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Abstract

The long latencies introduced by remote accesses in a large multiprocessor can
be hidden by caching. Caching also decreases the network load.

We introduce a new class of architectures called Cache Only Memory Archi-
tectures (COMA). These architectures provide the programming paradigm of the
shared-memory architectures, but have no physically shared memory; instead, the
caches attached to the processors contain all the memory in the system, and their
size is therefore large. A datum is allowed to be in any or many of the caches, and
will automatically be moved to where it is needed by a cache-coherence protocol,
which also ensures that the last copy of a datum is never lost. The location of a
datum in the machine is completely decoupled from its address.

We also introduce one example of COMA: the Data Diffusion Machine (DDM),
and its simulated performance for large applications. The DDM is based on a
hierarchical network structure, with processor/memory pairs at its tips. Remote
accesses generally cause only a limited amount of traffic over a limited part of the
machine.

Keywords: Multiprocessor, COMA, hierarchical architecture, hierarchical
buses, multilevel cache, shared memory, split-transaction bus, cache coherence,
cache-only memory architectures.

1 COMPARISON TO OTHER ARCHITECTURES

Existing architectures with shared memory are typically computers with one common
bus connecting the processors to the shared memory, such as computers manufactured
by Sequent and Encore, or with distributed shared memory, such as the BBN Butterfly
and the IBM RP3.

Systems based on a single bus suffer from bus saturation and typically have some
tens of processors, each one with a local cache. The contents of the caches are kept
coherent by a cache-coherence protocol, in which each cache snoops the traffic on the
common bus and prevents any inconsistencies from occurring [Ste90]. The architecture
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provides a uniform access time to the whole shared memory, and is consequently called
uniform memory architecture (UMA).

In architectures with distributed shared memory, known as non-uniform memory
architectures (NUMA), each processor node contains a portion of the shared memory;
consequently access times to different parts of the shared address space can vary. NU-
MAs often have networks other than a single bus, and the network delay might vary
to different nodes. The earlier NUMAs did not have coherent caches, and left the
coherence problem to the programmer. Research activities today are striving toward
coherent NUMAs with directory-based cache-coherence protocols, e.g. Alewife [CKA91]
and Dash [LLG*90]. Programs are often optimized for NUMAs by statically partition-
ing the work and data. Given a partitioning where the processors make most of their
accesses to their part of the shared memory, a better scalability than for UMAs can be
achieved.

In cache-only memory architectures (COMA), the memory organization is similar to
that of NUMA in that each processor holds a portion of the address space. However,
the partitioning of data between the memories does not have to be static, since all
distributed memories are organized like large (second-level) caches. The task of such
a memory is twofold. Besides being a large (second-level) cache for the processor, it
may also contain some data from the shared address space that the processor never has
accessed, i.e., it is a cache and a virtual part of the shared memory at the same time. We
call this intermediate form of memory Attraction Memory, (AM). A coherence protocol
will attract the data used by a processor to its attraction memory. The coherence unit,
comparable to a cache-line, which is moved around by the protocol is called an item.
On a memory reference, a virtual address is translated into an item identifier. The item
identifier space is logically the same as the physical address space of typical machines,
but there is no permanent mapping between an item identifier and a physical memory
location. Instead, an item identifier corresponds to a location in an attraction memory,
whose tag matches the item identifier. Actually there are cases where multiple blocks
could match.

COMA provides a programming model identical to that of shared-memory architec-
tures, but does not require static distribution of execution and memory usage in order to
run efficiently. Running an optimized NUMA program on a COMA architecture would
result in a NUMA-like behavior, since the work spaces of the different processors would
migrate to their attraction memories. However, an UMA version of the same program
would give a similar behavior, since the data is attracted to the using processor regard-
less of the address. A COMA will also adapt to and perform well for programs with a
more dynamic, or semi-dynamic scheduling. The work space migrates according to its
usage throughout the computation. Programs can be optimized for a COMA to take
this property into account in order to create a better locality.

COMA allows for a dynamic use of data without duplicating too much memory,
compared to an architecture where a cached datum also occupies space in the shared
memory. In order not to increase the memory cost, the attraction memories should be
implemented with ordinary memory components. The COMA approach therefore should
be viewed as a second-level, or higher level, cache technique in today’s technology. The
overhead required for accessing a large attraction memory compared to a large memory
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as well as the increased amount of memory for implementation are surprisingly small.
Figure 1 compares COMA to other shared-memory architectures.

Memory Network Network
|
Network o |
Mem Mem AM AM
Cachel , .., | Cache Cachel ... Cache Cache| ... Cache
Proc Proc Proc Proc Proc Proc
Shared Memory (UMA) Shared Memory (NUMA) Cache Only Memory (COMA)

Figure 1: Shared-memory architectures compared to the COMA.

This paper describes the basic ideas behind a new architecture of the COMA class.
The architecture, called the Data Diffusion Machine (DDM), relies on a hierarchical net-
work structure. The paper first introduces the key ideas behind the DDM by describing
a small machine and its protocol. It continues with a description of a large machine with
hundreds of processors. The paper ends with a brief overview to the ongoing prototype
project and its simulated performance figures.

2 CACHE-COHERENCE SQTRATEGIES

The problem of maintaining coherence among read-write data shared by different caches
has been studied extensively over the last years. The cache-coherence protocol for a
COMA can adopt existing techniques used in other cache-coherence protocols extended
with the functionality for finding a datum on a cache read miss and for handling re-
placement. Coherence can either be kept by software or hardware. It is our belief that
hardware-coherence is needed in a COMA for efficiency reasons, since the item must be
small in order to prevent performance degradation by false sharing, i.e. two processors
accessing different parts of the same item might conflict with each other even though
they do not share any data. For instance, we have measured a speedup of 50% when false
sharing was removed from an application [HALH91]. Hardware-based schemes maintain
coherence without involving software and can therefore be implemented more efficiently.
Examples of hardware-based protocols are snooping-cache protocols and directory-based
protocols.

Snooping-cache protocols have a distributed implementation. Fach cache is respon-
sible for snooping traffic on the bus and taking necessary actions if an incoherence is
about to occur. An example of such a protocol is the write-once protocol introduced
by Goodman and discussed by Stenstrém [Ste90]. In that protocol, shown in Figure 2,
each cache line can be in one of the four states INVALID, VALID, RESERVED, or
DIRTY. Many caches might have the same cache line in the state VALID at the same
time, and may read it locally. When writing to a cache line In VALID, the line changes
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state to RESERVED, and a write is sent on the common bus to the common memory.
All other caches with lines in VALID snoop the write and invalidate their copies. At
this point there is only one cached copy of the cache line containing the newly written
value. The common memory now also contains the new value. If a cache already has
the cache line in RESERVED, it can perform a write locally without any transactions
on the common bus. Its value will now differ from that in the memory, and its state
is therefore changed to DIRTY. Any read requests from other caches to that cache line
must now be intercepted, in order to provide the new value, marked by “Intercept” in
the figure.

YV Pread

Nwrite, Nread.inv

Pread/Nread

Nread/ 7
read.inv intercep A NOTATION:

. in-trans./out-trans.
Nread.inv/

intercept Nread P= processor trans.

N= network trans.

Pwrite

Pread

Figure 2: The write-once protocol.

Snooping caches, as described above, rely on broadcasting and are not suited for
general interconnection networks: unrestricted broadcasting would drastically reduce
the available bandwidth, thereby obviating the advantage of general networks. Instead,
directory-based schemes send messages directly between nodes [Ste90]. A read request
is sent to main memory, without any snooping. The main memory knows if the cache
line is cached, in which cache or caches, and whether or not it has been modified. If the
line has been modified, the read request is passed on to the cache with a copy, which
provides a copy for the requesting cache. The caches might also keep information about
which other caches have copies of the cache lines. Writing can now be performed with
direct messages between all caches with copies.

3 A MINIMAL COMA

We will introduce the COMA architecture by first looking at the smallest instance of
our architecture, the Data Diffusion Machine (DDM) [WH88]. The minimal DDM, as
presented, can be a COMA on its own or a subsystem of a larger COMA.

The attraction memories of the minimal DDM are connected by a single bus. The
distribution and coherence of data among the attraction memories is controlled by the
snooping protocol memory above, and the interface between the processor and the at-

traction memory is defined by the protocol memory below. A cache line of an attraction
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memory, here called an item, is viewed by the protocol as one unit. The attraction mem-
ory stores one small state field per item. The architecture of the nodes in the single-bus

DDM is shown in figure 3.
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Figure 3: The architecture of a single-bus DDM. Below the attraction memories are the
processors. Located on top of the bus are the arbitration, and selection.

The DDM uses an asynchronous split-transaction bus, where the bus is released
between a requesting transaction and its reply, e.g., between a read request and its data
reply. The delay between the request and its reply can be of arbitrary length, and there
might be a large number of outstanding requests. The reply transaction will eventually
appear on the bus as a different transaction. Unlike other buses, the DDM bus has a
selection mechanism, making sure that at most one node is selected to service a request.
This guarantees that each transaction on the bus does not produce more than one new
transaction for the bus, a requirement necessary for deadlock avoidance.

3.1 The Protocol of the Single-Bus DDM

We developed a new protocol, similar in many ways to the snooping-cache protocol,
limiting broadcast requirements to a smaller subsystem and adding support for replace-
ment, described in detail in [HHW90]. The write coherence part of the protocol is
of write-invalidate type; i.e., in order to keep data coherent, all copies of the item but
the one to be updated are erased on a write. In a COMA with a small item size, the
alternative approach, write-broadcast, could also be attractive where, on a write, the
new value is broadcast to all “caches” with a shared copy of the item [HALH91].
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The protocol also handles the attraction of data (read) and replacement when a set
in an attraction memory gets full. The snooping protocol defines a new state, a new
transaction to send as a function of the transaction appearing on the bus and the present
state of the item in the attraction memory.

PROTOCOL: old state x transaction — new state X new transaction

An item can be in one of the following states, where subsystem refers to the attrac-
tion memory:
I Invalid. This subsystem does not contain the item.
E Exclusive. This subsystem and no other contains the item.
S Shared. This subsystem and possibly other subsystems contain the item.
R Reading. This subsystem is waiting for a data value after having issued a read.
W Waiting. This subsystem is waiting to become exclusive after having issued an erase.
RW Reading and Waiting. This subsystem is waiting for a data value, later to become
exclusive.

The first three states, I, E, and S, correspond to the states INVALID, RESERVED,
and VALID in Goodman’s write-once protocol. The state DIRTY in that protocol,
with the meaning: this is the only cached copy and its value differs from that in the
memory, has no correspondence in a COMA. New states in the protocol are the transient
states R, W, and RW. The need for the transient states is created by the nature of the
split-transaction bus and the need to remember outstanding requests.

The bus carries the following transactions:
e, erase. Frase all your copies of this item.
x, exclusive. Acknowledge to an erase request.
r, read. Request to read a copy of the item.
d, data. Carries the data in reply to an earlier read request.
i, inject. Carries the only copy of an item and is looking for a subsystem to move into,
caused by a replacement.
o, out. Carries the data on its way out of the subsystem, caused by a replacement. It
will terminate when another copy of the item is found.

A processor writing an item in state E or reading an item in state E or S will proceed
without interruption. A read attempt of an item in state I will result in a read request
and a new state R as shown in figure 4. The selection mechanism of the bus will select
one attraction memory to service the request, eventually putting data on the bus. The
requesting attraction memory, now in state R, will grab the data transaction, change
state to S, and continue.

Processors are only allowed to write to items in state E. If the item is in S, all other
copies have to be erased, and an acknowledge received, before the writing is allowed. The
attraction memory sends an erase transaction and waits for the acknowledge transaction
exclusive in the new state, W. Many simultaneous attempts to write the same item will
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Figure 4: A simplified representation of the attraction memory protocol not including
replacement.

result in many attraction memories in state W, all with an outstanding erase transaction
in their output buffers. The first erase to reach the bus is the winner of the write race.
All other transactions bound for the same item are removed from the small output
buffers, OA. Therefore, the buffers also have to snoop transactions. The OA can be
limited to a depth of three, and deadlock can still be avoided by the use of a special
arbitration algorithm. The losing attraction memories in state W change state to RW
while one of them puts a read request in its output buffer. Eventually the top protocol
sitting on top of the bus replies with an ezclusive acknowledge, telling the only attraction
memory left in state W that it may now proceed. Writing to an item in state I results
in a read request and a new state RW. Upon the data reply, the state changes to W and
an erase request is sent.

3.2 Replacement

Like ordinary caches, the attraction memory will run out of space, forcing some items
to leave room for more recently accessed ones. If the set where an item is supposed to
reside is full, one item in the set! is selected to be replaced. Replacing an item in state
S generates an out transaction. The space used by the item can now be reclaimed. If
an out transaction sees an attraction memory in either of states S, R, W, or RW it does
nothing, otherwise it is converted to an inject transaction by the top protocol. An inject
transaction can also be produced by replacing an item in state E. The inject transaction
is the last copy of an item trying to find a new home in a new attraction memory. In
the single bus implementation it will do so firstly by choosing an empty space (state
I), and secondly by replacing an item in state S, i.e. it will decrease the amount of
sharing. If the item identifier space, that corresponds to the physical address space of
conventional architectures, is not made larger than the sum of the attraction memory
sizes, it is possible to device a simple scheme that guarantees a physical location for
each item.

1The oldest item in state S, of which there might be other copies, may be selected, for example.
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Often, only a portion of the physical address space is used in a computer. This is
especially true for operating systems with an eager reclaiming of unused work space like
Mach [Ras86]. In the DDM, the unused item space may be used to increase the degree
of sharing, if the unused items are purged. The operating system might even change
the degree of sharing dynamically.

3.3 Conclusion

What has been presented so far is a cache-coherent single bus multiprocessor without
physically shared memory. Instead, the resources are used to build huge second-level
caches, called attraction memories, minimizing the number of accesses to the only shared
resource left: the shared bus. Data can reside in any or many of the attraction memories.
Data will automatically be moved where needed.

4 THE HIERARCHICAL DDM

The single-bus DDM as described above can become a subsystem of a large hierarchical
DDM by replacing the top with a directory, which interfaces between the bus described
and a higher level bus of the same type in a hierarchy as shown in Figure 5. The

, D | Directory

Attraction
D D AM| ‘Nemory
| |
I l I I P | Processor

=)
=t O
et O
=

AM| |AM| |AM AM AM AM AM| |AM| |AM AM

Figure 5: The hierarchical DDM, here with three levels.

directory is a set-associative status memory, which keeps information for all the items
in the attraction memories below it, but contains no data.

The directory can answer the questions: “Is this item below me?” and “Does this
item exist outside my subsystem?”

From the bus above, its snooping protocol directory above behaves very much like
the memory above protocol. From the bus below, the directory below protocol behaves
like the top protocol for items in the exclusive state. This makes operations on items
local to a bus identical to those of the single-bus DDM. Only transactions that cannot
be completed inside its subsystem or transactions from above that need to be serviced
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Figure 6: The architecture of a directory.

by its subsystem are passed through the directory. In that sense, the directory can be
viewed as a filter.

The directory as shown in figure 6 has a small output buffer above it (OA) to store
transactions waiting to be sent on the higher bus. Transactions for the lower bus are
stored in the buffer output below (OB), and transactions from the lower bus are stored
in the buffer input below (IB). A directory reads from IB when it has the time and space
to do a lookup in its status memory. This is not part of the atomic snooping action of
the bus.

The hierarchical DDM and its protocol have several similarities with the proposed
architectures by Wilson [Wil86], Vernon [VJS88] and Goodman [GW88]. The DDM
is however different in its use of transient states in the protocol, its lack of physically
shared memory and that only state-information and no data is stored in the network
(higher level caches).

4.1 Multilevel Read

If a read request cannot be satisfied by the subsystems connected to the bus, the next
higher directory retransmits the read request on the next higher bus. The directory also
changes the item’s state to reading (R), marking the outstanding request. Eventually,
the request reaches a level in the hierarchy where a directory, containing a copy of the
item, is selected to answer the request. The selected directory changes the state of the
item to answering (A), marking an outstanding request from above, and retransmits the
read request on its lower bus. The transient states, R and A in the directories, mark the
request’s path through the hierarchy, shown in Figure 7, like rolling out a red thread
when walking in a maze [HomBC].

A flow control mechanism in the protocol prevents deadlock if too many processors
try to roll out a red thread to the same set in a directory. When the request finally
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reaches an attraction memory with a copy of the item, its data reply simply follows
the red thread back to the requesting node, changing all the states along the path to
shared (S). Often many processors try to read the same item, creating the “hot-spot

R A
""""""" ” l - e 2
I | s |
: il datareply
R( I A S
, — ey e e — | ! ,
¥ \d
I I I R I S S I I I
| | N ; l | | — .. 1
Pl|lP||P Px P Py Pz|| P || P P

Figure 7: A read request from processor Px has found its way to a copy of the item
in the attraction memory of processor Py. Its path is marked with states reading and
answering (R and A), which will guide the data reply back to Px.

phenomenon [P+85].” Combined reads and broadcasts are simple to implement in the
DDM. If a read request finds the red read thread rolled out for the requested item (state
R or A), it simply terminates and waits for the data reply that eventually will follow
that path on its way back.

4.2 Multilevel Write

An erase from below to a directory with the item in state exclusive (E), results in an
exclusive acknowledge being sent below. An erase that cannot get its acknowledge from
the directory will work its way up the hierarchy, changing the states of the directories
to waiting (W), marking the outstanding request. All subsystems of a bus carrying an
erase transaction will get their copies erased. The propagation of the erase ends when
a directory in state exclusive (E) is reached (or the top), and the acknowledge is sent
back along the path marked with state W, changing the states to exclusive (E).

A write race between any two processors in the hierarchical DDM has a solution
similar to that of a single-bus DDM. The two erase requests are propagated up the
hierarchy. The first erase transaction to reach the lowest bus common to both processors
is the winner, as shown in Figure 8. The losing attraction memory (in state RW) will
restart a new write action automatically upon the reception of the erase.

4.3 Replacement in the Hierarchical DDM

Replacement of a shared item in the hierarchical DDM will result in an out transaction
propagating up the hierarchy and terminating when a subsystem in any of states S,
R, W, or A is found. If the last copy of an item marked with state S is replaced, an
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Figure 8: A write race between two processors, Px and Py, is resolved when the request
originating from Py reaches the top bus (the lowest bus common to both PTrocessors. )
The top can now send the acknowledge, exclusive, which follows the path marked with
Ws back to the winning processor Py. The states W will be changed to E by the
exclusive acknowledge. The erase will erase the datum in Px and Pz, forcing Px to redo
its write-attempt.

out that fails to terminate will reach a directory in state E, and turned into an inject.
Replacing an item in state E generates an inject transaction, trying to find an empty
space in a neighboring attraction memory. Inject transactions will first try to find an
empty space in the attraction memories of the local DDM bus, like for the single-bus
DDM. Unlike the single-bus DDM, an inject failing to find an empty space on the local
DDM bus will turn to a special bus, its home bus, determined by the item identifier. On
the home bus, the inject will force itself into an attraction memory, possibly by throwing
a foreigner and/or shared item out. The item home space is equally divided between
the bottom-most buses, and therefore space is guaranteed on the home bus.

The preferred location, as described, is different from the memory location of NUMAs
in that the notion of a home is only used at replacement after failing to find space
elsewhere. When the item is not there, its place can be used by other items. The home
also differ from NUMAs in it being a bus, i.e. any attraction memory on that bus will
do. The details of the directory protocols can be found elsewhere [HHW90].

4.4 Replacement in a Directory

Baer and Wang have studied the multi-level inclusion property [BW88] with the fol-
lowing implications for our system: a directory at level i + 1 has to be a superset of
the directories, or attraction memories, at level 4, i.e. the size of a directory and its
associativity (number of ways) must be B; times that of the underlying level ¢, where
B; is the branch factor of the underlying level 7, and size means the number of items.
SIZE: Diryy1 = B; * Dar;

ASSOCIATIVITY: Dir;y1 = B; * Dar;

Even if implementable, higher level memories would become expensive and slow
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if those properties were fulfilled for a large hierarchical systems. The effects of the
multi-level inclusion property are however limited in the DDM that only stores state
information in its directories, and not replicate data in the higher levels. Yet another
way to limit the effect is to use directories with smaller sets (less number of ways) than
what is required for multi-level inclusion, called imperfect directories, and to endow
the directories with the ability to perform replacement. The probability of replacement
can be kept at a reasonable level by increasing the associativity moderately higher up
in the hierarchy. A higher degree of sharing will also help to keep that probability
low. A shared item occupies space in many attraction memories, but only one space
in the directories above them. Directory replacement is implemented in the DDM by
an extension to the existing protocol, which requires one extra state and two extra

transactions [HHW90].

4.5 Other Protocols

The described protocol provides a sequentially consistent [LamT9] system to the pro-
grammer. While fulfilling the strongest memory access model, performance is degraded
by waiting for the acknowledge before the write can be performed. Note though that
the acknowledge is sent by the topmost node of the subsystem in which all the copies
of the item reside, instead of by each individual attraction memory with a copy. This
not only reduces the remote delay, but also cuts down the number of transactions in the
system. The writer might actually receive the acknowledge before all copies are erased.
Still sequential consistency can be guaranteed [LHH91]. Looser forms of consistency
providing a higher performance, can also be supported in an efficient way by the hierar-
chical structure [LHH91]. Yet another protocol which is write invalidate by default but
changes strategy to write broadcast on a per-item basis has been proposed [HALH91]

5 INCREASING THE BANDWIDTH

Although most memory accesses tend to be localized in the machine, the higher level
in the hierarchy may nevertheless demand a higher bandwidth than the lower systems,
which creates a bottleneck. A way of taking the load off the higher levels is to have a
smaller branch factor at the top of the hierarchy than lower down [VJS88]. This solution,
however, increases the levels in the hierarchy, resulting in a longer remote access delay
and an increased memory overhead. The higher levels of the hierarchy can instead be
widened to become a fat tree [Lei85). A directory can be split into two directories of half
the size. The two directories deal with different address domains (even and odd). The
communication with other directories is also split, which doubles the bandwidth. A split
may be performed any number of times, and may be applied to any level of the hierarchy.
Regardless of the number of splits, the architecture is still hierarchical to each specific
address, as shown in Figure 9. Yet another solution is to use a heterogeneous network,
i.e. the hierarchy with its advantages is used as far as possible and several hierarchies are
tied together at their tops by a general network with a directory-based protocol. This
scheme requires some changes in the protocol to achieve the same consistency model.
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Figure 9: Increasing the bandwidth of a bus by splitting buses.

6 THE DDM PROTOTYPE PROJECT
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Figure 10: The implementation of a DDM node consisting of four processors sharing
one attraction memory.

A prototype design of the DDM is near completion at SICS. The hardware implemen-
tation of the processor/attraction memory is based on the system TP881V by Tadpole
Technology, U.K. Each such system has up to four Motorola 88100 20 MHz processors,
each one with two 88200 16 kbyte cache/MMU, 8 or 32 Mbyte of DRAM, and interfaces
for the SCSI-bus, Ethernet, and terminals, all connected by the Motorola Mbus.

A DDM Node Controller (DNC) board, hosting a two-way set-associative single-
ported state memory, is being developed, interfacing the TP881 node and the first level
DDM bus as shown in Figure 10. The DNC snoops accesses between the processor
caches and the memory of the TP881 according to the protocol memory below, and also
snoops the DDM bus according to the protocol memory above. The protocol used has
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been modified to integrate the copy-back protocol of multiple processor caches into the
protocol mechanisms described. The DNC thus changes the behavior of the memory into
a two-way set-associative attraction memory. Read accesses to the attraction memory
take eight cycles per cache line, which is one more than in the original system TP881
system. Write accesses to the attraction memory take twelve cycles compared to ten
cycles for the original system. A read/write mix of 3/1 to the attraction memory results
in the access time to the attraction memory being on the average 16 % slower than that
to the original TP881 memory.

A remote read to a node on the same DDM-bus takes 65 cycles at best, most of
which are spent making Mbus transactions (a total of four accesses). Read accesses
climbing one step up and down the hierarchy add about 20 extra cycles. Write accesses
to state S takes at best 30 cycles for one level and 45 cycles for two levels.

CPU- | State Delay, one Delay, two
access | in AM || level (cycles) | levels (cycles)

read I 65 85
write S 30 45
write I &0 125

The DDM bus is pipelined in four phases: transaction code, snoop, selection, and
data. We have decided to make an initial conservative bus design, since pushing the
bus speed is not a primary goal of this research. The DDM bus of the prototype
operates at 20 MHz, with a 32-bit data bus and a 32-bit address bus. It provides a
moderate bandwidth of about 80 Mbyte/s which is enough for connecting up to eight
nodes, i.e., 32 processors. Still, the bandwidth has not been the limiting factor in our
simulation studies. The bandwidth of a bus can be increased many times by using other
structures. The slotted ring bus proposed by Barosso and Dubois [BD91] has a one
order of magnitude higher bandwidth.

The DDM uses the normal procedures for translating virtual addresses to physical
addresses, as implemented in standard MMUs, for translations to item identifiers. This
implies that the knowledge of physical pages appears to an operating system.

Any attraction memory node can have a disk connected. Upon a page-in, the node
first attracts all the data of an item page (“physical page”) as being temporarily locked
to its attraction memory. If the items of that page was not present in the machine
earlier, they will get born at this time by the protocol. Secondly it copies (by DMA)
the page from the disk to the attraction memory, unlocking the data at the same time.
Page-out reverses the process, possibly by copying a dirty page back to the disk. The
operating system might decide to purge the items of some unused pages, in favor for
more sharing.

7 MEMORY OVERHEAD

At first sight, it might be tempting to believe that an implementation of the DDM would
require far more memory than alternative architectures. Extra memory will be required
for storing state bits and address keys for the set-associative attraction memories, as
well as for the directories. We have calculated the extra bits needed if all items reside
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only in one copy (worst case). An item size of 128 bits is assumed, i.e. the cache line
size of the Motorola 88200.

A 32-processor DDM, i.e., a one-level DDM with a maximum of eight two-way set-
associative attraction memories, needs four bits of address tag per item, regardless of
the attraction memory size. As stated before, the item space is not larger than the sum
of the sizes of the attraction memories, i.e., the size of each attraction memory is 1/8 of
the item space. Each set in the attraction memory is divided two ways, i.e., there are
16 items that could reside in the same set. The four bits are needed to tell them apart.
Each item also needs four bits of state. An item size of 128 bits gives an overhead of
(444)/128 = 6%.

By adding another layer with eight 8-way set-associative directories, the maximum
number of processors comes to 256. The size of the directories is the sum of the sizes of
the attraction memories in their subsystems. A directory entry consists of six bits for
the address tag and four bits of state per item, using a similar calculation as above. The
overhead in the attraction memories is larger than in the previous example, because of
the larger item space: seven bits of address tag and four bits of state. The total overhead
per item is (64+4+7+4)/128 = 16%. A larger item sized would, of course, decrease these
overheads.

An optimization to minimize the memory overhead involves a different interpretation
of the implicit state for different parts of the item space. The absence of an entry in a
directory has previously been interpreted as state invalid. The replacement algorithm
introduced a notion of a home bus for an item. If an item is most often found in its home
bus and nowhere else, the absence of an entry in a directory could instead be interpreted
as state exclusive, for items in its home subsystem, and as state invalid for items from
outside. This would drastically cut down the size of a directory. The technique is only
practical to a limited extent, however, since too small directories restrict the number
of items moving out of their subsystems, and thus limits sharing and migration, with
drawbacks similar to those of NUMAs as a result.

The fact that the item space is slightly smaller than the sum of the attraction mem-
ories, due to sharing in the system, will also introduce a memory overhead, which has
not been taken into account in the above calculations. Note though that in a COMA, a
“cached” item occupies only one space, while other shared-memory architectures require
two spaces, one in the cache and one in the shared memory.

8 SIMULATED PERFORMANCE

In this study, we have used an execution-driven simulation environment allowing for
large programs running on many processors to be studied at a reasonable time. The
DDM simulation model is parameterized with data from our ongoing prototype project,
and accurately describes its behavior including the compromises introduced by taking
an existing commercial product as a starting point. The model also describes parts of
the virtual memory handling system. Attraction memories are 2-way 1 Mbyte in this
study. A protocol similar to the one described in this paper has been used, providing
sequential consistency.
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APPLICATION Water MP3D | -DIFF Cholesky Matrix | MUSE
INPUT DATA 192 384 | 75.000 | 75.000 | ml4 m1b 500 x | Pundit
mols. | mols. | part. | part. | (small) | (large) | 500
COLDSTART INCL? yes yes no no yes yes yes no
DDM TOPOLOGY 2x8x4 | 2x8x4 | 2x8x2 | 2x8x2 | 2x8x2 | 2x8x2 8x4 4x4
HIT RATES(data)
Dcache (%) 99.0 | 98.9 86 92 96 89 92 98.5
Attr. Mem. (%) 44 65 40 88 6 74 98 91
RAR (data) (%) 0.6 0.4 8.4 1.0 3.8 2.8 0.16 0.20
BUS UTILIZATION
Mbus (%) 31 26 86 54 70 60 55 -
Lower DDMbus (%) 39 30 88 24 80 66 - -
Top DDMbus (%) 25 20 66 13 70 49 4 -
Speedup/#Proc. 52/64 | -/64 | 6/32 | 19/32 | 10/32 | 17/32 | 29/32 | -/16

Table 1: Statistics from DDM simulations. Hit rate statistics are for data only, except
MUSE, where a unified I4+D cache was used. RAR is the remote access rate, i.e., the
ratio of the data accesses issued by a processor that creates remote coherence traffic.
Note that an increased working set results in less load on the busses for Water and
Cholesky.

We have studied the parallel execution of the Stanford Parallel Applications for
Shared Memory (SPLASH) [SWG91], the OR-parallel Prolog system MUSE and a ma-
trix multiplication program, representing applications from engineering computing and
symbolic computing. All programs were originally written for UMA architectures (Se-
quent Symmetry or Encore Multimax) and use static or dynamic scheduler algorithms.
They adapt well for a COMA without any changes. The details of this study can be
found elsewhere [HALH91]. All programs take in the order of one CPU minute to run
sequentially, without any simulations, on a SUN SPARCstation. The speedups reported
in Figure 11 and Table 1 are self-relative to the execution of a single DDM-node with
one processor, assuming a 100% hit rate in the attraction memory.

The SPLASH-Water program simulates the movements of water molecules. Its
execution time is O(m?), where m is the number of molecules. Therefore it is often
simulated with a small working set, in this case 192 molecules and a working set of
320 kbyte, i.e. the 96 processors in Figure 11 each handles only two molecules. Most of
the locality in the small working set can be explored of the processor cache, and only
about 44 % of the transactions reaching the attraction memory will hit. A real-sized
working set would still have the same good locality, and would benefit more from the
large attraction memories in order to maintain the good speedup. Justified by a single
run with 384 molecules in Table 1.

The SPLASH-MP3D program is a wind tunnel simulator where a good speedup
1s harder to achieve, due to a high invalidation frequency resulting a poor hit rate.
The program is often run with the memory filled with data structures representing
particles, divided equally between the processors. The 3D space is divided into space-
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Figure 11: The speedup curves for some of the reported programs.

cells represented by data structures. MP3D is run in time phases, where each particle
is moved once each phase. Moving a particle involves updating the state of the particle
and also the state of space-cell where the molecule currently resides, i.e., all processors
write to all the space-cells resulting in a poor locality. 95% of the misses we explore
in the DDM are due to this write-invalidate effect. We simulate 75.000 particles, i.e. a
working set of 4 Mbyte.

MP3D-DIFF is a rewritten version of the program, where a better hit rate is
achieved. The distribution of particle over processors is here based on their current
location in space, i.e. all particles in the same space-cells are handled by the same
processor. The update of the both the particle state and the space cell state are now
local to the processor. When a particle is moved across a processor boarder, its data
is handled by a new processor, i.e., the particle data diffuse to the attraction memory
of the new processor. The rewriting added some 30 extra lines and requires a COMA
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architecture, where data can live anywhere, to run well.

SPLASH-Cholesky factorises a sparsely positive definite matrix. The matrix is
divided into supernodes that are put in a global task queue to be picked up by any
worker, i.e. the scheduling is dynamic. We have used the large input matrix besstk15
(m15), which occupies 800 kbytes unfactored, and 7,7 Mbytes factored. The nature
of the Cholesky algorithm limits the available parallelism, that depends on the size of
the input matrix. As a comparison, a run with the smaller matrix besstkl4 (ml14) of
420 kbytes unfactored and 1.4 Mbytes factored is presented in Table 1.

Matrix performs plain matrix multiplication on a 500x500 matrix using a blocked
algorithm. The working set is about 3 Mbyte.

MUSE is an OR-parallel Prolog system implemented in C at SICS. The large natural
language system Pundit from Unisys Paoli Research Center is used as an input. An
active working set of 2 Mbytes is touched during the execution. MUSE distributes work
dynamically, and shows a good locality on a COMA. MUSE was run on an earlier version
of the simulator, and some of the statistics are therefore not reported in Table 1.

9 RELATED ACTIVITIES

An operating system targeted for the DDM prototype is under development at SICS.
This work is based on the Mach operating system from CMU [Ras86] that is modified
to efficiently support the DDM. Other related activities at SICS involve a hardware
prefetching scheme that dynamically prefetches items to the attraction memory, espe-
cially useful when a process is started or migrated. We are also experimenting with
alternative protocols.

An emulator of the DDM is currently under development at the University of Bris-
tol [RW91]. The emulator runs on the Meiko Transputer platform. The modeled ar-
chitecture has a tree-shaped link-based structure with Transputers as directories. Their
four links allow for a branch factor of three at each level. The Transputers at the leaves
execute the application. All references to global data are intercepted and handled in a
DDM manner by software. The DDM protocol in the emulator has a different represen-
tation, which is suited for a link-based architecture structured like a tree, rather than a
bus-based one. The implementation has certain similarities to directory-based systems.

10 CONCLUSION

We have introduced a new class of architectures, cache-only memory architectures, that
allows for private caches of the largest size possible, since all data memory is used to
implement the caches. The caches, which are kept coherent by a hardware protocol and
have an extended functionality that handles replacement, are called attraction memories.
A hierarchical bus structure has been described that ties a large number of attraction
memories together and isolates the traffic generated by the hardware protocol to as small
part of the machine as possible. Simulation show that the COMA principle behaves well
for programs originally written for UMA architectures, and that the slow busses of our
prototype still allows for many processors to be connected. The overhead of COMA
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explored in our hardware prototype is limited to 16% in the access time between the
processor caches and the attraction memory, and a memory overhead of 6-16 % for
32-256 processors.
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