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Abstract— This paper presents a systematic method for DDoS 
attack detection. DDoS attack can be considered system anomaly 
or misuse from which abnormal behavior is imposed on network 
traffic. Attack detection can be performed via abnormal behavior 
identification. Network traffic characterization with behavior 
modeling could be a good guidance of attack detection. 
Aggregated traffic has been found to be strong bursty across a 
wide range of time scales. Wavelet analysis is able to capture 
complex temporal correlation across multiple time scales with 
very low computational complexity. We utilize energy 
distribution based on wavelet analysis to detect DDoS attack 
traffic. Energy distribution over time would have limited 
variation if the traffic keeps its behavior over time (i.e. attack-
free situation); while an introduction of attack traffic in the 
network would elicit significant energy distribution deviation in 
short time period. Our experimental results with typical Internet 
traffic trace show that energy distribution variance changes 
markedly causing a “spike” when traffic behaviors affected by 
DDoS attack. In contrast, normal traffic exhibits a remarkably 
stationary energy distribution. In addition, this spike in energy 
distribution variance can be captured in early stage of attack, far 
ahead of congestion build-up, making it an effective attack 
detection. 
 

I. INTRODUCTION  
Distributed denial of service (DDoS) attack has been one of 

the major attention grabbing security attacks as it explicitly 
threatens the stability of the Internet. Computer Economics [4] 
estimated that the total economic impact of Code Red was $2.6 
billion, and Sircam cost another $1.3 billion. A recent attack 
via SQL Slammer caused an estimated $1 billion in damage 
during the first five days as it rapidly spread around the globe 
[3]. Unlike denial of service attacks relying on specific network 
protocol or system weakness, the DDoS attack simply exploits 
the huge resource asymmetry between the Internet and the 
victim. A sufficient number of zombies generate huge "useless" 
traffic volume towards the victim. Through this "many to one" 
attack dimension, the DDoS attack is able to block the access 
to the "thoroughfare" reaching the victim, effectively taking the 
victim off the Internet so that any victim' level of defense 
becomes irrelevant. In addition, the DDoS attack’s strategies of 
hierarchical attack and IP spoofing make attackers difficult to 
trace. Although great efforts has been involved in attack 
detection and prevention, there is still a lack of effective and 
efficient solutions to intercept ongoing attack in a timely 
fashion, i.e. short enough to prevent traffic build up from 
DDOS attack.  

Several methods have been proposed for attack detection 
and prevention, such as pattern-based filtering, and queue 
management associated with flow state (e.g. LRU-RED) [6]. 

However, no common characteristics of DDoS packets can be 
used as general signatures of detection and filtering. Attackers 
can shape the volume of attack streams and vary all packet 
fields to avoid exposing their own identity. In addition, even if 
the detector (or filter) is able to identify the pattern of the 
attacks, massive amount of traffic may paralyze it and make it 
ineffective. That is the reason why most of current techniques 
are still unable to withstand large-scale attacks. 

DDoS attack can be considered system anomaly or misuse 
by which abnormal behavior is imposed on network traffic. 
Attack detection becomes traffic behavior change 
identification. Traditional anomaly and misuse detections, 
however, are confined in detecting the deviation from preset 
reference (e.g. normal traffic pattern) or identifying traffic with 
known attack signature. The pattern and signature in use are 
still on packet or flow level, instead of traffic behavior level in 
which we believe traffic nature is presented. Network traffic 
characterization could be a good guidance of attack detection, 
as long as the traffic behavior can be explicitly captured. 
Recent researches have shown that time series of aggregated 
traffic is scale invariant or bursty across a wide range of time 
scales [2][5][8][9]. Since time scales can be naturally 
represented by wavelets [19] and wavelet representation also 
matches the properties of the bursty network traffic, wavelet-
based scaling analysis has been applied to characterize the 
Internet traffic [18][19]. Analytic study in [18] shows that 
variances of wavelet coefficients are determined by the nature 
of traffic itself. All these propel us to develop energy 
distribution analysis based on wavelets, for traffic behavior 
characterization to detect DDoS attack. Following the wavelet 
method in [12] [25], energy distribution in traffic is defined 
through the variances of wavelet coefficients on the time series 
of network traffic. 

We applied our traffic behavior characterization with 
energy distribution to DDoS detection. Our experimental 
results with Internet traffic trace show that energy distribution 
variance changes markedly as traffic behavior changes due to 
DDoS Attack, while normal traffic exhibits a remarkably 
stationary energy distribution. Furthermore, such change can 
be captured in a timely manner, i.e. short enough to prevent 
traffic build up from DDOS attack. 

The rest of the paper is organized as follows. We first 
briefly introduce related work in Section II. We then propose 
our wavelet based energy distribution analysis in Section III. 
Normal traffic trace without evident behavior anomaly 
(including real and simulation trace) has been investigated for 
its energy distribution. In Section IV, through simulation, 
attack traffic (a typical cause of traffic behavior change) is 
studied with our energy distribution analysis. Finally, we 
conclude the paper in Section V. 
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II. RELATED WORK 
Several detection methods have been proposed against 

DDoS attack. Obviously, detecting a DDoS attack is relatively 
easy at victim network, since attack traffic near the victim is 
unusually overwhelming. Attack can be captured based on 
identifying unusually high traffic with certain classification 
(e.g. packet type). However, the responsiveness of this 
approach is fairly poor due to the downstream location. 
Moreover, if an upstream link has been jammed by attack 
packets, there is not much to do on victim side.  

In contrast, attack packets with spoofed source address can 
be effectively detected at attack source side [1]. Network 
Ingress Filtering (NIF) [7] is based on this. Routers with NIF 
drop packets with illegitimate source IP addresses. However, 
this approach cannot capture attack packets generated by 
reflectors (here, source addresses are valid) [1]. In addition, 
effectiveness of this approach significantly depends on the 
coverage of NIF. Ensuring all ISP networks to install NIF is 
evidently not practical. Instead of source network, route-based 
packet filtering (RPF), proposed by Park and Lee, implements 
enhanced NIF in intermediate network [10]. RPF validates the 
route taken by the packets based on the inscribed source and 
destination addresses, and the BGP routing information. If the 
route includes an illegitimate path, the packet is considered an 
attack packet. RPF has more practicability and less coverage 
requirement than NIF. However, there are several problems 
that prevent wide deployment of these approaches, such as 
BGP modification, router overhead, and the lack of inter-
domain cooperation. Moreover, similar to the NIF, the RPF 
approach cannot filter attack packets with valid source 
addresses (e.g. reflected packets).  

Most of the methods introduced so far are based on 
appearance of DDoS attack, such as spoofed source IP address, 
bandwidth distribution, attack packet pattern etc. However, 
attacker can hide the appearance of attack traffic via packet 
reshaping. DDoS attack can be considered system anomaly or 
misuse from which abnormal behavior is imposed on network 
traffic. Some statistical approaches have been proposed for 
anomaly detection based on behavior profiling, such as neural 
networks [11], Markov models [22], and signal analysis [23]. 
Behavior profiles for subjects are initially generated. As the 
system continues running, the anomaly detection can be 
performed via the variance of the present profile from the 
original one. In network environments, traffic characterization 
mechanisms possessing the ability of behavior modeling can 
also be applied to attack detection against inscribed anomaly. 
In this paper, we propose the energy distribution analysis, a 
characterization mechanism of traffic behavior, to implement 
attack detection. This mechanism can detect traffic behavior 
change based on its inherent characteristic. In the following 
sections, we will present our proposed method in terms of 
basics of the technique employed and verification of its 
effectiveness via simulation. 

III. ENERGY DISTRIBUTION ANALYSIS BASED ON 
WAVELETS 

Measurements and analytical studies have shown that 
network traffic exhibits self-similarity or long-range 
dependence. With inherent scaling property, wavelet is well-
suited for analyzing self-similar process [25][19]. Our 

proposed energy distribution analysis justifiably develops on 
the top of the wavelet technique proposed by Abry and Veitch 
[12]. It is also based on a conjecture that the Internet traffic is 
long-range dependent or self-similar. Although more complex, 
perhaps multifractal-like, scaling behaviors under sub-second 
scales have been reported in recent researches [25][26], we still 
consider self-similar scaling over large time scales (more than 
100 ms) by which we believe traffic behavior change can be 
presented. We measured self-similarity of Internet traffic trace 
(ITA trace [14]) and found that ITA traces have high Hurst 
parameter (1) values (> .7) under large time scales  for different 
detecting points and observation time windows. This is 
consistent with results found by Paxson and Floyd [5] using the 
same trace.  

A. Wavelet analysis and energy distribution 

1) Wavelet analysis 
Wavelet analysis defines a collection of nested subspace 

jV corresponding to a collection of scalable and shiftable 
functions )(, tijΦ . Time series )(tx  is projected into each of 
the subspaces 

jV : 
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space: 

(3))(),())(()( , tijdtxprojtDetails ij
i

xWj j
Ψ== ∑

where ),( ijd x  is wavelet coefficient. ),( ijd x  can be 
considered independent and identical distribution variable with 
zero mean [12][19]. 2|),(| ijdx , as variance of ),( ijd x , measures 

the amount of energy distributed at time instant ij2  ( 02 νj−  in 
frequency domain) [12]. Using the average of 2|),(| ijdx , one can 
estimate the spectrum of x:  
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,where nj is the available number of wavelet coefficients at j. 
)2(ˆ

0νjx
−Γ is then measuring the energy that lies in subband with 

central frequency of 
02 νj− . We use 

jE to represent energy in 
subband with central frequency of 

02 νj− . 
In our study, we utilize a time series {x(t)}, in which x(t) is 

defined as the byte counts in a fixed time interval. We set a 
time interval of 10 milliseconds in our study as in Abry-Veitch 
wavelet analysis [24]. Our study also shows formed time series 
with 10 milliseconds interval is able to represent self-similarity 
of sampled trace, while adequate data can be collected in 
available time window(s). Other two parameters, sliding 
window W and time step increment T, are also utilized in our 
                                                        
(1) Hurst parameter (H) presents degree of long-range dependence 
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study. Every time of T, traffic is sampled with size of W. 

2) Energy distribution  
Wavelet analysis actually uncouples the scaled traffic. 

2|),(| ijdx  tells us how much difference (dissimilarity) between 
the two neighboring scaled traffic patterns. On the other hand, 
having all 2|),(| ijdx  we can reconstruct the signal series )(tx . 
We notice that the wavelet spectrum provides complete 
information of the correlation structure of given processes 
without any loss. In other words, energy distribution 
(spectrum) has great potential to characterize traffic behavior. 

If we observe the traffic at two consecutive points (we use a 
sliding sampling window of size W with an incremental time 
step of T), we have energy distribution 2

jE  at second point and  
1
jE at the first point. The variation between 2

jE  and 1
jE  may 

show the characteristic /behavior change in observed traffic. 
Because of significant autocorrelation in large time scale (i.e. 
long-range dependence), the variation of 

jE  is very limited if 
the traffic has no characteristics/behavior change. We 
measured energy distribution and its variation in Internet traffic 
(using ITA trace [14]) and found that is the case (see Figure 
1(a)(b), showing an example from our experimental results). 
Under given sampling window (21 minutes), energy 
distribution variation (2) of every trace is quite small (<0.15). 
Since ITA traces were captured at separate time slots in a day, 
it implies that daily traffic change has little impact on energy 
distribution property. Throughout this verification procedure, 
the energy distribution has stayed relatively constant. 

Although real trace is preferred in network traffic study, it 
has limitations, such as short length and fixed network context. 
Simulated trace is then considered in our study. We can  check 
if our traffic characterization with energy distribution works in 
simulated trace. Through NS simulator [13], we setup a 
dumbbell-topology (similar topology has been used in [18] 
[19]) and typical web workload (similar to SURGE developed 
at Boston University [20]). Dumbbell topology (see Figure. 
2(a)) consists of 40 web server pools, 420 clients and 7 
intermediate nodes. One bottleneck exists in the link between 
the servers and clients. During the simulation, we sweep the 
number of web sessions from 500 to 3000 and obtain packets 
trace at bottleneck link. With the same sliding sampling 
window and incremental time step applied to ITA trace, we 
have energy distribution variations of simulation trace (shows 
in Figure 2. (b)). Since we extend simulation time to 180 
minutes and only extract the middle section of trace for 
analysis, trace can be considered stable. Object trace presents 
nice similarity (Hurst Parameters > 0.8) and stationary (we can 
also say traffic keeps its characteristics/behavior), so the 
variation of

jE  shows very little variation (<0.01). This results 
match with our findings with the real Internet trace, ITA trace, 
shown in Figure 1 (a) and (b). 
B. Energy distribution analysis 

Since energy distribution of Internet traffic changes little, 
we conjecture that any anomaly in traffic, like attack traffic, 
will cause a sudden change in energy distribution for a short 
time window. Based on this we develop a threshold based 
                                                        
(2) The definition of energy distribution variation is described in Subsection B 

traffic signature as follows: 
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We consider the variance of jEg∆ , i.e. energy distribution 
variation in two time series, to be the traffic signature. Thus we 
define the normal traffic as time series 

)6(},)var(|)({)( TEgxtx j ><∆∈ τδτ
,where δ is a threshold and T is a time step increment for 
sliding sampling window. For a given value of δ , the traffic 
behavior is deemed to be normal as long as the traffic signature 
var(

jEg∆ ) is not larger than δ . Since δ and T should reflect 
traffic behavior, they may be adaptively adjusted. Also, 
sampling window size W may be sensitive to traffic behavior. 
In our later simulation, DDoS attack traffic is employed as a 
cause of traffic behavior change, resulting in noticeable change 
in energy distribution variation. However, note that other 
anomalies, i.e. deviation from “normal” traffic, can be captured 
in energy distribution variation 
C. Method Limitations and Discussion 
1) Trace size 

According to the trace investigation in Subsection A, our 
method requires a certain size of sliding sampling window. 
Since wavelet analysis demands number of input data must be 
power of 2, window size needs to follow this rule. After we 
tried a series of window sizes, 43min, and 21min (3 ) were 
selected for our experiments. Smaller window size may not 
provide enough samples to build up traffic self-similarity, 
while too large window size may cause unnecessary 
computation during the analysis and weaken the energy 
distribution variation. As a guidance of network control, our 
method may apply to traffic on-the-fly. Compared with other 
studies [18][19], however, 43 minutes trace seems to be quite 
long for real time analysis, especially for high bandwidth link 
(may have longer data length). Fortunately, an on-line version 
of the Abry-Veitch wavelet analysis has been proposed [24]. 
With the filter-banks, it can effectively process sampling data 
without redundant computation. It also has low memory 
requirement and scales naturally to arbitrarily high data rates 
for real time analysis.  
2) Boundary effect 

Boundary effect can exist in wavelet analysis. Given input 
data, how to select proper range (scale j) of wavelet 
coefficients was the problem mentioned in [12][17][24]. Since 
our method is based on Abry-Veitch wavelet analysis, we also 
need carefully choose wavelet coefficient to mitigate boundary 
effect. Roughan [24] suggested the upper bound of scale ( '

maxj ) 

                                                        
(3) window sizes are 2621.44 and 1310.72 seconds (a power of 2 times 10 ms). 

423



 

Energy Distribution of dec-pkt-1
with 21 min window

18
20
22
24
26
28

2 3 4 5 6 7 8 9

Scale (j )

Lo
g 

2(
Eg

)

Energy
distributio
n at 50min
Energy
distributio
n at 55min

Energy Distribution of dec-pkt-1
with 21 min window

20
21
22
23
24
25
26

2 3 4 5 6 7 8 9

Scale (j )

Lo
g 

2(
Eg

)

Energy
distribution
at 50min
Energy
distribution
at 45min

 
(a) Energy distribution in ITA trace dec-pkt-1 
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(b). Energy distribution variations in ITA traces 

 

Figure 1. Energy Distribution in Traffic Trace (ITA Real Trace) 
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(a) Dumbbell-topology                  (b). Energy distribution variations in NS-2 simulation trace 

 

Figure 2. Energy Distribution in Traffic Trace (Simulated Trace) 
 

should be less than n2log , the largest scale in sampling 
data, where n is the length of sampling data. Due to 
initialization errors in wavelet decomposition, the lower 
bound of scale ( '

minj ) is larger than one. However, there 
is no rule that can tell what is the best range of scale for 
given sampling data. In our practice, we select a range 
based on visual inspection of log-scale diagrams for a 
given network environment. We set ( '

minj , '
maxj ) to (2,9) 

for ITA trace, while (2,10) for simulated trace. 

3) Load effect 

In order to check load effect on energy distribution 
analysis, we would have obtained complete picture of 
energy distribution analysis over all load levels (based 
on average link utilization). 

However, due to the difficulty of network measure-
ments under all load levels, we perform our 
investigation on simulated traffic (see Figure 2 (b)). In 
the simulation described in Section 3.1, we sweep the 
number of sessions from 500 to 3000 to build 

workloads with average link utilization varying from 
19% to 95%. Note that our method is applicable to 
traffic with moderate and high load. We found a 
significant deviation in very light load (only 200 
sessions and 6% link utilization). Figure 3 shows the 
comparison between energy distribution variation of 
light load and that of moderate load. Lower traffic base 
holds more volatile energy distribution, because even a 
few occasion of modest change is more distinctively 
reflected to energy distribution than in moderate or 
heavy load. Therefore, our energy distribution analysis 
is limited to traffic with moderate or high load. Since 
DDoS attack detection does not kick in with low load, 
this does not cause a practical limit of our approach. 

IV. ATTACK DETECTION SIMULATION 
Attack traffic is capable of making a sudden change, 

distorting normal behavior. Stationary energy distribu-
tion could be broken, since the sudden behavior change 
distorts  temporal  correlation  over  multiple  scales. 
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Figure 3. The deviation of energy distribution in light traffic 

 

According to equation (6), our detection method can be 
considered a threshold-based method. Energy distribu-
tion variation caused by anomaly behavior (e.g. attack) 
could violate the threshold δ . DDOS attack having 
significant variation of energy distribution could then be 
detected. In order to catch attack as early as possible, 
sequential sampling with sliding window W is 
employed. Every time step increment T, traffic is 
sampled with size of W. For online detection, energy 
distribution analysis should be completed in time of T. 

A. Simulation Environment 

In order to simulate attack flows imposed to 
background traffic with self-similarity, we constructed a 
large-scale network simulation test-bed through NS 
simulator [13]. 

All the network end nodes in the simulation are 
assumed to be both IP traffic generators and receivers. 
General nodes and hot spot nodes (victim) would be 
simulated. In order to avoid a deterministic impact of 
statistic based traffic generator (such as Parato and 
Exponential), application based traffic sources are 
selected in our simulation, e.g. web, ftp, and CBR. In 
the simulated network, a number of network nodes are 
selected to be attacker nodes. Different from the normal 
traffic generator, IP traffic from all attackers has the 
same destination, the victim node. According to non-
responsive feature, CBR traffic source is chosen for 
simulating UDP flooding attack. The attack scenarios 
simulated is based on attack observations done by 
[15][16].  

We have two scenarios: 0.05 (scenario 1) and 0.075 
(scenario 2) attack coverage, which is defined as the 
ratio of attack nodes to whole nodes. In each scenario, 
cases with attack and without attack are both simulated 
and the DDoS attack is launched at 3100s with 
exponential acceleration having knee point at 3500s 
(Network topology and other parameters including 
attack configuration for the experiments are described 

in Figure 4). 

B. Simulation result 

As the first step, the self-similarity of traffic is 
extracted by estimating Hurst parameter. As in the case 
of ITA trace, the simulated traffic also exhibits a quite 
high self-similarity (with and without attack, all 
scenario cases produced Hurst parameter values in the 
range of 0.7 and 0.8). We then applied our method to 
compute the energy distribution variation of different 
traces.  

In the simulation results we have, large difference 
between consecutive detection points is observed in the 
traces with attack (see Figure 5). As a comparison, the 
traces without attack have a very limited energy 
distribution variation, which is very similar to what we 
obtained from ITA trace. With a threshold of 0.01, our 
scheme was able to catch all attack cases; four of four 
cases. The catch points match with attack launch timing 
shown in Figure 4(c). With the two attack-coverage 
scenarios and the two sliding window sizes, they are all 
around 3400s. One important note here is that energy 
distribution variation analysis is able to catch attacks 
early in the attack launch, far ahead of congestion build-
up due to the attacks.  

In contrast, we also show the variation of traffic rate 
(4) in Figure 6. It is clear that DDoS attack elicits a 
significant rate change to the traffic. However, rate 
variation in the early stage of attack (before 3800s in 
scenario 1) may not be detected by rate watching 
schemes (e.g. rate threshold), since it is as limited as 
normal burst. When a significant variation happens 
(around 4300s), congestion has already built up. With 
respect to the detection point showing in Figure 5, 
energy distribution analysis with sliding window of 21 
minutes can detect attack at 3400 second, far ahead of 
congestion. 

C. Discussion 

We successfully utilize energy distribution to detect 
DDOS attack in simulation. The deviation of energy 
distribution variation caused by attack traffic is 
significant enough to be detected through a threshold 

01.0=δ . System parameters, δ ,T and W are chosen 
tentatively. With too large W and/or T, energy 
distribution variation may be buried under self-
similarity, while too small W and/or T will make a less 
meaningful stochastic sample. Threshold δ and 
window size T need in-depth investigation with diverse 
traffic environment. Developing a proper value for δ , 
T , and W in various contexts is a key component of  
our future research. Another issue is sampled target  
(traffic parameter). Time series )(tx could be sampled 
for any traffic parameter. Instead of using inter-arrival 
time, some other traffic parameters could be considered, 
such as connection amount, packet address distribution, 
etc.  They  may  represent  traffic behavior  in  different  

                                                        
4 We only present the result of scenario 1 because of space limitation. 
Also, we have better detection in scenario 2. 
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(a) Network simulation topology 
 

Total nodes 200 
Number of background flows 800 (4 flows every nodes in average) 
Attack coverage 0.05/0.075 (10/15 nodes, out of 200 total nodes, 

to be attackers or zombies) 
Attack launch curve Exponential distribution (see Figure 4 (c)) 
Simulation time: 6000 seconds 
Attack period From 3000s to 5000s 
Attack launching period 3100s~4000s 

Victim node 85 
Detecting path 3->84->85 (node # 3 is the gate way collecting 

data in the simulation) 
(b) Attack configuration     (c) DDoS launch timing 

Figure 4. Simulation configurations  
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Figure 5. Energy distribution variations in simulated trace 

 

aspects. For diverse applications beyond DDoS 
detection, we may find more suitable traffic parameter 
through which efficacy of our method can be improved. 

Although this method is still a reactive one, catching 
attacks behind starting point, it can detect early in the 
attack launch (cooperate with real-time wavelet 
analysis), far ahead of congestion build-up. Compared 
to resource control scheme (such as rate limitation) 
associated with SRD characteristics of traffic (such as 
mean, and variance), our method may have better 
responsiveness and accuracy. Misuse detection 
schemes, based on preformed patterns, may recognize 
known "bad" behavior. However, recognizing “known” 
pattern may cause rather serious overhead due to packet 
decomposition in high level (such as IP address or 
TCP/UDP port checking). In addition, how to deal with 
unknown behavior in proactive way is a very 
complicated issue with no known acceptable solution. 
Therefore, our method may outperform existing 
schemes in attack detection. Also, in cooperation with 
distributed detection mechanism, we can envision better 

performance. 

V.  CONCLUSION 
This work is motivated by the fact that abnormal 

traffic behavior imposed by DDoS attack can be 
detected via energy distribution based on wavelet 
analysis. We have shown potential of energy 
distribution analysis for characterizing network traffic 
behavior. Wavelet analysis is able to capture complex 
temporal correlation across multiple time scales with 
very low computational complexity. Wavelet analysis 
provides energy distribution data for complete 
information of traffic behavior. With investigation of 
both real and simulated traffic trace, we have shown 
that energy distribution keeps relatively stationary if the 
traffic has no characteristics/behavior change. Energy 
distribution analysis based on wavelet analysis then has 
been developed. 

We have applied the energy distribution analysis to 
detect  DDOS  attack  as  a  case  study  to  verify  the 

GT-ITM Topology Generator provided by NS-2 [13] 
is used to generate a three-level network for 
simulation. Following topology generation 
parameters are specified: (1) ratio of end nodes and 
intermediate nodes, (2) connection density of the 
network nodes and (3) link bandwidth assignment.  
(1) Three-level hierarchy: domain, cluster, and 
nodes. 
(2) 10 domains; 4 clusters every domain; 5 nodes 
every cluster 
(3) 10 Mps link for domain; 5 Mps for clusters; 2 
Mps for nodes 
We scale down link bandwidth and traffic, because 
of memory usage problem in large simulations of 
NS. 
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Figure 6. Traffic rate in scenario 1 
 

detection capacity of our method. Parameters of 
detection method, time step increment T, threshold δ , 
and sampling window size W, have been studied. 
Tentative parameter values drawn from our 
experimental experience have been utilized in 
simulation. Our results show that energy distribution 
variance changes markedly, when attack traffic is 
injected, while normal traffic exhibits a remarkably 
stationary energy distribution. Our experimental results 
support that energy distribution analysis can 
characterize behavior of network traffic under dynamic 
condition and outperform other existing schemes. 

In our study, only Inter-arrival time has been used to 
construct analyzed date, because it has been widely 
used in modeling self-similar traffic. However, some 
other traffic parameters could be considered, such as 
connection amount, packet address distribution, etc. 
They represent network traffic behavior in different 
perspectives. Extending our method to those parameters 
may improve characterization/detection performance. 
There seems a great potential for energy distribution to 
help making better decision for network control and 
management. We will also study what could be proper 
time step increment T, and sampling window size W in 
different network environment and a method through 
which parameters can be adaptively adjusted. 
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