DDoS Tolerant Networks

Laura Feinstein, Dan Schnackenberg
The Boeing Company, Phantom Works
Laura.C.Feinstein @boeing.com
Daniel.D.Schnackenberg @boeing.com

Abstract

The nature of the threats posed by Distributed De-
nial of Service (DDoS) attacks on large networks, such
as the Internet, demands effective detection and re-
sponse methods. These methods must be deployed not
only at the edge but also at the core of the network. The
DDoS Tolerant Networks technology incorporates
methods to detect, characterize, and respond to DDoS
attacks by computing entropy and frequency-sorted
distributions of selected packet attributes. Preliminary
results indicate that these methods can be effective
against current attacks and suggest directions for
improving detection of more stealthy attacks.

1. Introduction

Powerful DDoS toolkits are now available to poten-
tial attackers, and essential networks are ill prepared for
defense. Individual DDoS attacks are often too short-
lived for manual diagnosis and response to be effective.
To meet the increasing need for detection and response
to DDoS attacks, researchers face these major issues:

e A stand-alone router on the attack path should
automatically recognize that the network is under
attack and adjust its traffic flow to ease the attack
impact downstream.

e The defense techniques should be adaptable to a
wide range of network environments, preferably
without significant manual tuning.

e Attack detection should be as accurate as possible.
False positives can lead to inappropriate responses
that cause denial of service to legitimate users.
False negatives result in attacks going unnoticed.

e Attack response should employ intelligent packet
discard mechanisms to reduce the downstream im-
pact of the flood while preserving and routing the
non-attack packets.

e The detection method should be effective against a
variety of attack tools available today and also ro-

Ravindra Balupari, Darrell Kindred
Network Associates Laboratories
Ravindra_Balupari@nai.com
Darrell _Kindred@nai.com

bust against future attempts by attackers to evade
detection.

These are demanding goals, but we contend that
there are several reasons to believe that satisfactory
detection and response methods can be designed. DDoS
traffic generated by today’s tools often has packet-
crafting characteristics that make it possible to distin-
guish from normal traffic. For example, source ad-
dresses and destination TCP and UDP ports are often
chosen at random to evade simple detection and filter-
ing techniques, while normal traffic exhibits different
distributions. Future DDoS tools may attempt to blend
in better, but we claim that attack floods will still
distort statistical measurements of the composition of
the traffic at some points in the network. Our hypothe-
sis is that relatively simple statistical measures can be
used to discriminate DDoS traffic from legitimate
traffic in core routers with sufficient accuracy to
mitigate the effect of the attack downstream.

Our DDoS defense approach requires no explicit
coordination (e.g., pushback [3]) between defending
network components, no built-in knowledge of appli-
cations or protocols, and no instrumentation at end
hosts. It can complement other approaches using these
techniques in a comprehensive DDoS defense solution.

In the demonstration, a prototype implementation of
these detection and response methods is deployed on
routers within a test network. Background traffic
obtained from a live network is injected on all network
segments, to simulate a realistic detection environment.
A DDoS flood is generated from attack agents on
multiple hosts, with the intent of disrupting a network
application. DDoS detectors identify the flood and
apply automatic responses to squelch the flood traffic
while permitting most legitimate traffic to pass. The
network application is shown to survive the flood,
which would have disabled it in the absence of DDoS
defenses.

" This research was supported by DARPA under contract N66001-01-C-8048.

Proceedings of the DARPA Information Survivability Conference and Exposition (DISCEX'03)
0-7695-1897-4/03 $17.00 © 2003 IEEE

YF]',F.

COMPUTER
SOCIETY

2. Detection Algorithms

Our detection algorithms measure statistical proper-
ties of specific fields in the packet headers at various
points in the Internet. For instance, a detector on a
router can monitor source IP addresses of arriving
packets to build a model of the current distribution of
source addresses. Through further computation with
this distribution, it can measure the randomness or
uniformity of the addresses and compare the current
distribution to baseline observations. Significant devia-
tions may indicate a DDoS attack in progress.

2.1. Entropy

Let an information source have n independent sym-
bols each with probability of choice p;. Then, the
entropy H is defined as [6]:

H ==Y plog, p,
i=1

Hence, entropy can be computed on a sample of con-
secutive packets. Comparing the value for entropy of
some sample of packet header fields to that of another
sample of packet header fields from the same observa-
tion point provides a mechanism for detecting changes
in the randomness. We have observed through experi-
mentation that while a network is not under attack, the
entropy values for various header fields each fall in a
narrow range. While the network is under attack with
current attack tools, these entropy values exceed these
ranges in a detectable manner.

A sophisticated attacker might attempt to defeat the
detection algorithm by creating stealthy traffic floods
that mimic the legitimate traffic the detector would
expect. An attacker who knew that the entropy of
various packet attributes was being monitored could
build an attack tool that generates floods with tunable
entropy levels. Through guesswork, penetration, or trial
and error, the attacker could determine typical entropy
levels seen at the detector and tune the flood to match.
This may not be as easy as it sounds, particularly if
there are multiple detectors deployed between the flood
sources and the targets, as the typical entropy values
seen by detectors in different network environments are
likely to differ. Stealthy attacks are explored further in
the full paper [1].

2.2. Chi-Square Statistic

Pearson’s chi-square (xz) Test is used to compare
distributions. In the chi-square DDoS detector, the
current distribution of values for some packet attribute
(e.g., source address) is compared against a baseline

Proceedings of the DARPA Information Survivability Conference and Exposition (DISCEX'03)
0-7695-1897-4/03 $17.00 © 2003 IEEE

measurement representing typical traffic seen in that
detector’s environment. When the chi-square statistic
indicates a substantial discrepancy between the baseline
and current distributions, the detector concludes that a
DDoS attack may have begun.

The chi-square statistic is most useful in cases where
the measurements involved have a small number of
possible values, such as TCP SYN flag values (0 or 1)
or protocol numbers. However, this can often be
achieved through “binning”, that is combining a set or
range of possible values and treating them as one. For
example, the chi-square test can be applied to service
ports by considering four values: HTTP, FTP, DNS,
and “other.” Similarly, packet lengths can be binned
into ranges such as 0-64 bytes, 65-128 bytes, 129-255
bytes, etc.

In practice, we have found that defining bins dy-
namically based on the frequency-sorted distribution of
values is often best. For example, five bins for the IP
source address attribute might be defined as follows:
(1) the most frequent address, (2) the next four most
frequent addresses, (3) the next 16, (4) the next 64, and
(5) the remainder. This approach tends to generate a
more stable baseline distribution, increasing detector
sensitivity while keeping false alarms in check.

3. Response

Our defense approach involves response modules
that use a characterization of the attack provided by a
detection module to take defensive measures. The
response module classifies individual packets as benign
or suspect based on the attack characteristics provided
by the detector. Once identified, the suspect packets are
subjected to rate limiting or packet-filtering methods
based on the intensity of the attack or pre-defined
response policies.

When a detector module detects a DDoS attack, it
constructs a description of the flood traffic by identify-
ing attributes that distinguish the anomalous traffic
from the more typical flows. For example, in a chi-
square detector, attack detection implies that the fre-
quency of one or more traffic “bins” differs substan-
tially from the baseline. The goal of the response is
then to bring these frequencies back towards baseline
levels, which requires applying rate limits to the over-
represented bins. For example, if source address distri-
bution is unusually dispersed due to a random-source-
address flood, the detector will note that the bin corre-
sponding to the least common source addresses has a
high frequency, and will impose rate limits to drop
some of these packets. The detector can further focus
response by identifying other dominant attributes (e.g.,
specific target addresses or ports) of the anomalous
traffic and narrowing the rate limits appropriately.

YF]',F.

COMPUTER
SOCIETY

4. Prototype Implementations

To evaluate the DDoS attack detection methods un-
der realistic conditions, we implemented prototype
detector modules as plug-ins for Snort, the popular,
open-source network intrusion detection system [4]. In
addition to real-time traffic monitoring, Snort supports
off-line processing of previously captured network
traffic, making it possible to conduct reproducible
detection experiments with traffic data from a variety of
environments.

In addition, we implemented a prototype response
module for Linux routers as a kernel module. It uses
netfilter and Linux Advanced Routing and Traffic
Control (LARTC) to filter and rate-limit packets [2],[5].
It can classify packets using specific attribute values
(e.g., a given destination TCP port), and it can also be
used to filter packets with “random” attribute values
using a simple frequency-threshold scheme. An API is
provided to take alerts from the detection module and
generate filter rules to be issued to the response module.
We also produced an extension to the Linux iptables
mechanism that provides similar functionality, for
better integration with iptables-based router/firewall
configurations.

A prototype based on the Intel IXP-1200 network
processor is currently under development. We consider
this processor representative of the next generation of
network hardware in that it is a highly programmable
device with the capability of forwarding network traffic
at high bandwidth. Prototyping on this platform will
help to validate the claim that these methods are appro-
priate for deployment in core network infrastructure.

5. Future Extensions

The focus thus far has been on detection and re-
sponse algorithms and the implementation of these
algorithms in software. At issue is whether these
algorithms can reliably detect and respond to DDoS
attacks.

Against today’s relatively unsophisticated DDoS
toolkits, our prototype detector is able to determine that
the network is under attack and deploy accurate filter-
ing rules. Because baseline measurements and thresh-
olds can be established automatically, and because
detectors can generate filtering rules automatically
based on the traffic statistics they gather, the system is
adaptable to a wide range of network environments
with minimal manual tuning. Our initial goal was to
provide effective defense against existing DDoS tools,
but we are continuing to explore techniques for better
defense against future stealthy attacks.

Future research and development will focus on
tighter integration of detection and response modules.

Proceedings of the DARPA Information Survivability Conference and Exposition (DISCEX'03)
0-7695-1897-4/03 $17.00 © 2003 IEEE

In the initial implementation, detectors generate concise
recommended rules for responders to impose, and no
further coordination between the two. In a more tightly
coupled detection/response system, the individual
packet classification decisions made by the responder
could make use of the rich data structures maintained
by the detector. Furthermore, detectors inspecting
different packet attributes could work together to build
more precise flood characterizations. These enhance-
ments would enable more focused filtering and rate
limiting, and reduce the possible impact of responses
on legitimate traffic.

Another approach to providing more narrowly tar-
geted response while avoiding computationally expen-
sive analysis would be to enable detectors to dynami-
cally tune themselves and “drill down” to investigate
detected anomalies more closely. A detector with these
capabilities could more effectively allocate its limited
computational resources where they are most needed.
Such drill-down could be triggered by a vague or
uncertain detection by a quick analysis, or by com-
plaints received from downstream network devices.

For further details on these detection and response
methods and results of a preliminary evaluation of their
potential effectiveness in different network environ-
ments, see our full paper [1].

6. References

[1] L. Feinstein, D. Schnackenberg, R. Balupari, and D.
Kindred, “Statistical Approaches to DDoS Attack Detection
and Response,” to appear in Proc. of DISCEX 111, April 2003.

[2] B. Hubert, “Linux Advanced Routing and Traffic
Control HOWTO?”, http://lartc.org/howto/.

[3] R. Manajan, et al, “Controlling High Bandwidth
Aggregates in the Network”, SIGCOMM Computer Commu-
nications Review, 32(3), July 2002.

[4] M. Roesch, “Snort - Lightweight Intrusion Detection for
Networks” Proceedings of the 13th Systems Administration
Conference (LISA'99), USENIX Association, 1999, pp. 229-
238, http://www.snort.org/docs/lisapaper.txt.

[5] R. Russell and H. Welte, “Linux Netfilter Hacking
HOWTO”, http://cvs.netfilter.org/cgi-bin/cvsweb/netfilter/
documentation/HOWTO/.

[6] C.E. Shannon, and W. Weaver, The Mathematical
Theory of Communication, University of Illinois Press, 1963.

YF]',F.

COMPUTER
SOCIETY

