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Abstract. The framework of linear elastostatics is used to interpret De Giorgi's
example concerning the non-regularity of extremals of a certain Dirichlet integral with
measurable and bounded coefficients.

1. Introduction. Some years ago De Giorgi invented a counterexample [1] which
rendered obsolete many optimistic conjectures on the regularity of weak solutions of
variational systems of elliptic type. Precisely, De Giorgi was able to exhibit an unbounded
and discontinuous extremal of the finite Dirichlet integral of a certain differential operator
with measurable and bounded coefficients.

Thus De Giorgi’s counterexample also proves to be vacuous the widespread belief that
most of the classical problems of mathematical physics can be given the aspect of varia-
tional problems with finite energy; and that, conversely, variational problems with
finite energy should always describe physically meaningful situations.

In this note we use the framework of linear elastostatics to construct an interpretation
of De Giorgi's result which clarifies the reasons for the failure of this latter conjecture.
We consider a suitable displacement problem for a monoparametric family of spherical
shells, of unit outer radius and comprised of a certain aelotropic and inhomogeneous
elastic material, taking as a parameter the radius e of the cavity. We then show that
this problem has a C” solution which converges to De Giorgi's extremal when ¢ — 0.
However, if the cavity shrinks under a certain limit value ¢, , the solution loses its physical
meaning. Accordingly, De Giorgi's counterexample is given a precise status as the
mathematical problem which results from a family of physically meaningful problems
via a well-defined limiting process.

2. Notation. Let V be the vector space associated with the n-dimensional Euclidean
space E, with inner product v-w. If v € V we denote by » = (v-v)"/* the magnitude of v.

We write Lin(V) for the space of all linear transformations on V, with inner product
V-W7j= tr (VWT) (here W7 is the transpose of W, VW7 is the composition of W” and
V, and tr is the trace functional). We denote by V = (V-V)'* the magnitude of V, and
by 1 the identity of Lin(V). If a € V and @ = 1, the orthogonal projection of V onto
the span of a is the element a X) a of Lin(V) defined by

a®@av) = (a-v)a, vVvev.

We also write Lin(Lin) for the space of all linear transformation on Lin(V). In partic-
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ular, we consider the following members of Lin(Lin):

(i) 1, the identity mapping.

(i) V & W, the mapping defined by

VR WZ) = (W-2Z)V, Vv Z € Lin(V).

If A€ Lin(V) and A = 1, A A is the orthogonal projection of Lin(V) onto the
span of A.

(iii) sym (skw), the mapping which associates to any element V € Lin(V) its
symmetric (skew-symmetric) part:

sym (V) = 3(V+ V) (skw (V) = §(V = V).

The images of Lin(V) under sym and skw are the (orthogonal) subspaces Sym(V) and
Skw(V) of Lin(V), respectively.

Let Q@ be a smooth, bounded neighborhood of the origin 0 of £, with boundary 4.
We call

Vopx) =x—-0
the position vector of the point x € E, and
Sym (V) S Px) = pp®p

the radial projection of V onto the line spanned by p.

For conciseness, we write H', in place of (H'(Q))" ', for the Hilbert space of square-
integrable (in the sense of Lebesgue) vector fields on @ with square-integrable first
gradient. If u € H' we denote the H' norm of u by

1/2
il = ([ @+ gradwgradw) = Gl 4l

here ||u||, is the L* norm and |u|, the seminorm of the first partial derivatives of u. By
C,” we denote, as usual, the space of vector fields vanishing on dQ with their gradients
of any order. We write H,' for the completion of C,” with respect to the norm of H'.
We also make use of another seminorm of u in H', namely

1/2
il = ([ Bw-Bw)”,
Q
where
E@u) = sym (grad u).
It follows from this last definition and the definition of the inner product of Lin(V) that
divu = 1.gradu = 1-E(u).
3. De Giorgi’s integral. Let B(x) € Lin(V), and let
Lin(Lin) D€C€x) =1+ (n — 2’ BXB forany x € E. (3.1)

De Giorgi [1] considers the bilinear form

a(u, v) = f C(grad u)-grad v 3.2)

1 We use similar abbreviations in analogous cases.
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and calls u an extremal of the integral

Iu) = a(u,u) (3.3)
ifu € H' and
a(u,v) =0, vveC. (3.4)
He further selects
n €
B = l+n—:—2P, n > 3, (3.5)

so that the integro-differential form (3.1) has measurable and bounded coefficients in .
Finally he proves that

i = pp (3.6)

is an extremal of the integral (3.3) if

7 ‘g (1 o+ 4(n1— 1)2)”2)' 37

It is easily seen that @ is neither continuous nor bounded at 0. As condition (3.5),
is essential to the proof, De Giorgi's example shows that the regularity of the extremals
of integrals as (3.3) may depend, among other things, on the dimension n of the under-
lying space.

De Giorgi's result can be easily cast into a result concerning the non-regularity of
weak solutions of linear systems of elliptic type (see also [2] and [3]).

For future convenience, we first replace the single mapping € defined in (3.1) by the
class

C =1+ c¢cBXB, (3.8)
where
Sym(V) © B =1 + bP, (3.9)

and ¢ > 0, b are constants which may depend on n. By merely repeating the steps of the
procedure outlined in [1], with € as above, it can be shown that G as given by (3.6) is
still an extremal of the family of integrals

I b,e) = [ (uli® + e(divu + bP-grad u)) (3.10)
2

provided n, b and « obey certain restrictions to be derived later on.
In view of (3.8) and (3.9) we now write (3.2) as

a(u, v) = fn (grad u-grad v + c(divu + bP-grad u)(div v 4+ bP-grad v)). 3.11)

a(u, v) is a symmetric, continuous and coercive bilinear form on H'.*

2 Symmetry and continuity of a(u, v) follow from straightforward verifications. On the other hand,
for any b, positiveness of ¢ implies the following property of C:

(strong ellipticity) 3 » > 0 : v w-C(vQRQ W) = »vvw?, V v,w € V— {0}. *)

Coerciveness of a (u, v) is then proved by exploiting the strong ellipticity condition and Korn’s
inequality.
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Let us henceforth identify @ with the open ball B = B(0; 1) C E of center 0 and unit
radius. As the form a(u, v) in continuous and coercive, a classical result of Lax and
Milgram insures that there exists a unique solution to the problem of finding a field
u € H' such that (u — p) € H,' and

a(u,v) =0, vVvEH, (3.12)

As it is well known (see, e.g., [4]), it follows further from the symmetry of a(u, v) that
the former boundary-value problem is completely equivalent to the minimum problem
(in K = p + H,") for the quadratic functional (3.10).

We may regard the Euler equation (3.12) of this functional as a weak formulation
of the following class of elliptic second-order systems:

div C (gradu) = 0 in B, u—p=20 in 9B. (3.13)

By routine calculations it can be shown that G given by (3.6) solves problem (3.13) in
B — {0} if

== () ) 619
Moreover, it € H' (and a(u,u) < + «) if
200 + n > 0. (3.15)
Finally, if
a+1<0, (3.16)

i is discontinuous at the origin (in addition, 4 is unbounded at 0 when the last inequality
holds strictly). Conditions (3.14), (3.15), (3.16) imply the following restrictions on the
choice of 7, b and a:

. tde (] (L ben = D + b))"2>.
n23; b2 cn — 2)° *“= 72 (1 (1 n°(1 + ¢(1 + b)°) (3.17)

Thus (cf. [1]), for any choice of the parameters compatible with (3.17), 4 is the non-
regular weak (variational) solution of a problem of class (3.13). (We will comment
further on De Giorgi’s example in the Appendix.)

4. Application to elasticity. In order to interpret De Giorgi’s example in the context
of elasticity, we first notice that if one replaces € in (3.8) with

C = sym + ¢B X B, (4.1)
and, consequently, I in (3.10) with
10,9 = [ (IlallF + e@ivu + bP-B@)), (4.2)

all the developments of the previous section go through unaltered.’ In particular, under
the restrictions (3.17) i is a variational solution of the problem

div C(Ew)) = 0 in B, u—p=0 in 4B. (4.3)

3 In fact, replacing 1 with sym has no effect as grad u = p*(1 + oP) € Sym (V).
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We remark that C as given by (4.1) is endowed with the canonic symmetries of a

response function in linear elasticity,’ namely (see, e.g., Gurtin [5], Sec. 20)
(i) (minor symmetries) C(V) = € (sym(V)) € Sym(V), v V € Lin(V),
so that V-C(W) = sym (V)-C(sym (W)), v V, W & Lin(V).

(i) (major symmetry) V-C(W) = W-C(V), v V, W € Lin(V).?

We now identify @ with a reference configuration of a continuous body, and let u(x)
denote the displacement of a point x € Q from its place in the reference configuration
to its place in some strained configuration; accordingly, E(u(x)) denotes the usual
“infinitesimal”’ measure of the strain at x. We then let the stress T (modulo an inessential
dimensional coefficient, bearing the dimensions of pressure) be delivered by the response
function

T(x,u) = C(E), CEN

and investigate the symmetry properties (at a fixed point x  0) of the special linearly
elastic material defined by (4.4).

By definition (see, e.g., [5], Sec. 21), the set of symmetry mappings for the present
material is the following subgroup G, of the full orthogonal group Orth (V):

Gr = {Q € Orth (V) : QC(E)Q" = C(QEQ"), V E € Sym (V)}.
It is easy to show that a necessary and sufficient condition for Q &€ G is
QP = PQ. (4.5)

But Q commutes with P if and only if Q leaves each of the characteristic spaces of P
invariant (cf. Gurtin [5], Thm. (3.3)), and these spaces are the line spanned by p and the
plane perpendicular to p. Therefore, for any x € @ — {0},

G = {Q € Orth(V) : Qp = =+p}.

As G, is a proper subgroup of Orth(V), the material is an aelotropic solid. Moreover,
this material has transverse isotropy (with respect to the direction of p), and is charac-
terized by the elastic moduli b and c.

Remark 1. Only the modulus b is responsible for aelotropy. In fact, if one puts
b = 0in (4.1) C reduces to

C =sym+ cl1®1,

the familiar response function of isotropic linearly elastic materials. Not surprisingly,
the above choice of b is excluded under De Giorgi’s hypotheses, namely, ¢ > 0 and
B.17),.,.

We pass on now to formulate a suitable boundary-value problem for a monoparametric
family of elastic bodies comprised of the material just described.

¢ Tt is vacuous to pursue an interpretation in the domain of finite elasticity because the candidate
response function T = C (grad u), where Ty is the Piola-Kirchhoff stress tensor, does not obey the
principle of material frame-indifference.

5 It is perhaps of some interest to record the aspect of properties (i) and (i) when a Cartesian
coordinate system is used. Let {e,, €, €;} be an orthonormal basis. Then the components of C with
respect to this basis are Cij1; = e; @ e;-Cex Q e1), and (), (47) read, respectively, Cijir = Cijue = Cjaryy
Citt = Craij.

¢ Recall that in (4.4) an explicit dependence of € on x is understood. Notice also that € is not defined
at the point 0. It follows from (4.4) that the reference configuration is stress-free.
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Let B, = B(0; ¢), and let S, = B — B, denote the generic representative of an
efamily of shells which are elastic in the sense of (4.4). Further, let body forces vanish in
S. , and let the displacement field be prescribed on 9. as follows:

=0 on 4B.,
=p on 4B. (4.6)
Then,
divCE) =0 in S, 4.7)

is the equation of equilibrium, and (4.6), (4.7) (cf. (4.3)) is an equilibrium problem (in
terms of displacements) for the shell S, .
If one seeks centrally symmetric solutions of (4.7), i.e. solutions of the form

ux) = f(p)p, (4.8)

it is a simple matter to show that f in (4.8) is to be the general solution of the well-known
ordinary differential equation of Euler

be(n — 1)(n + b) _
1+c1 +0b)° P

f—vv + (n + l)p_lf.p + f = O,

so that
() = ap® + ap°, 4.9)

where a, @ are constants and «, & are specified by (3.14).
In view of (4.8) and (4.9), if we chose a, a to satisfy (4.6), the elastic state (cf. Gurtin
(5], Sec. 28) on 8, at equilibrium is the triplet {u., E., T.} where

a

p

u, =u(e;x) = PR (P~ — & O)p,

E. = E@u) = l_p—aa:a‘ ((P7F = I + (p*™ " — @ )P), (4.10)
— €

T. = Tw) = l—-p— (@ 4 ctn + D)™™ — %) + el + b)ap*™* — a1
— €

1 D™ (beln + B — ) + (1 + be(l + B)ap" " — a€" )P,

— €

As to the former result, some comments are in order. Let first ¢ be fixed. We see that
(i) wu(e, -) is a C° mapping on S. which satisfies the boundary conditions (4.6)
on 48, . We may write this property as

P — € o
((u(e, p) — TR p) € C%(e, 1) M Cole, 1). (4.11)

Up to this point of the present section we have had no need of restricting the choice of
n, b and . We now assume

n=3 a+1<0

7 Notice that «, i.e. e Giorgi’s exponent (3.17)s, is greater than & if ¢ is positive.
8 Cf. (3.16). Using the strict inequality conforms to the original prescription of De Giorgi (1].
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(and, consequently, b > (1 + ¢)/c). We also denote by F, the gradient of the mapping
x — X + u,, so that
F., =1+ gradu, =1+ E,,

and
det B = (14 —2 @+ wp* — a+@e)(1+ e - )’
— €

It is not difficult to see that
det Fg > 0 in Se y

provided that ¢ > ¢ , where ¢, € (0, 1) and solves the equation

(@ — &)1 +3a) (c'vg ia;>/e e =1

Therefore, under the condition ¢ > ¢, , we also have the following consequences of (4.10):
(ii)) The strained configuration is a diffeomorph of S, .
(iii) The elastic state has finite magnitude.
(iv) The strain energy

au. ,u) = f (EZ + edivu, + bP-E.))

is finite. Moreover,
a(u.,u,) = a@@, ) + o(e). (4.12)

Thus, we have solved a physically meaningful displacement problem in linear elastostatics
for a family of spherical shells, inhomogeneous and with radially bundled structure.
If we further let p > 0 be fixed, it can be read off at once from (4.10) that

W) lim u(e, p) = 4(p).

We now extend u. to B as follows:
u =0 for p <e
=u(,p) for e<p < 1.

Clearly, u, € H'. From (4.12) we see that
(vi) thesequence {u,} converges tofl in energy, or, equivalently,in H'. Alternatively,
we may write this as a statement of convergence concerning the sequence of triplets:

{u.,E,,T.) — {4,E T} in L.

(Here, of course, £ = E@), T = T@).)

Thus, we conclude that (4.3) is the limit problem of the sequence (4.6), (4.7). How-
ever, we are not allowed to term {6, , E, , T.} an elastic state, whenever ¢ < ¢ . In
particular, by direct inspection of {@, E, T} it becomes clear that this is not a plausible
elastic state at equilibrium on a ball B comprised of the elastic material (4.4), or, in
other words, that (4.3) cannot be interpreted as a displacement problem for B.
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In fact, not only {8, £, T} is discontinuous and unbounded at the origin, but also

_ /e
det F =0 at p*=(ﬁ&) .

Therefore, B is mapped into the infinite domain exterior to the sphere of radius (p, +
4(p,)), the inverse mapping is not single-valued in the annular region defined by p &€
(p, + 4(p,), 2), and the physical aziom of tmpenetrability of matter is violated.’

We close the paper with two further remarks illustrating the role of the modulus
of aelotropy b.

Remark 2. Foranyn < 3,if b = 0 (so that « = 0, a = —n), the sequence of elastic
states on S, converges to {p, 1, (1 + nc)1}, i.e. the elastic state on B at equilibrium
(cf. Remark 1).

Remark 3. If b = (1 4+ ¢)/c (so that « = —1, @ = —2), the sequence of the elastic
states on the spherical shells S, converges to {p”'p, p'(1 — P), (1 + 2¢)p™'(1 + P)}.
Again this triplet is unacceptable as an elastic state on the ball B at equilibrium, although
4 is now bounded and det £ > 0 on B, due e.g. to the unbounded increase of £ and T
near the origin.
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Appendix. Here we collect two remarks which enlarge the scope of De Giorgi’s
counterexample and bring to light its curious adaptability. It seems to us that this
latter feature was exploited, but scantly acknowledged, in the past (see, e.g. [2, 3]).

Remark 1. The developments of Secs. 3 and 4 show that

a=pp (A.1)

is an extremal of integrals of both class (3.10) and (4.2), associated with linear variational
systems of elliptic type. Let us introduce a scalar function ¢(p, w) defined on R* X R,
and such that

g(p, 4) = 4% (A.2)
If we replace P(x) in (3.9) with
Qx,u) = g(p, WuRu, (A.3)

? We realize that this axiom is often violated in the linear theory and is, in fact, not a requirement
of that theory.
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we see that, ceteris paribus, @ solves the resulting class of quasilinear problems. In fact,
(A.1) implies
476 = p7'p,
so that, by (A.2) and (A.3),
Qx,8) = P(x).

The simplest choice of ¢ is of course

Q(P, ’l,t) =u
As (A.1) implies further
12 — pa+l’
another possible choice is
2p—2(a+l)
9(p, w) = L g

leading to a non-linear system considered by Nedas and Stard [3] when one takes
De Giorgi’s parameters b = n/(n — 2), ¢ = (n — 2)? and to the case minutely analyzed
by Giusti and Miranda [2] when one takes, as they do,b = 2/(n — 2), ¢ = 1 (so that, in
particular, « = —1).

Remark 2. As was already noticed by De Giorgi [1],

i = grad h,

1
T a+2
where A(x) = p®*’. It follows that A (for n > 5) is a non-regular weak solution of the
linear fourth-order equation associated with the integral

I(h; b,¢) = [ C(grad grad h)-grad grad h.
a

Quite naturally, this result may be combined with the observation leading to (A.3)
in the previous Remark to show that A solves the corresponding class of quasilinear
equations (cf. [2]).




