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DE FINETTI’S CONTROL PROBLEM WITH A CONCAVE BOUND ON

THE CONTROL RATE

FÉLIX LOCAS AND JEAN-FRANÇOIS RENAUD

Abstract. We consider De Finetti’s control problem for absolutely continuous strategies
with control rates bounded by a concave function and prove that a generalized mean-reverting
strategy is optimal. In order to solve this problem, we need to deal with a nonlinear Ornstein-
Uhlenbeck process. Despite the level of generality of the bound imposed on the rate, an ex-
plicit expression for the value function is obtained up to the evaluation of two functions.This
optimal control problem has those with control rates bounded by a constant and a linear
function, respectively, as special cases.

1. Introduction

Nowadays, De Finetti’s control problem refers to a family of stochastic optimal control prob-
lems concerned with the maximization of withdrawals made from a stochastic system. While
it has interpretations in models of population dynamics and natural resources and in inven-
tory models, it originates from the field of insurance mathematics. Usually, the performance
function is the expected time-discounted value of all withdrawals made up to a first-passage
stopping time. In the original insurance context, it is interpretated as follows: find the optimal
way to pay out dividends, taken from the insurance surplus process, until ruin is declared.
In this case, the performance function is the expectation of the total amount of discounted
dividend payments made up to the time of ruin. Therefore, the difficulty consists in finding
the optimal balance between paying out dividends as much (and as early) as possible while
avoiding ruin to maintain those payments on the long run. Similar interpretations can be made
in population dynamics (harvesting) and for natural resources extractions; see, e.g., [3,10]. In
any case, the overall objective is the identification of the optimal way to withdraw from the
system (optimal strategy) and the derivation of an analytical expression for the optimal value
function.

In this paper, we consider absolutely continuous strategies. Except for very recent contri-
butions (see [1, 4, 15]), most of the literature has considered constant bounds on the control
rates (see, e.g., [5, 8, 11]). Following the direction originally taken by [3] and later on by [15],
we apply a much more general bound, namely a concave function applied to the current level
of the system.

1.1. Model and problem formulation. Let (Ω,F , (Ft)t≥0,P) be a filtered probability
space. Fix µ, σ > 0. The state process X = {Xt, t ≥ 0} is given by

Xt = x+ µt+ σWt, (1.1)
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where x ∈ R and where W = {Wt, t ≥ 0} is an (Ft)-adapted standard Brownian motion.
For example, the process X can be interpreted as the (uncontrolled) density of a population
or the (uncontrolled) surplus process of an insurance company. As alluded to above, we are
interested in absolutely continuous control processes. More precisely, a control strategy π is
characterized by a nonnegative and adapted control rate process lπ = {lπt , t ≥ 0} yielding the
cumulative control process

Lπt =

∫ t

0
lπs ds.

Note that Lπ = {Lπt , t ≥ 0} is nondecreasing and such that Lπ0 = 0. The corresponding
controlled process Uπ = {Uπt , t ≥ 0} is then given by

Uπt = Xt − Lπt .

In the above mentioned applications (e.g., harvesting and dividend payments), it makes
sense to allow for higher rates when the underlying state process is far from its critical level
and to allow for higher (relative) increase in this rate as early as possible. The situation is
reminiscent of utility functions in economics. In this direction, let us fix an increasing and
concave function F : R → R such that F (0) ≥ 0. For technical reasons, we assume F is a
differentiable Lipschitz function. Finally, a strategy π is said to be admissible if its control
rate is also such that

0 ≤ lπt ≤ F (Uπt ), (1.2)

for all 0 ≤ t ≤ τπ0 , where τπ0 = inf {t > 0: Uπt < 0} is the termination time. The termination
level 0 is chosen only for simplicity. Let ΠF be the set of all admissible strategies.

From now, we will write Px for the probability measure associated with the starting point
x and Ex for the expectation with respect to Px. When x = 0, we write P and E.

Fix a time-preference parameter q > 0 and then define the value of a strategy π ∈ ΠF by

Vπ(x) = Ex

[
∫ τπ0

0
e−qtlπt dt

]

, x ≥ 0.

Note that in our model, we have Vπ(0) = 0, for all π ∈ ΠF .
We want to find an optimal strategy, that is a strategy π∗ ∈ ΠF such that, for all x ≥ 0

and for all π ∈ ΠF , we have Vπ∗(x) ≥ Vπ(x). We also want to compute the optimal value
function given by

V (x) = sup
π∈ΠF

Vπ(x), x ≥ 0.

Remark 1. The optimal value function and an optimal strategy (if it exists) should be inde-
pendent of the behaviour of F when x < 0. The Lipschitz condition assumption is a sufficient
condition for the existence and the uniqueness of a (strong) solution to the stochastic differ-
ential equation (SDE) defined in (2.3); see, e.g., [14]. In fact, any increasing differentiable
concave function F : (0,+∞) → R such that F (0) ≥ 0 and F ′(0+) <∞ satisfy the conditions
for our model: we can extend F as a Lipschitz continuous function by extending F , such that
F (x) = F ′(0+)x+ F (0), for all x ≤ 0.

1.2. More related literature. De Finetti’s optimal control problems are adaptations and
interpretations of Bruno de Finetti’s seminal work [9]. As they have been extensively studied
in a variety of models, especially over the last 25 years, it is nearly impossible to provide a
proper literature review on this topic in an introduction. See the review paper [2] for more
details. Therefore, let us focus on the literature closer to our model and our problem.
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In [5, 11], the problem for absolutely continuous strategies in a Brownian model is tackled
under the following assumption on the control rate:

0 ≤ lπt ≤ R, (1.3)

where R > 0 is a given constant; see also [13] for the same problem in a Lévy model. For this
problem, a threshold strategy is optimal: above the optimal barrier level, the maximal control
rate R is applied, otherwise the system is left uncontrolled. In other words, a threshold strategy
is characterized by a barrier level and the corresponding controlled process is a Brownian
motion with a two-valued drift. Very recently, in [15], the admissibility condition in (1.3) was
replaced by the following one:

0 ≤ lπt ≤ KUπt , (1.4)

where K > 0 is a given constant. In other words, the control rate is now bounded by a
linear transformation of the current state. Note that this idea had already been considered
in a biological context (but under a different model) in [3]. In [15], it is proved that a
mean-reverting strategy is optimal: above the optimal barrier level, the maximal control rate
KUπt is applied, otherwise the system is left uncontrolled. Again, such a control strategy is
characterized by a barrier level, but now the controlled process is a refracted diffusion process,
switching between a Brownian motion with drift and an Ornstein-Uhlenbeck process.

To the best of our knowledge, the concept of mean-reverting strategy first appeared in [6].
It was argued that, in an insurance context, this type of strategies has desirable properties
for shareholders. Then, in [15], the name mean-reverting strategies was used for a larger
family of control strategies; in fact, the mean-reverting strategy in [6] is one member (when
the barrier level is equal to zero) of this sub-family of strategies. As mentioned above, a
mean-reverting strategy is optimal in the case F (x) = Kx. Following those lines, we will use
the name generalized mean-reverting strategy for similar bang-bang strategies corresponding
to the general case of an increasing and concave function F .

1.3. Main results and outline of the paper. Obviously, the bounds imposed on the control
rates in these last two problems, as given in (1.3) for the constant case and in (1.4) for the
linear case, are special cases of the one considered in our problem and presented in (1.2). A
solution to our general problem is given in Theorem 4.3. As we will see, an optimal control
strategy is provided by a generalized mean-reverting strategy, which is also characterized by
a barrier level b. More specifically, for such a strategy, the optimal controlled process is given
by the following diffusion process:

dU bt =
(

µ− F (U bt )1{Ub
t>b}

)

dt+ σdWt.

We use a guess-and-verify approach: first, we compute the value of any generalized mean-
reverting strategy (Proposition 3.1) using a Markovian decomposition and a perturbation
approach; second, we find the optimal barrier level (Proposition 4.1); finally, using a Veri-
fication Lemma (Lemma 2.3), we prove that this best mean-reverting strategy is in fact an
optimal strategy for our problem. Despite the level of generality (of F ), our solution for this
control problem is explicit up to the evaluation of two special functions strongly depending on
F : ϕF , the solution to an ordinary differential equation, and IF , an expectation functional.
While ϕF is one of the two well-known fundamental solutions associated to a diffusion process
(also the solution to a first-passage problem), the definition of IF (see Equation (2.4)) is an
intricate expectation for which many properties can be obtained (see Proposition 2.2).
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The rest of the paper is organized as follows. In Section 2, we provide important preliminary
results on the functions at the core of our main result and we state a Verification Lemma for
the maximization problem. In Section 3, we introduce the family of generalized mean-reverting
strategies and compute their value functions. In Section 4, we state and prove the main result,
which is a solution to the control problem, before looking at specific examples. A proof of the
Verification Lemma is provided in the Appendix.

2. Preliminary results

First, let G : [0,∞) → R be an increasing and differentiable function. Consider the homo-
geneous ordinary differential equation (ODE)

ΓG(f) :=
σ2

2
f ′′(x) + (µ−G(x))f ′(x)− qf(x) = 0, x > 0, (2.1)

and denote by ψG (resp. ϕG) a positive increasing (resp. decreasing) solution to (2.1), with
ψG(0) = ϕG(+∞) = 0. Under the additional conditions that ϕG(0) = 1 and ψ′

G(0) = 1, it is
known that ψG and ϕG are uniquely determined. It is also known that ψG, ϕG ∈ C3[0,∞).

We will write Γ, ψ and ϕ when G ≡ 0. In particular, it is easy to verify that, for x ≥ 0,

ψ(x) =
σ2

√

µ2 + 2qσ2
e−(µ/σ2)x sinh

(

(x/σ2)
√

µ2 + 2qσ2
)

. (2.2)

In what follows, we will not manipulate this explicit expression for ψ. Instead, we will use
its analytical properties (see Lemma 2.1 below).

Remark 2. The expression for ψ is proportional to the expression for W (q), the q-scale func-
tion of the Brownian motion with drift X, used in [15]. For more details, see [12].

The next lemma gives analytical properties of the functions ψ and ϕG. See [10] for a
complete proof.

Lemma 2.1. Let G : [0,∞) → R be an increasing and differentiable function. The functions
ψ and ϕG have the following analytical properties:

(a) ψ is strictly increasing and strictly concave-convex with a unique inflection point b̂ ∈
(0,∞);

(b) ϕG is strictly decreasing and strictly convex.

The value of the inflection point of ψ is known explicitly; see, e.g., Equation (4) in [15].
Our analysis does not depend on this specific value.

Recall from (1.1) that Xt = x+ µt+ σWt. Define U = {Ut, t ≥ 0} by

dUt = (µ− F (Ut))dt+ σdWt. (2.3)

Under our assumptions on F , there exists a unique strong solution to this last stochastic
differential equation. This is what we called a nonlinear Ornstein-Uhlenbeck process.

Now, for a ≥ 0, define the following first-passage stopping times:

τa = inf {t > 0: Xt = a} and τFa = inf {t > 0: Ut = a} .
It is well known that, for 0 ≤ x ≤ b, we have

Ex

[

e−qτb1{τb<τ0}
]

=
ψ(x)

ψ(b)
,
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and, for x ≥ 0, we have

Ex

[

e−qτ
F
0 1{τF0 <∞}

]

= ϕF (x),

since it is assumed ϕF (0) = 1.
Finally, define

IF (x) = Ex

[∫ ∞

0
e−qtF (Ut)dt

]

, x ∈ R. (2.4)

As alluded to above, the analysis of this functional is of paramount importance for the solution
of our control problem. The main difficulty in computing this functional lies in the fact that
the dynamics of U also depend on F .

Proposition 2.2. The function IF : R → R is a twice continuously differentiable, increasing
and concave solution to the following ODE:

ΓF (f) = −F, x > 0. (2.5)

Moreover, we have 0 ≤ I ′F (x) ≤ 1, for all x ≥ 0.

Proof. Under our assumptions on F , it is known that there exists a twice continuously differ-
entiable solution f to (2.5). Applying Ito’s Lemma to e−qtf(Ut) and taking expectations, we
obtain

Ex

[

e−qtf(Ut)
]

= f(x)−Ex

[∫ t

0
e−qsF (Us)ds

]

.

Letting t→ ∞, we get f(x) = IF (x).
In the rest of the proof, we will use the notation Ux for the solution to

dUxt = (µ− F (Uxt ))dt+ σdWt, Ux0 = x. (2.6)

This is the dynamics given in (2.3).
Fix x < y. Note that Ux0 < Uy0 and define κ = inf {t > 0: Uxt = Uyt }. Since Uxt < Uyt for

all 0 ≤ t ≤ κ and F is increasing, we have

IF (y) = E

[∫ ∞

0
e−qtF (Uyt )dt

]

= E

[
∫ κ

0
e−qtF (Uyt )dt

]

+E

[
∫ ∞

κ
e−qtF (Uyt )dt

]

≥ E

[∫ κ

0
e−qtF (Uxt )dt

]

+E

[∫ ∞

κ
e−qtF (Uxt )dt

]

= IF (x),

where we used the fact that, for t ≥ κ, we have Uxt = Uyt . This proves that IF is increasing.
Now, fix x, y ∈ R and λ ∈ [0, 1]. Define z = λx+ (1− λ)y and

Y z
t = λUxt + (1− λ)Uyt .

By linearity, we have
dY z

t = (µ− lYt )dt+ σdWt, Y z
0 = z,

where lYt := λF (Uxt ) + (1 − λ)F (Uyt ). Since F is concave, we have that lYt ≤ F (Y z
t ) for all

t ≥ 0. We want to prove that, almost surely, we have Y z
t ≥ U zt for all t ≥ 0. First, for all

t ≥ 0, we have

Y z
t − U zt =

∫ t

0

(

F (U zs )− lYs
)

ds. (2.7)
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Note that, by the concavity of F , since U z0 = Y z
0 = z, we have F (U z0 ) ≥ lY0 . Now, define

τ = inf
{

t > 0: F (U zt ) > lYt
}

.

On {τ = +∞}, we have Y z
t = U zt for all t. On {τ <∞}, since the mapping s 7→ F (U zs )− lYs

is continuous almost surely, it follows from (2.7) that there exists ǫ > 0 for which Y z
t > U zt for

all t ∈]τ, τ + ǫ[. But we can apply the same argument for another time point s > τ : if there
exists s > τ for which Y z

s = U zs , then either we have Y z
t = U zt for all t > s, or there exists

s′, ǫ′ > 0, for which we have
{

Y z
t = U zt if s ≤ t ≤ s′,
Y z
t > U zt if s′ < t < s′ + ǫ′.

This proves that, for all t ≥ 0, we have Y z
t ≥ U zt , which is equivalent to

∫ t

0
F (U zs )ds ≥

∫ t

0
(λF (Uxs ) + (1− λ)F (Uys )) ds.

Since this is true for all t ≥ 0, we further have that, for all t ≥ 0,
∫ t

0
e−qsF (U zs )ds ≥

∫ t

0
e−qs (λF (Uxs ) + (1− λ)F (Uys )) ds. (2.8)

Letting t→ ∞, it follows that

IF (λx+ (1− λ)y) ≥ λIF (x) + (1− λ)IF (y),

proving the concavity of IF .
Let x, h ≥ 0 and define

κh = inf
{

t > 0 : Ux+ht = Uxt

}

.

We can write

IF (x+ h)− IF (x) = E

[
∫ ∞

0
e−qt

(

F (Ux+ht )− F (Uxt )
)

dt

]

= E

[

∫ κh

0
e−qt

(

F (Ux+ht )− F (Uxt )
)

dt

]

+E

[∫ ∞

κh
e−qt

(

F (Ux+ht )− F (Uxt )
)

dt

]

.

If κh is finite, the second expectation is zero, because for all t ≥ κh and for all ω ∈ Ω, we
have Ux+ht (ω) = Uxt (ω). Now, on

{

κh <∞
}

, we have

∫ κh

0

(

F (Ux+hs )− F (Uxs )
)

ds = h,

which implies that
∫ κh

0
e−qs

(

F (Ux+hs )− F (Uxs )
)

ds ≤ h.

On
{

κh = ∞
}

, we have
∫ t

0
e−qs

(

F (Ux+hs )− F (Uxs )
)

ds < h,

for all t ≥ 0, which implies that
∫ ∞

0
e−qs

(

F (Ux+hs )− F (Uxs )
)

ds ≤ h.
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In conclusion, we have

E

[

∫ κh

0
e−qt

(

F (Ux+ht )− F (Uxt )
)

dt

]

≤ h.

Letting h→ 0, we find that I ′F (x) ≤ 1. �

Finally, here is a Verification Lemma for the stochastic control problem. The proof is given
in Appendix A.

Lemma 2.3. Let π∗ ∈ ΠF be such that Vπ∗ ∈ C2(0,∞), V ′
π∗ is bounded and, for all x > 0,

σ2

2
V ′′
π∗(x) + µV ′

π∗(x)− qVπ∗(x) + sup
0≤u≤F (x)

u(1− V ′
π∗(x)) = 0. (2.9)

Then, π∗ is an optimal strategy. In this case, V ∈ C2(0,+∞), V ′ is bounded and V satis-
fies (2.9).

3. Generalized mean-reverting strategies

Since the Hamilton-Jacobi-Bellman equation in (2.9) is linear with respect to the control
variable, we expect a bang-bang strategy to be optimal. Further, since from modelling reasons
we expect the optimal value fonction V to be concave, then an optimal strategy must be of
the form

lπs =

{

F (Uπs ) if Uπs > b,
0 if Uπs < b,

(3.1)

for some b ≥ 0 to be determined.
Consequently, and following the line of reasoning in [15], let us define the family of gen-

eralized mean-reverting strategies. For a fixed b ≥ 0, define the generalized mean-reverting
strategy πb and the corresponding controlled process U b := Uπb by

dU bt =
(

µ− F (U bt )1{Ub
t>b}

)

dt+ σdWt. (3.2)

In other words, the control rate lb := lπb associated to πb is given by

lbt = F (U bt )1{Ub
t>b}.

Similarly, we define the corresponding value function by Vb := Vπb .
Note that, if b = 0, then U0 = U , with U already defined in (2.3).

Remark 3. As discussed in Remark 1, there exists a unique strong solution to the SDE given
in (2.3). When b > 0, the drift function is not necessarily continuous, but it can be shown,
using for example the same steps as in [15], that a strong solution exists for (3.2).

The next proposition gives the value function of a generalized mean-reverting strategy.

Proposition 3.1. The value function V0 of the generalized mean-reverting strategy π0 is
continuously differentiable and given by

V0(x) = IF (x)− IF (0)ϕF (x), x ≥ 0. (3.3)

If b > 0, then the value function Vb of the generalized mean-reverting strategy πb is continuously
differentiable and given by

Vb(x) =

{

C1(b)ψ(x) if 0 ≤ x ≤ b,
IF (x) + C2(b)ϕF (x) if x ≥ b,

(3.4)
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where

C1(b) =
I ′F (b)ϕF (b)− IF (b)ϕ

′
F (b)

ψ′(b)ϕF (b)− ψ(b)ϕ′
F (b)

,

C2(b) =
I ′F (b)ψ(b) − IF (b)ψ

′(b)
ψ′(b)ϕF (b)− ψ(b)ϕ′

F (b)
.

Proof. The proof follows the same steps as the one for Proposition 2.1 in [15].
Fix b > 0. Using the strong Markov property, we have, for x ≤ b,

Vb(x) = Ex

[

e−qτb1{τb<τ0}
]

Vb(b).

Using the strong Markov property again, we get, for all x > b,

Vb(x) = Ex

[∫ ∞

0
e−qtF (Ut)dt

]

+Ex

[

e−qτ
F
0 1{τF0 <∞}

]





Vb(b)−Eb

[∫∞
0 e−qtF (Ut)dt

]

Eb

[

e−qτ
F
0 1{τF0 <∞}

]



 .

Consequently, we can write

Vb(x) =

{

ψ(x)
ψ(b)Vb(b) if 0 ≤ x ≤ b,

IF (x) +
ϕF (x)
ϕF (b) (Vb(b)− IF (b)) if x ≥ b.

(3.5)

To conclude, we need to compute Vb(b). For n ∈ N sufficiently large, consider the strategy

πnb consisting of using the maximal control rate F (U
πn
b

t ) when the controlled process is above
b, until it goes below b− 1/n. We apply again the maximal control rate when the controlled
process reaches b again. Note that πnb is admissible. We denote its value function by V n

b . We
can show that:

lim
n→∞

V n
b (b) = Vb(b).

Using similar arguments as above, we can write

V n
b (b− 1/n) = ψb(b− 1/n)V n

b (b)

and

V n
b (b) = Eb

[

∫ τF
b−1/n

0
e−qtF (U

πn
b

t )dt

]

+Eb

[

e
−qτF

b−1/n1{
τF
b−1/n

<∞
}

]

V n
b (b− 1/n)

= IF (b) +
ϕF (b)

ϕF (b− 1/n)
(V n
b (b− 1/n)− IF (b− 1/n)) .

Solving for V n
b (b), we find

V n
b (b) =

IF (b− 1/n)ϕF (b)− IF (b)ϕF (b− 1/n)

ψb(b− 1/n)ϕF (b)− ψb(b)ϕF (b− 1/n)
,

where ψb(x) = ψ(x)/ψ(b). Define

G(y) = IF (b− y)ϕF (b)− IF (b)ϕF (b− y)

and

H(y) = ψb(b− y)ϕF (b)− ψb(b)ϕF (b− y).
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Note that G(0) = H(0) = 0. As ψb, ϕF and IF are differentiable functions, dividing the
numerator and the denominator by 1/n and taking the limit yields

Vb(b) = lim
n→∞

V n
b (b) =

G′(0+)

H ′(0+)
,

which leads to

Vb(b) =
I ′F (b)ϕF (b)− IF (b)ϕ

′
F (b)

ψ′
b(b)ϕF (b)− ψb(b)ϕ

′
F (b)

. (3.6)

Substituting (3.6) into (3.5), we get:

Vb(x) =

{

K1(b)ψb(x) if 0 ≤ x ≤ b,
IF (x) +K2(b)ϕF (x) if x ≥ b,

(3.7)

where

K1(b) =
I ′F (b)ϕF (b)− IF (b)ϕ

′
F (b)

ψ′
b(b)ϕF (b)− ψb(b)ϕ

′
F (b)

and K2(b) =
I ′F (b)ψb(b)− IF (b)ψ

′
b(b)

ψ′
b(b)ϕF (b)− ψb(b)ϕ

′
F (b)

.

Using the definition of ψb, (3.7) can be rewritten as follows:

Vb(x) =

{

C1(b)ψ(x) if 0 ≤ x ≤ b,
IF (x) + C2(b)ϕF (x) if x ≥ b.

It is straightforward to check that Vb ∈ C1(0,+∞), since elementary algebraic manipula-
tions lead to V ′

b (b−) = V ′
b (b+).

When b = 0, using Markovian arguments as above, we can verify that

V0(x) = IF (x)− IF (0)ϕF (x), x ≥ 0,

from which it is clear that V0 ∈ C1(0,+∞). �

4. Main results

We are now ready to provide a solution to the general control problem. As mentioned before,
depending on the set of parameters, an optimal strategy will be given by the generalized mean-
reverting strategy π0 or by a generalized mean-reverting strategy πb∗ , for a barrier level b∗ to
be determined.

First, let us consider the situation in which the parameters are such that

I ′F (0)− IF (0)ϕ
′
F (0) ≤ 1. (4.1)

Recalling from Proposition 3.1, that

V0(x) = IF (x)− IF (0)ϕF (x), x ≥ 0,

we deduce that V ′
0(0) ≤ 1.

Also, we have that V0 is a concave function. Indeed, using the notation introduced in (2.6),
we can write

V0(x) = E

[∫ τx0

0
e−qtF (Uxt )dt

]

,

where τx0 = inf {t > 0: Uxt = 0}. Since the inequality in (2.8) holds for all t ≥ 0, it holds true
also for the stopping time τx0 . As a consequence, we have that V0 is concave and we further
have that V ′

0(x) ≤ 1 for all x ≥ 0.
In conclusion, all the conditions of the Verification Lemma are satisfied and thus the gen-

eralized mean-reverting π0 is an optimal strategy.
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Now, let us consider the situation in which the parameters are such that

I ′F (0)− IF (0)ϕ
′
F (0) > 1. (4.2)

From the Hamilton-Jacobi-Bellman equation (2.9), we expect an optimal barrier level b∗ to
be given by

V ′
b∗(b

∗) = 1,

which is equivalent to

IF (b
∗)− I ′F (b

∗)ϕF (b∗)

ϕ′
F (b

∗)
=
ψ(b∗)
ψ′(b∗)

− ϕF (b
∗)

ϕ′
F (b

∗)
. (4.3)

The next proposition is one of the most important results.

Proposition 4.1. If I ′F (0)− IF (0)ϕ
′
F (0) > 1, then there exists a solution b∗ ∈ (0, b̂] to (4.3).

Proof. Define

g(y) = IF (y)−
I ′F (y)ϕF (y)

ϕ′
F (y)

and

h(y) =
ψ(y)

ψ′(y)
− ϕF (y)

ϕ′
F (y)

.

We see that g(0) > h(0) is equivalent to I ′F (0)−IF (0)ϕ′
F (0) > 1. We will show that g(b̂) ≤ h(b̂).

The result will follow from the Intermediate Value Theorem. First, we have the following
inequality:

ψ(b̂)

ψ′(b̂)
− ϕF (b̂)

ϕ′
F (b̂)

≥ F (b̂)

q
. (4.4)

Indeed, by definition of b̂ and ψ, we have ψ(b̂)

ψ′(b̂)
= µ

q . Also, by definition of ϕF , we have

σ2

2

ϕ′′
F (b̂)

ϕ′
F (b̂)

+ µ− q
ϕF (b̂)

ϕ′
F (b̂)

− F (b̂) = 0.

Since ϕF is convex and decreasing, (4.4) follows.
Now, using Proposition 2.2, we can write

IF (b̂) =
σ2

2q
I ′′F (b̂) +

µ

q
I ′F (b̂)−

F (b̂)

q

(

I ′F (b̂)− 1
)

.

Since IF is concave, it follows that

IF (b̂) ≤
µ

q
I ′F (b̂)−

F (b̂)

q

(

I ′F (b̂)− 1
)

.

Also, since we have that 0 ≤ I ′F (b̂) ≤ 1, using (4.4) yields

IF (b̂) ≤
µ

q
I ′F (b̂)−

(

ψ(b̂)

ψ′(b̂)
− ϕF (b̂)

ϕ′
F (b̂)

)

(

I ′F (b̂)− 1
)

.

This inequality is equivalent to g(b̂) ≤ h(b̂). �

The next result states that if b∗ is a solution to (4.3), as in the previous proposition, then
πb∗ satisfies the conditions of the Verification Lemma.
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Proposition 4.2. If I ′F (0) − IF (0)ϕ
′
F (0) > 1 and if b∗ ∈ (0, b̂] is a solution to (4.3), then

Vb∗ ∈ C2(0,+∞) is concave.

Proof. This proof relies heavily on the analytical properties of ψ,ϕF and IF obtained in
Lemma 2.1 and Proposition 2.2.

First, let us show that Vb∗ ∈ C2(0,+∞). From Proposition 3.1, we deduce that

V ′′
b∗(x) =

{

C1(b
∗)ψ′′(x) if 0 < x < b∗,

I ′′F (x) + C2(b
∗)ϕ′′

F (x) if x > b∗.

Therefore, since ψ, ϕF and IF are twice continuously differentiable functions, it is sufficient to
show that V ′′

b∗(b
∗−) = V ′′

b∗(b
∗+). We also have that ψ, ϕF and IF are solutions to second-order

ODEs, so it is equivalent to show that

µ
[

C1(b
∗)ψ′(b∗)−C2(b

∗)ϕ′
F (b

∗)− I ′F (b
∗)
]

− q [C1(b
∗)ψ(b∗)− C2(b

∗)ϕF (b
∗)− IF (b

∗)]

+ F (b∗)
[

C2(b
∗)ϕ′

F (b
∗)− I ′F (b

∗)− 1
]

= 0.

The statement follows from the fact that Vb∗ is continuously differentiable at x = b∗ and
because V ′

b∗(b
∗+) = 1.

Now, let us show that Vb∗ is concave. Since V ′
b∗(b

∗) = 1, it follows directly that

C1(b
∗) =

1

ψ′(b∗)
(4.5)

and

C2(b
∗) =

1− I ′F (b
∗)

ϕ′
F (b

∗)
. (4.6)

Using the analytical properties of ψ,ϕF and IF , it is clear that C2(b
∗) ≤ 0 < C1(b

∗). Since

b∗ ≤ b̂, we have that ψ is concave on (0, b∗), and so V ′′
b∗(x) ≤ 0, for all x ∈ (0, b∗). Finally,

since IF is concave, ϕF is convex, and C2(b
∗) ≤ 0, we have that V ′′

b∗(x) ≤ 0, for all x ∈ (b∗,∞).
In other words, Vb∗ is concave. �

We are now ready to state the main result, which is a solution to the general control problem.

Theorem 4.3. If I ′F (0) − IF (0)ϕ
′
F (0) ≤ 1, then π0 is an optimal strategy and the optimal

value function is given by

V (x) = IF (x)− IF (0)ϕF (x), x ≥ 0.

If I ′F (0) − IF (0)ϕ
′
F (0) > 1, then πb∗ is an optimal strategy, with b∗ a solution to (4.3), and

the optimal value function is given by

V (x) =

{ ψ(x)
ψ′(b∗) if 0 ≤ x ≤ b∗,

IF (x) +
1−I′F (b∗)

ϕ′

F (b∗)
ϕF (x) if x ≥ b∗.

Proof. All is left to justify is the expression for the optimal value function V under the con-
dition I ′F (0) − IF (0)ϕ

′
F (0) > 1. In that case, it suffices to use the general expression for

Vb obtained in Proposition 3.1 together with the expressions for C1(b
∗) and C2(b

∗) given in
Equations (4.5) and (4.6). �
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As announced, given an increasing and concave function F , and recalling that ψ is inde-
pendent of F and always known explicitly (see Equation (2.2)), this solution to the control
problem is explicit up to the computations of the functions ϕF and IF . It is interesting to
note that these functions only depend on the dynamics of the nonlinear Ornstein-Uhlenbeck
process U as given in (2.3); they are also solutions to ODEs.

4.1. Solution to the problem with an affine bound. If we choose F (x) = R+Kx, with
K > 0 and R ≥ 0, then U is such that

dUt = (µ −R+KUt)dt+ σdWt,

i.e., it is a standard Ornstein-Uhlenbeck process. In this case, ϕF is known explicitly (see [7]):

ϕF (x) =
H

(q)
K (x;µ −R,σ)

H
(q)
K (0;µ −R,σ)

, x ≥ 0,

where, using the notation in [15],

H
(q)
K (x;m,σ) = eK((x−m/K)2/2σ2D−q/K

((

x−m/K

σ

)√
2K

)

,

where D−λ is the parabolic cylinder function given by

D−λ(x) =
1

Γ(λ)
e−x

2/4

∫ ∞

0
tλ−1e−xt−t

2/2dt, x ∈ R.

On the other hand, we can compute the expectation in the definition of IF :

IF (x) =
K

q +K

(

x+
µ

q

)

+
Rq

q +K
. (4.7)

The following corollary is a generalization of both the results obtained in [5,11] and in [15]
for a constant bound and a linear bound on control rates, respectively.

Corollary 4.4. Set F (x) = R+Kx, with K > 0 and R ≥ 0. Define ∆ = − H
(q)
K (0;µ−R,σ)

H
(q)′
K (0;µ−R,σ)

.

If ∆ ≥ Kµ
q2

+ R
q , then the mean-reverting strategy π0 is an optimal strategy and the optimal

value function is given, for x ≥ 0, by

V (x) =
Kx

q +K
−
[

K

q +K

(

µ

q

)

+
Rq

q +K

]

(

1− H
(q)
K (0;µ −R,σ)

H
(q)
K (0;µ −R,σ)

)

.

If ∆ < Kµ
q2

+ R
q , then there exists a (unique) solution b∗ ∈ (0, b̂] to

ψ(b)

ψ′(b)
−
(

b+
µ

q

)

− R

K
= − q

K

(

ψ(b)

ψ′(b)
− H

(q)
K (b;µ −R,σ)

H
(q)′
K (b;µ−R,σ)

)

,

the mean-reverting strategy πb∗ is an optimal strategy and the optimal value function is given
by

V (x) =







ψ(x)
ψ′(b∗) if 0 ≤ x ≤ b∗,

K
q+K

(

x+ µ
q

)

+ q
q+K

(

R+
H

(q)
K (x;µ−R,σ)

H
(q)′
K (b∗;µ−R,σ)

)

if x ≥ b∗.
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4.2. Solution to the problem with a capped linear bound. If we choose F (x) =
min(Kx,R), with K,R > 0, then U is such that

dUt = (µ−min(KUt, R))dt+ σdWt,

i.e., it is a Brownian motion with drift µ − R when Ut > R/K and a standard Ornstein-
Uhlenbeck process when Ut < R/K.

Note that F is not differentiable at x = R/K, but there exists a decreasing sequence of
differentiable and concave functions Fn such that, for all x ≥ 0, we have Fn(x) → F (x) when
n → ∞. By continuity, we have ϕFn → ϕF , and IFn → IF . Also, since F is continuous, IF
and ϕF are (at least) twice continuously differentiable.

We can compute ϕF and IF explicitly, using the strong Markov property repeatedly:

ϕF (x) =

{

B(x) + C(x)ϕF (R/K) if 0 ≤ x ≤ R/K,
A(x)ϕF (R/K) if x ≥ R/K,

and

IF (x) =

{

IK(x)−D(x) (IK(R/K)− IF (R/K)) if x ≤ R/K,
R
q (1−A(x)) +A(x)IF (R/K) if x ≥ R/K,

where (see [7])

A(x) = Ex

[

e−qτR/K1{τR/K<∞}
]

= ψ̃(x−R/K)− 2q
√

(µ−R)2 + 2σ2q − (µ−R)
ψ(x−R/K),

B(x) = Ex

[

e−qτ
F
0 1{

τF0 <τ
F
R/K

}

]

=
S
(

q
K ;
√

2
K

(

R−µ
σ

)

; x−µ/K
σ/

√
2K

)

S
(

q
K ;
√

2
K

(

R−µ
σ

)

;
√

2
K

(−µ
σ

)

) ,

C(x) = Ex

[

e
−qτF

R/K1{
τF
R/K

<τF0

}

]

=
S
(

q
K ; x−µ/K

σ/
√
2K

;
√

2
K

(−µ
σ

)

)

S
(

q
K ;
√

2
K

(

R−µ
σ

)

;
√

2
K

(−µ
σ

)

) ,

D(x) = Ex

[

e
−qτF

R/K1{
τF
R/K

<∞
}

]

=
H

(q)
K (x;µ,−σ)

H
(q)
K (R/K;µ,−σ)

,

where

ψ̃(x) := 1 +
2q

σ2

∫ x

0
ψ(y)dy

and

S(ν, x, y) :=
Γ(ν)

π
e(x

2+y2)/4 (D−ν(−x)D−ν(y)−D−ν(x)D−ν(−y)) ,
and where

IK(x) :=
K

q +K

(

x+
µ

q

)

.

Note that IK is the function IF when F (x) = Kx. See (4.7) when R = 0.
Since ϕF and IF are continuously differentiable, we can deduce that

ϕF (R/K) =
B′(R/K)

A′(R/K)− C ′(R/K)
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and

IF (R/K) =
K/(q +K)−D′(R/K)IK(R/K) + (R/q)A′(R/K)

A′(R/K)−D′(R/K)
.

Corollary 4.5. Set F (x) = min(Kx,R), with K,R > 0.
If I ′F (0) − IF (0)ϕ

′
F (0) ≤ 1, then the generalized mean-reverting strategy π0 is optimal and

the optimal value function is given, for x ≥ 0, by

V (x) =

{

IK(x)−D(x)(IK
(

R
K

)

− IF
(

R
K

)

)− IF (0)
(

B(x) + C(x)ϕF (
R
K )
)

if x ≤ R
K ,

R
q +A(x)

(

IF
(

R
K

)

− IF (0)ϕF
(

R
K

)

− R
q

)

if x ≥ R
K .

If I ′F (0) − IF (0)ϕ
′
F (0) > 1, then the generalized mean-reverting strategy πb∗ is optimal,

where b∗ ∈ (0, b̂] is the unique solution to (4.3), and the optimal value function is given by: if
b∗ ≤ R

K , then

V (x) =















ψ(x)
ψ′(b∗) if x ≤ b∗,

IK(x)−D(x)
(

IK
(

R
K

)

− IF
(

R
K

))

− 1−I′F (b∗)
ϕF (b∗)

(

B(x) +C(x)ϕF
(

R
K

))

if b∗ ≤ x ≤ R
K ,

R
q +A(x)

(

IF
(

R
K

)

+
1−I′F (b∗)

ϕ′

F (b∗) ϕF
(

R
K

)

− R
q

)

if x ≥ R
K ,

and if b∗ > R
K , then

V (x) =







ψ(x)
ψ′(b∗) if x ≤ b∗,
R
q +A(x)

(

IF
(

R
K

)

+
1−I′F (b∗)

ϕ′

F (b∗) ϕF
(

R
K

)

− R
q

)

if x ≥ b∗.

Appendix A. Proof of the Verification Lemma

The second statement of the lemma is a direct consequence of the definition of the optimal
value function.

Now, let π be an arbitrary admissible strategy. Applying Ito’s Lemma to the continuous
semi-martingale (t, Uπt ), using the function g(t, y) := e−qtVπ∗(y), we find

e−q(t∧τ
π
0 )Vπ∗(Uπt∧τπ0 )

= Vπ∗(x) +

∫ t∧τπ0

0
e−qs

(

σ2

2
V ′′
π∗(Uπs ) + µV ′

π∗(Uπs )− qVπ∗(Uπs )− lπs V
′
π∗(Uπs )

)

ds

+

∫ t∧τπ0

0
σe−qsV ′

π∗(Uπs )dWs.

Taking expectations on both sides, we find

Vπ∗(x) = Ex

[

e−q(t∧τ
π
0 )Vπ∗(Uπt∧τπ0 )

]

−Ex

[
∫ t∧τπ0

0
e−qs

(

σ2

2
V ′′
π∗(Uπs ) + µV ′

π∗(Uπs )− qVπ∗(Uπs )− lπs V
′
π∗(Uπs )

)

ds

]

≥ Ex

[

e−q(t∧τ
π
0 )Vπ∗(Uπt∧τπ0 )

]

+Ex

[
∫ t∧τπ0

0
e−qslπs ds

]

,

where the inequality is obtained directly from the fact that Vπ∗ satisfies (2.9). Note also that
the expectation of the stochastic integral is 0 because V ′

π∗ is bounded. Letting t → ∞, we get
that Vπ∗(x) ≥ Vπ(x), for all x > 0.
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