

g
s
 (

%
)

Latency per page ratio

DDG vs. PPM (workload B)

Bytes
Objects

(a) Relative improvement in traffic increase as a function of
latency per page ratio

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1 1.05 1.1 1.15 1.2 1.25

R
e
la

ti
v
e
 l
a
te

n
c
y
 s

a
v
in

g
s
 (

%
)

Traffic Increase

DDG vs. PPM (workload B)

Bytes
Objects

(b) Relative improvement in latency reduction as a function of
traffic increase

Fig. 19. Relative performance comparison of DDG vs PPM algorithms under the workload B. Positive values mean that DDG outperforms PPM, while
negative ones mean that PPM outperforms DDG in the selected metrics.

the user’s perceived latency. Plot 19(b) shows that, with the

same traffic increase (in bytes), DDG algorithms reduces the

user’s perceived latency between around 65% more and 15%

less than the PPM. When the object traffic increase is analyzed,

the dashed line in the plot shows that the DDG algorithm

reduces the user’s perceived latency between about 50% and

150% more than the PPM.

The plots presented in this section were generated by

simulating 1 Mbps users. The simulation of users with 8 Mbps

of available bandwidth exhibit similar results, but their plots

are not shown due to space restrictions.

VII. CONCLUSIONS

In this paper we have presented an analysis of the perfor-

mance achieved by two widely studied prefetching algorithms.

We found that, due to the high amount of embedded objects in

current web, most of the predictions provided by the existing

algorithms are useless since they mainly predict the objects

embedded in an HTML after accessing the HTML itself.

These predictions, which are good from the predictor engine

perspective, become useless for the client since it has no time

to prefetch the hinted objects and therefore the user’s perceived

latency can not be reduced. Taking into account this unwanted

effect, a novel algorithm has been proposed and tested dealing

with the characteristics of the current web. The DDG algorithm

distinguishes between container objects (HTMLs) and embed-

ded objects (e.g., images) to create the prediction model and

to make the predictions. Results show that, given an amount of

requests to the server, DDG always outperforms the existing

algorithms by reducing the perceived latency between 15%

and 150% more with the same extra requests. In addition,

these results were achieved without incrementing the order of

complexity of the existing algorithms.

ACKNOWLEDGMENTS

This work has been partially supported by Spanish Ministry

of Education and Science and the European Investment Fund

for Regional Development (FEDER) under grant TSI 2005-

07876-C03-01.

REFERENCES

[1] V. N. Padmanabhan and J. C. Mogul, “Using predictive prefetching to
improve World Wide Web latency,” Computer Communication Review,
vol. 26, no. 3, pp. 22–36, 1996.

[2] J. Griffioen and R. Appleton, “Reducing file system latency using a
predictive approach,” University of Kentucky, Tech. Rep., 1994.

[3] T. C. Bell, J. G. Cleary, and I. H. Witten, Text Compression. Prentice
Hall, 1990.

[4] L. Fan, P. Cao, W. Lin, and Q. Jacobson, “Web prefetching between
low-bandwidth clients and proxies: Potential and performance.” in
Proceedings of the ACM SIGMETRICS Conference on Measurement and

Modeling Of Computer Systems, Atlanta, USA, 1999.
[5] T. Palpanas and A. Mendelzon, “Web prefetching using partial match

prediction,” in Proceedings of the 4th International Web Caching Work-

shop, San Diego, USA, 1999.
[6] C. Bouras, A. Konidaris, and D. Kostoulas, “Predictive prefetching on

the web and its potential impact in the wide area.” World Wide Web,
vol. 7, no. 2, pp. 143–179, 2004.

[7] X. Chen and X. Zhang, “A popularity-based prediction model for web
prefetching.” IEEE Computer, vol. 36, no. 3, pp. 63–70, 2003.

[8] R. Peña-Ortiz, J. Sahuquillo, A. Pont, and J. A. Gil, “Modeling continous
changes of the users’ web dynamic behavior in the WWW,” in Proceed-

ings of the Fith International Workshop on Software and Performance

(WOSP 2005), Palma de Mallorca, Spain, 2005.
[9] J. Domènech, J. Sahuquillo, A. Pont, and J. A. Gil, “How current web

generation affects prediction algorithms performance,” in Proceedings

of the 13th International Conference on Software, Telecommunications

and Computer Networks (SoftCOM), Split, Croatia, 2005.
[10] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee, “Hypertext transfer protocol – HTTP/1.1,” 1999.
[11] J. Domènech, A. Pont, J. Sahuquillo, and J. A. Gil, “An experimental

framework for testing web prefetching techniques,” in Proceedings of

the 30th EUROMICRO Conference 2004, Rennes, France, 2004.
[12] D. Fisher and G. Saksena, “Link prefetching in Mozilla: A server driven

approach,” in Proceedings of the 8th International Workshop on Web

Content Caching and Distribution (WCW 2003), New York, USA, 2003.
[13] J. Domènech, J. Sahuquillo, J. A. Gil, and A. Pont, “About the hetero-

geneity of web prefetching performance key metrics,” in Proceedings

of the IFIP International Conference on Intelligence in Communication

Systems (INTELLCOMM), Bangkok, Thailand, 2004.
[14] J. Domènech, J. A. Gil, J. Sahuquillo, and A. Pont, “Web prefetching

performance metrics: A survey,” Performance Evaluation, vol. 63, no.
9–10, pp. 988–1004, 2006.

[15] C. Maltzahn, K. J. Richardson, D. Grunwald, and J. H. Martin, “On
bandwidth smoothing,” in Proceedings of the 4th International Web

Caching Workshop, San Diego, USA, 1999.
[16] R. Sarukkai, “Link prediction and path analysis using Markov chains.”

Computer Networks, vol. 33, no. 1-6, pp. 377–386, 2000.
[17] B. D. Davison, “Learning web request patterns,” in Web Dynamics -

Adapting to Change in Content, Size, Topology and Use. Springer,
2004, pp. 435–460.

[18] X. Dongshan and S. Junyi, “A new Markov model for web access
prediction,” Computing in Science and Engineering, vol. 4, no. 6, pp.
34–39, 2002.

[19] A. Nanopoulos, D. Katsaros, and Y. Manolopoulos, “A data mining
algorithm for generalized web prefetching.” IEEE Trans. Knowl. Data

Eng., vol. 15, no. 5, pp. 1155–1169, 2003.
[20] J. Domènech, A. Pont, J. Sahuquillo, and J. A. Gil, “A comparative

study of web prefetching techniques focusing on user’s perspective,”
in Proceedings of the IFIP International Conference on Network and

Parallel Computing (NPC 2006), Tokyo, Japan, 2006.

