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Abstract—In this article, a number of methods are analyzed
that manipulate images in a manner that hinders face recognition
by automatic recognition algorithms. The purpose of these
methods, is to partly degrade image quality, so that humans
can identify the person or persons in a scene, while common
classification algorithms fail to do so. The approach used to
achieve this involves the use of singular value decomposition
(SVD) and projections on hyperspheres. From experiments it
can be concluded that, these methods reduce the percentage of
correct classification rate by over 90% . In addition, the final
image is not degraded beyond recognition by humans.

I. INTRODUCTION

With the increasing amount of visual media that is shared,

viewed and stored on-line, it is incontestable that privacy is a

main concern for all users. The free access that is granted to

all this visual information may carry many dangers concerning

the privacy of the creators and of the subjects in these media.

Face recognition algorithms are able to identify faces in videos

and images without much effort, thus violating the privacy of

the subjects. Malicious users can use video sharing sites and

social media to collect information about specific individuals

and groups fast and effortlessly. Moreover, the wide use of

video surveillance in public places, in conjunction with face

identification software, is a major threat of privacy, since, all

persons can be identified regardless of suspicion level. Other

examples of contributors to the problem include Google Street

View and EverySpace among others, whose attempt to provide

services which include visual data inevitably invade our every-

day privacy, although not intentionally. As such, the necessity

arises to develop methods that protect the subject’s privacy,

while maintaining a level of quality. This quality is not only

limited to the visual quality of the final product, but the viewer

must also be able to recognize the number of individuals in

a scene, possibly even the individuals themselves and what

actions are taking place in the image or video frame.

With this in mind, suppose a malicious user has trained a

classifier in order to recognize images of targeted individuals

or groups in a set of images available online. New images

that are modified by a certain method, will not be recognized

by the trained classifier, tackling the attempt of a malicious

user searching new images of his targets and rendering further

activities of the targets safe.

Most face de-identification methods attempt to deceive auto-

matic face recognition methods by also hindering identification

by human viewers. These methods aim to destroy the majority,

if not all, of the data concerning the depicted individual. A

method developed by the authors in [1] and [2], de-identify

persons in videos by de-identifying not only the face area

but the person as a whole. Ad-hoc solutions facial images

de-identification [8] include the use of simple methods. Such

Methods are applying a mask on parts of the face. Black

bars are used in order to cover the eyes, while T-shaped

masks cover both the eyes and the nose other mask shapes

can also be used such as elliptical or circular masks that

ususally cover the entire face area. Other masks reveal only

the mouth and, finally, a black mask can be applied to the

entire face, destroying all visual information of the facial

image [8]. Additional simple methods include methods that

blur the face area using low-pass filters [8], methods that add

random noise with a predetermined distribution, methods that

use the negative image and methods that swap facial areas,

such as eyes, nose, mouth, between images that belong to

different individuals [11]. Finally, simple methods also exist

that subsample an image leading to pixelation, or that threshold

the pixel values [8]. Moreover, more advanced methods exist

that implement the k-anonymity model [9] [10], so that all of

the de-identified images indiscriminately relate to at least k

elements of the initial image set. In [3] a multi-factor farame-

work is introduced that unifies linear, bilinear and quadratic

models and an algorithm is also used that allows a better

estimation of the parameters used in the algorithm. Other

methods explloit characteristics of identification methods such

as eigenface-based algorithms, k-anonymity models and PCA

or LDA face recognition methods in order to defeat them [12].

Another method replaces faces in an image with 3D morphable

models [4]. Finally, another method exists that reduces the

number of eigenvectors used in constructing the final images

from basis vectors [13].

In this article two methods are descibed that aim to reduce

the percentage of positive face identification of common

recognition algorithms, while retaining enough visual infor-

mation to characterize the end product as visually acceptable.

These images can then be used in context where circulation

of images is unrestrained through various networks and the

Internet. These images can be shared social media, on profile

pictures, picture sharing sites and others. Another application

can be in videos, where coupled with face detection software

this method can de-identify the faces in each video frame

thus rendering the video content safe for distribution through

networks or sharing them on video sharing sites.
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The proposed methods utilize in one case the singular value

decomposition method (SVD), manipulating the values of the

coefficients, in order to alter the initial image, and in the

second case projections on hyperspheres. The purpose in both

cases is to enable human viewers to identify the individual

pictured, while hindering common identification methods from

achieving a high identification rate.

The article is organized as follows. Section II, provides a

description of the two methods. Section III, the results of the

two methods are analyzed. Finally, the conclusions are drawn

in Section V.

II. FACIAL IMAGE DE-IDENTIFICATION METHODS

In this section the two approaches are analyzed. The first

approach utilizes the Singular Value Decomposition method

to de-identify facial images, while the second one uses pro-

jections on hypersphere to achieve de-identification.

Following is the description of the de-identification method

based on Singular Value Decomposition (SVD) which is

refered to as SVD-DID. This method consist of a series of

steps that alter the initial image’s decomposition matrices to

achieve de-identification that are described below in more

detail.

A. Person de-identification based on SVD

The workhorse of the proposed method is the Singular Value

Decomposition (SVD) method applied on facial images. The

SVD, [5] [6] [7] factorizes the input matrix (in our case a

facial image) A as a product of three matrices: the singular

values matrix S and the eigenvectors matrices U and V. In

more detail, Singular value decomposition (SVD) is a matrix

factorization method that approximates a matrix A ∈ ℜn×p

with the product of three matrices U ∈ ℜn×n,S ∈ ℜn×p and

V ∈ ℜp×p. The SVD theorem, states that any real matrix

A ∈ ℜn×p can be decomposed uniquely as

A = USV
T (1)

Matrices U and V are orthogonal. The eigenvectors of AA
T

make up the columns of matrix U and the eigenvectors of

A
T
A consist the columns of matrix V. Matrix S is a diagonal

matrix with the same dimensions as the input matrix A. The

singular values in S are the square roots of the matrix AA
T

or AT
A eigenvalues.

The proposed person de-identification method utilizes the

SVD to manipulate facial images in order to reduce facial

identification by software agents. This method alters the values

in the matrices produced by the decomposition.

In order to reduce the correct identification rate, the follow-

ing steps are followed. First, the coefficients (singular values)

of matrix S with the largest values are reduced to zero. Next,

the matrices U and V are blurred using an averaging filter.

Finally, the same matrices are sharpened using a modified

Sobel filter. The logic behind this course of action, is described

below.

Fig. 1. Left: Original Frame , Right: Result for SVD-CZ with N = 1

Fig. 2. Left: Result for SVD-CZ with N = 2 , Right: Result for SVD-CZ
with N = 4

1) SVD Coefficient Zeroing (SVD-CZ): The most discrim-

inative visual information in an image lies in the coefficients

(singular values) with the largest values. Therefore, in the first

step, the idea is to remove this information contained in the

first coefficients, in the form of pixel luminosity. Since we are

removing the first N coefficients, we are actually removing

those coefficients that contain the majority of information that

a face recognition algorithm would use to successfully identify

a subject. This is achieved by setting the first N singular values

in S to zero. Equivalently, we remove the first N primary

coefficients used in recomposing the final image. This process

produces a new S matrix referred to as SCZ .

By setting the N largest singular values to zero, the final

image tends to darken with respect to the input image. In order

to preserve adequate visual data for easy face identification

by human viewers, we increase the luminosity of all pixels

in the end of the process, by adding a fixed value to the

pixels of the output image. This darkening effect is due to

the fact that the largest coefficients in matrix S are reduced to

zero. These values are subsequently used in the calculation of

the output image through matrix multiplication. Since matrix

multiplication involves summing of coefficients some of which

are set to zero instead of having their initial positive values,

the result is smaller in numerical value. As a result, the output

image is darker.

The effect of SVD coefficients zeroing can be viewed in

Figures 1 and 2, where the darkening effect was reduced by

adding luminosity 100 in each pixel of the final images.

2) SVD Coefficient Averaging (SVD-CA): As we have pre-

viously discussed, the method goal is to allow human viewers

to recognize with relative ease the subject in an image and,

at the same time, fool automatic classifiers trying to identify

specific individuals. This difficulty will arise from the fact

that these classifiers where trained with clean versions of the

images and ,subsequently, will falsely identify the manipulated

images. To achieve this, the entries of the eigenvectors in
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Fig. 3. Left: Result for SVD-CA with r = 4 Right: Result for SVD-CA with
r=10

Fig. 4. Left: Result for SVD-CA with r = 10, Right: Result for SVD-CA
with r = 20

matrices U and V are mixed by a blurring filter. The averaging

filter employed is the m × m circular averaging filter, with

m = 2r + 1, where r is the radius of the circular filter.

By applying the averaging filter to matrices U and V, we

obtain the matrices Uaveraged and Vaveraged. Recomposing

the image solely from the averaged matrices, leads to poor

visual quality, as portrayed in Figure 3. From Figure 3 we

notice that the output images are degraded beyond recognition.

In order to counterbalance this effect, only a percentage of the

values from the new matrices is used. The final matrices UCA

and VCA utilized to calculate the output image are given by

the following equations:

UCA =
α ∗Uaveraged +U

1 + α
(2)

and

VCA =
α ∗Vaveraged +V

1 + α
, (3)

where the parameter α adjusts the equilibrium between vi-

sual quality and privacy protection. Similarly to the previous

method, this step also introduces a darkening effect in the

resulting image. This effect is adjusted as in the first step.

The visual result of equations (2), (3) is displayed in Figure

4, with added luminosity 100.

3) SVD Modified Sobel Filtering (SVD-MSF): The final

step utilizes a modified Sobel filter in order to manipulate

matrices UCA and VCA. Sobel filtering is generally used for

edge detection in images. Edge detection is used to remove

part of the previous blurring, while mixing the coefficient val-

ues even further.This modified filter, contains values different

from the classic Sobel filter. More specifically, the filter G

used is a 3× 3 matrix of the form:

G =





d 2d d

0 0 0
−d −2d −d



 (4)

Fig. 5. Left: Result for SVD-MSF d = 0.2, Right: Result for SVD-MSF
d = 1.0

Fig. 6. Left: Initial Image A, Right: Initial Image B

where the parameter d was empirically determined to be in

the range [0.2, 0.8]. Edge detection when applied to matrices

UCA and VCA results in matrices Ufinal and Vfinal. Similar

to the SVD-CA step, only a percentage of the resulting matrix

is used in computing the output image according to (2), (3).

The output of this individual step is show in Figure 5. After

applying the above steps, the output image P is calculated,

through the matrices Ufinal, SCZ and Vfinal using the

formula:

P = UfinalSCZV
T
final (5)

In the rest if the article, this series of steps will be referred

to as the SVD-DID method.

Having analyzed the SVD-DID method and its individual

steps we will now take a look at an extension of this method.

B. Extending the SVD-DID Method by Analyzing the Decom-

position Matrices

In an attempt to increase the error rate of the classifiers each

matrix resulting from the Singular Value Decomposition was

more closely examined.

1) Matrix S: Matrix S does not project any properties

that could be used in order to potentially increase the error

rate. The S matrices from each subjects image, did not

differentiate much between subjects. It is possible to simply

swap S matrices between images when recomposing the image

without any effect on the ability of the classifiers to correctly

identify a subject. The initial images are displayed in Figure

6 and the images with swapped S matrices can be seen in

Figure 7. As it can be seen only a few visual artifacts have

been introduced that do not hinder correct identification.

2) Matrices U and V: Matrices U and V contain the

majority of information that is used to recompose the final

image. In contrast with matrix S, they cannot be switched

between images, since they introduce too many visual artifacts

and greatly degrade the visual quality of the image as can

be seen in Figure 8. In order to find characteristics of these
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Fig. 7. Left: Image A with matrix S from B, Right: Image B with matrix S

from A

Fig. 8. Left: Image A with matrix U from B, Right: Image A with matrix
V from B

matrices that could be used to increase error rates for both

classifiers, the statistical properties of these two matrices

where examined. The mean of the matrices generally displayed

a random distribution that could not be utilized to increase

classifier error rates. The same did not apply when the standard

deviation (STD) was examined. STD was calculated using the

following equation:

STD =

(

1

n− 1

n
∑

i=1

(xi − x̄)

)
1

2

, (6)

where x̄ is the mean value given by:

x̄ =
1

n

n
∑

i=1

xi, (7)

n is the number of values and xi is each distinct value in

each eigenvector. The STD of each eigenvector was calculated

and was stored in a vertex containing the STD’s of each

eigenvector in the matrix. The STD of this resulting vertex,

was to an extend related to the subject portrayed in each image

and could subsequently be altered to misguide classifiers from

correctly identifying the subject portrayed in each image.

The above observation hints that the standard deviation is a

value that plays a crucial role in producing the output image.

As such, adjusting the STD is a way to further increase the

effectiveness of the SVD-DID method.

3) Adjusting the Standard Deviation: In order to adjust the

standard deviation, equation 6 must be taken into account.

From the three parameters used to calculate the STD, n the

number of values cannot be adjusted and altering x̄ requires

adjusting the final parameter xi which is the values of each

eigenvector. In order to adjust the STD, the difference xi − x̄

must be altered. This was accomplished by adding a portion

of the overall mean x̄′ of the eigenvector matrix E to each

value of the matrix using the following equation:

E
′ = γ ∗ E + (1− γ) ∗ x̄′, (8)

where E
′ is the resulting eigenvector matrix, γ is a parameter

in the range [0, 1] which adjust the portion of the overall mean

that is added to the values of each eigenvector. In this method,

the output image is computed as:

P = E
′
SCZV

T
final (9)

in which case matrix Ufinal has been replaced by E
′ which

is computed through the formula:

E
′ = γ ∗ U + (1− γ) ∗ x̄. (10)

By applying the above process, the STD has been altered

which succeeds in increasing the error rate of the classifiers

in certain cases, as is discussed in a following section.

Having analyzed the SVD-DID method and its individual

steps we will now take a look at the second approach which

involved projecting the initial images on hyperspheres. The

Projection-DID method is analyzed in more detail below.

C. Projections Used for De-Identiffication

Each image occupies a position in the n-dimensional space,

where the dimensionality n of the image is equal to the number

of pixels. Intuitively it is expected that images depicting

the same individual with the same pose are bound to lie

close together in space forming local clusters, while images

depicting different individuals are bound to lie farther apart.

The general idea is to bring images of different individuals

closer together in order to prevent classifiers from correctly

identifying a subject in an image and at the same time,

preserve enough information from the first image so that

human viewers can identify the depicted individual. One way

to achive this is to project the images on a hypersphere with

radius R centered at some origin. This projection is excpected

to distort the images such that, the new architecture of the

data does not allow trained classifiers from discerning between

the individuals. In order to achieve this the hypersphere must

firstly be defined.

A hypersphere [14] [15] is a generalization of the ordinary

circle in 1 dimension and the ordinary sphere in 2 dimensions

to dimensions n ≥ 3. A can be defined as the set of points

in the n-dimensional space, which are at distance R from a

center pointhypersphere Sn−1 centered at some origin as:

Sn−1 = {x ∈ Rn : ||x|| = R}. (11)

where x is a point in the n-dimensional space. The projection

of a point x ∈ R
n onto Sn−1 is given by the following

equation [17]:

PSn−1(x) =
R

||x||
x, (12)

where PSn−1(x) denotes the projection of point x onto the

hypersphere Sn−1.

At this point the value of radius R and the exact center

must be addressed. Choosing a small value for radius R

allows us to project the initial images close to the center, and

subsequently close to each other. This means that images of

different individuals will also be close to images from other

individuals. Choosing a large value for R, it is possible to

project the initial images farther from the center, closer to the
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Fig. 9. Projection of point onto a sphere.

initial locations. It is suspected that for small values of R the

error rates of the classifiers will be high, since the classifiers

will be unable to discern between the images from different

individuals and as a result will classify them falsely. The value

of R will also be responsible for preserving the quality of the

initial images. For small values of R image quality will suffer,

while for large values of R the quality of the output images

will be closer to that of the initial image. These observations

can hint to the choice for the value of parameter R.It would

be preferable though if radius R was calculated based on the

images in each dataset. This can be achieved using the Support

Vector Data Description (SVDD) method.

The Support Vector Data Description or SVDD [19] is

a method for defining the minimum bounding sphere that

encompasses most of or all of the training vectors xi where

i = 1, 2, . . . , N and N denotes the number of training vectors.

This sphere S can be defined by a center u and a radius R,

which can be computed by optimizing:

min
R,ξ,u

R2 + c

N
∑

i

ξi (13)

s.t. ||xi − u||2
2
≤ R2 + ξi (14)

ξi ≥ 0, i = 1, 2, . . . , N (15)

where ξi are the slack variables and c is a parameter that

describes the importance of the error in the optimization

problem.

Using the Karush-Kuhn-Tucker (KKT) theorem [18] the

optimization problem mentioned above can be solved by

finding the saddle point a Lagrangian. From the optimality

conditions of the above problem, the center

mathbfu is given by:

u =
N
∑

i=1

aixi (16)

where ai is a Lagrangian curve parameter. It can be proven

that center u can be approximated by the mean of a given

dataset and this is the rason why the mean image is used as

a center in the PDID-M method below.

Finally, the optimization problem (13) can be formulated to

its dual from:

max
α

N
∑

i=1

aix
T
i xi −

N
∑

i=1

N
∑

j=1

aiajx
T
i xi, (17)

under the condition 0 ≤ ai ≤ c and
∑

i ai = 1. After

solving 17 radius R can be calculated as:

R2 = {min ||xi − u||2
2
,xi is a support vector or ai > 0}

(18)

With the above approach it is possible to calculate a good

estimate of radius R that will provide with the required

distortion to de-identify the input facial images.

Two different projections where used in order to de-identify

facial images. The first one is the average of the projection on

the origin and the mean image. The formula used to calculate

the de-identified version xDID of an image x is the following:

xDID =
1

2

(

R

||x||
x+ x̄

)

. (19)

where x̄ is the mean image, R denotes the radius of the hy-

persphere and ||x|| is the measure of image x. This projection

method will be referred to as Projection De-Deidentifiaction

on Origin or PDID-O for short.

The second projection used was the projection with a

hypersphere centered on the mean image. The mean image

is computed using the following equation:

x̄ =
1

Nim

Nim
∑

i=1

xi (20)

where x̄ is the average image, Nim is the number of images

in the given dataset and xi is each individual image in the

dataset. The de-identified image can be calculated using the

following formula:

xDID =

(

R ∗ (x− x̄)

||x− x̄||
+ x̄

)

. (21)

and as above x̄ is the mean image, R denotes the radius and

||x|| is the measure of image x. This projection method will be

referred to as Projection De-Deidentifiaction on Mean Image

or PDID-M for short.

In sections II-A and II-C the two facial image de-

identification methods where analyzed. To recap the SVD-DID

method alters the values in the decomposition matrices in order

to achieve de-identification, while the Projection-DID method

utilizes projections on hyperspheres to achieve the same goal.

III. EXPERIMENTAL PROCEDURE AND RESULTS

Having described these ,methods we will move on to

describing the experimental procedure and the databases used.

There will also be a discussion of the visual results and the

error rates the classifiers used display.
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A. Database Description, Classifiers and Metric Used

Experiments to test the effectiveness of the SVD-DID and

Projection-DID method where run on the XM2VTS [21] and

the Extended Yale B [20] databases. From the XM2VTS

database 16 individuals from the first recording where selected

and used in the experimental process. The individuals face the

camera on a neutral background. The frontal images where

isolated and subsequently where cropped to the face area.

Finally the images where converted to 8-bit grayscale images.

This process resulted in a dataset with 388 train samples and

265 test samples from the 16 videos. Each sample of the

above dataset has 128721 dimensions (401× 321), with both

train and test samples converted into vectors with dimensions

128721 × 1. The Extended Yale B database contains images

from 38 individuals under different lighting conditions. Train

and test sets contain 1209 and 1205 samples respectively.

These sets where defined by randomly selecting half the

images from each individual. Each image has 1200 dimensions

(40 × 30) and was used in vector form with dimensions

1200× 1. The train sets mentioned above where used to train

classifiers and then the test data where used to measure the

efficiency of the proposed method. The classifiers used in

the process where the K-Nearest Neighbour Classifier (KNN)

with 1 nearest neighbour and the Naive Bayes Classifier. In

the case of the KNN classifier varying the number of nearest

neighbours to 3 and 5 yielded similar results.

In order to calculate the difference between the initial and

de-identified images and to measure the degradation of quality

introduced by the two methods, the mean Mean Square Error

(mMSE) metric was used. To calculate the mMSE the images

must be in vector form np × 1, where np is the number of

pixels in each image. As such the formula that is used to

calculate the mMSE is:

mMSE =
1

Nim

Nim
∑

i=1





1

np

np
∑

j=1

(xi(j)− x̂i(j))
2



 (22)

where Nim is the total number of images, np is the number

of image pixels, xi is the ith original image and finally x̂i is

the ith output image of the applied method. All calculations

for the mMSE are done with the images having values in the

range [0, 1], after they where divided by 255.

These two datasets contain only a small number of indi-

viduals compared to the datasets that an attacker would use

to identify a target. It is intuitively expected that if the two

methods succeed in protecting privacy in these small datasets

they will achieve even higher levels of privacy protection in

large datasets.

B. Results for SVD-DID

In this section, we present and analyze the results from

training and testing the efficiency of each of the steps described

in Section II-A. The results are presented for each step with

error percentages and the mean Mean Square Error (mMSE)

for the test set of images, compared to the initial set.As

mentioned above, the necessity to increase the luminosity of

TABLE V
ERROR RATES FOR SVD-CA r = 10

Param. α KNN (K=3) Naive Bayes mMSE

α = 0.5 52.08 % 68.30 % 0.0549

α = 0.8 53.21 % 83.02 % 0.0477

α = 1.0 59.25 % 86.79 % 0.0468

all pixels in the final image arises in order to counterbalance

the darkening effect introduced by the algorithm steps. In the

experiments, the values 0, 100 and 150 were used for reducing

the darkening effect.

Following are the results for each step in theSVD-DID

method.

1) Results for SVD-CZ: Experimental results of setting the

N largest singular values to zero are depicted in Tables III-B1

and III-B1. It can be observed that, the increase of the number

of zeroed singular values tends to increase the mMSE while,

at the same time, the error rate is increased for both classifiers.

Altering the number of nearest neighbors in the KNN classifier

such as 1 and 5, yields the same results. These results are

displayed for different number of zeroed coefficients and for

different amounts of brightness added to the final image.

Visual results can be seen in Figures 1 and 2. It can be easily

seen from these figures that this method alone does not provide

an acceptable output image, since too many visual artifacts

are introduced that decrease the overall image quality, even

by zeroing only a couple of the first singular values.

2) Results for SVD-CA: For the circular averaging filter,

the error rates are displayed in Tables III and IV. The error

rates where calculated in relation with the radius r of the

circular filter and the amount of brightness that is applied for

both databases. The mMSE in this case does not increase by

increasing radius r. However, is shows a relevance to the added

luminosity as well. On the other hand, error rates increase by

increasing the radius value. Resulting images can be seen in

Figure 4.

For this step, it was mentioned that only a percentage of the

newly calculated matrices is used. By varying parameter α, we

obtain the results in Table V. We conclude that parameter α

affects the error rate of both classifiers. The parameters where

r = 10, α = 0.8. From this table it can be observed that by

increasing parameter α the mMSE increases along with the

error rate of the classifiers.

3) Results for SVD-MSF: Applying the modified Sobel

filter to the matrices, we obtain the error rates displayed in

Tables VI and VII. The results are related with parameter d

and the added luminosity. By increasing the value of parameter

d we obtain higher mMSE but, generally, the error rates remain

unchanged. As before, parameter α was set to 0.8. Image

results of the method are displayed in Figure 5 for parameters

d = 0.5, α = 0.8.

In this method, altering parameter α, leads to the error rates

in Table IX. The error rates are for the parameter d value

d = 0.5 and added luminosity 100. In this case, altering α

leads to a decrease of the mMSE and varying error rates.

Summarizing the results for each phase independently, we

observe that some of these phases either degrade image quality

to a great extend, or provide insufficient privacy protection. By
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TABLE I
ERROR RATES FOR NUMBER OF ZEROED COEFFICIENTS (XM2VTS)

Zeroed Luminosity +0 Luminosity +100 Luminosity +150
Coefficients KNN NBC mMSE KNN NBC mMSE KNN NBC mMSE

1 69.34 % 69.34 % 0.1903 55.47 % 55.47 % 0.0484 52.45 % 52.45 % 0.0927

2 90.57 % 90.57 % 0.1959 72.45 % 72.45 % 0.0523 72.45 % 72.45 % 0.0959

4 90.57 % 90.57 % 0.2001 83.02 % 83.02 % 0.0552 78.49 % 78.49 % 0.0981

8 93.21 % 93.21 % 0.2023 93.21 % 93.21 % 0.0569 79.25 % 79.25 % 0.0996

TABLE II
ERROR RATES FOR NUMBER OF ZEROED COEFFICIENTS (YALEB)

Zeroed Luminosity +0 Luminosity +100 Luminosity +150
Coefficients KNN NBC mMSE KNN NBC mMSE KNN NBC mMSE

1 92.53 % 96.43 % 11.373 e-4 79.25 % 92.53 % 5.5735 e-4 90.12 % 97.51 % 13.426 e-4

2 93.61 % 97.34 % 11.910 e-4 97.26 % 96.51 % 6.0820 e-4 93.94 % 97.51 % 13.921 e-4

4 95.60 % 97.34 % 12.187 e-4 97.34 % 96.51 % 6.3574 e-4 95.93 % 97.51 % 14.195 e-4

8 96.93 % 97.34 % 12.312 e-4 97.34 % 97.51 % 6.4748 e-4 97.26 % 97.51 % 14.309 e-4

TABLE III
ERROR RATES FOR CIRCULAR AVERAGING FILTER (XM2VTS)

Filter Luminosity +0 Luminosity +100 Luminosity +150
Radius KNN NBC mMSE KNN NBC mMSE KNN NBC mMSE

5 85.66 % 67.55 % 0.0815 49.43 % 83.02 % 0.0518 80.38 % 72.08 % 0.1524

10 86.04 % 69.06 % 0.0895 53.21 % 83.02 % 0.0477 80.38 % 72.08 % 0.1422

20 90.57 % 71.70 % 0.0935 50.06 % 86.79 % 0.0459 80.38 % 72.08 % 0.1375

TABLE IV
ERROR RATES FOR CIRCULAR AVERAGING FILTER (YALEB)

Filter Luminosity +0 Luminosity +100 Luminosity +150
Radius KNN NBC mMSE KNN NBC mMSE KNN NBC mMSE

5 94.85 % 96.18 % 1.1050 e-4 90.54 % 97.51 % 1.4683 e-4 97.01 % 97.51 % 4.0146 e-4

10 94.61 % 96.43 % 1.2097 e-4 89.88 % 97.51 % 1.4204 e-4 96.93 % 97.51 % 3.8905 e-4

20 94.77 % 96.43 % 1.2632 e-4 89.88 % 97.51 % 1.3986 e-4 96.85 % 97.51 % 3.8310 e-4

TABLE VIII
ERROR RATES FOR SVD-MSF d = 0.5

Param. α KNN (K=3) Naive Bayes mMSE

α = 0.5 52.08 % 68.30 % 0.0512

α = 0.8 50.56 % 86.79 % 0.0454

α = 1.0 55.47 % 90.57 % 0.0453

merging all these phases in one method we obtain the results

shown in the following section.

4) Putting it all together for the SVD-DID method:

The SVD-DID method as a whole includes the three steps

described in the previous sections (II-A1,II-A2,II-A3). By

applying these in the following order, i.e. SVD-CZ, SVD-

CA and SVD-MSF, we derive this method that encompasses

the advantages of all phases which are image quality and

privacy protection. The defined parameters of this method can

be altered to adjust the equilibrium between image quality and

privacy protection, depending on the purpose of applying this

method. The results for the full application of this method are

displayed in Tables IX and X and Figures 10 and 11. The

results in the tables are displayed in relation with parameter

α, added luminosity and number of zeroed coefficients. Other

visual results are displayed in Figure 12 for higher luminosity

added to the image at 150. Figure 13 shows the result of

applying a circular filter and a modified Sobel filter with

inappropriate parameters.

From these results we observe that with the correct selection

of parameter values, we can attain high levels of privacy,

while maintaining acceptable image quality. Error rates for

Fig. 10. Left: Result for SVD-DID for N=1, luminosity +100, α=0.5, Right:
Result for SVD-DID for N=1, luminosity +100, α=0.8 (r = 10 and d = 0.5)

Fig. 11. Left: Result for SVD-DID for N=2, luminosity +100, α=0.5, Right:
Result for SVD-DID for N=2, luminosity +100, α=0.8 (r = 10 and d = 0.5)

both classifiers are high for both databases with maximum

values at 93.71 % for the XM2VTS database and 97.51 % for

the YaleB database.

5) Results for SVD-DID with Standard Deviation Adjust-

ment: The aim of applying the method mentioned in the

previous section is to increase the effectiveness of the SVD-
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TABLE VI
ERROR RATES FOR MODIFIED SOBEL FILTERING (XM2VTS)

Value Luminosity +0 Luminosity +100 Luminosity +150
of d KNN NBC mMSE KNN NBC mMSE KNN NBC mMSE

0.2 90.57 % 67.17 % 0.0978 50.57 % 86.79 % 0.0447 84.53 % 72.08 % 0.1335

0.5 90.57 % 67.17 % 0.0988 50.57 % 86.79 % 0.0447 85.66 % 72.08 % 0.1342

1.0 69.43 % 67.17 % 0.1041 49.81 % 86.79 % 0.0509 85.66 % 72.08 % 0.1397

TABLE VII
ERROR RATES FOR MODIFIED SOBEL FILTERING (YALEB)

Value Luminosity +0 Luminosity +100 Luminosity +150
of d KNN NBC mMSE KNN NBC mMSE KNN NBC mMSE

0.2 94.11 % 96.35 % 1.3880 e-4 89.38 % 97.51 % 1.4197 e-4 96.85 % 97.51 % 3.8252 e-4

0.5 95.19 % 96.10 % 1.6637 e-4 90.04 % 97.34 % 1.7403 e-4 96.93 % 97.51 % 4.1433 e-4

1.0 95.52 % 95.44 % 4.4246 e-4 90.04 % 97.01 % 4.4916 e-4 96.93 % 97.51 % 6.8898 e-4

TABLE IX
ERROR RATES FOR SVD-DID (XM2VTS)

Luminosity +0 Luminosity +100
Zeroed α = 0.5 α = 0.8 α = 0.5 α = 0.8

Coefficients KNN NBC mMSE KNN NBC mMSE KNN NBC mMSE KNN NBC mMSE

1 90.57 % 97.36 % 0.1947 90.57 % 93.74 % 0.1971 76.60 % 93.21 % 0.0508 90.57 % 93.21 % 0.0527

2 90.57 % 97.36 % 0.1985 90.57 % 97.36 % 0.2000 90.57 % 93.21 % 0.0539 90.57 % 93.21 % 0.0551

4 93.21 % 97.36 % 0.2014 93.71 % 97.36 % 0.2022 93.21 % 93.21 % 0.0562 93.21 % 93.21 % 0.0569

TABLE X
ERROR RATES FOR SVD-DID (YALEB)

Luminosity +0 Luminosity +100
Zeroed α = 0.5 α = 0.8 α = 0.5 α = 0.8

Coefficients KNN NBC mMSE KNN NBC mMSE KNN NBC mMSE KNN NBC mMSE

1 93.53 % 97.34 % 2.5675 e-4 94.85 % 97.34 % 2.6036 e-4 97.01 % 97.18 % 1.2868 e-4 97.34 % 97.51 % 1.3220 e-4

2 95.85 % 97.34 % 2.6490 e-4 95.93 % 97.34 % 2.6653 e-4 97.34 % 97.51 % 1.3655 e-4 97.34 % 97.51 % 1.3814 e-4

4 96.68 % 97.34 % 2.6912 e-4 96.76 % 97.34 % 2.6972 e-4 97.34 % 97.51 % 1.4075 e-4 97.34 % 97.51 % 1.4131 e-4

Fig. 12. Left: Result for SVD-DID for N=2, luminosity +150, α=0.5, Right:
Result for SVD-DID for N=2, luminosity +150, α=0.8 (r = 10 and d = 0.5)

Fig. 13. Left: Result for SVD-DID for N=1, luminosity +100, α=0.8, r = 10

and d = 5 Right: Result for SVD-DID for N=1, luminosity +100, α=0.8,
r = 10 and d = 10

DID method. The SVD-DID method with STD adjustment will

be referred to as SVD-SDID.

The SVD-SDID method increases the error rates given

by the KNN and NBC classifiers as is shown in Table XI

where the SVD-DID parameters have the following values:

α = 0.5, d = 0.5, r = 10, lum = +100 and SVD-SDID

parameter γ is γ = 0.8. These error rates are for applying

Equation 8 to matrix U of the SVD. Applying to both U and

V matrices gives poorer visual results without increasing the

error rates. Applying solely to matrix V leads to similar results

as when applied to matrix U.

From the results displayed in Table XI it can been seen

that applying the SVD-SDID method results in higher error

rates for the classifiers used. In the case of the KNN classifier

and the XM2VTS database, for N = 0 there is a 0.38%
increase in error rate. When N = 1 the increase is greater

reaching 10.95%. This is a major increase in error rate without

any further image quality degradation, as can be visually

confirmed by the images in Figure 14 and through the mMSE

which displays only minor increases. In the case of the YaleB

database, the results are shown in Table XII, the differences

between error rates where not as notable with a 1.16% increase

in error rate for N = 0 for the KNN classifier and for

N = 1 a 0.33% increase for the same classifier. The error rates

remained the same for all but one case for the NBC classifier

with an increase of 0.33% for N = 1. For both databases the

mMSE generally increased with a decrease only in the case

of the XM2VTS database for N = 0.

6) The Effect of Parameter γ: Parameter γ is the new

parameter introduced in the SVD-SDID method. In this section

the effect of the parameter value will be examined concerning

error rates and mMSE. As above the SVD-DID parameters

will have the values: N = 1α = 0.5, d = 0.5, r = 10, lum =
+100 and for different values of γ the visual results are

displayed in Figure 15 and Figure 16. Error rates for the two

classifiers and the mMSE are displayed in Table XIII.

From Figures 15 and 16 not is visible that by decreasing

parameter γ ever more visual information is lost as the value
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TABLE XI
ERROR RATE COMPARISON FOR SVD-DID AND SVD-SDID (XM2VTS)

Zeroed KNN NBC mMSE
Coefficients SVD-DID SVD-SDID SVD-DID SVD-SDID SVD-DID SVD-SDID

0 52.83 % 53.21 % 68.30 % 75.09 % 0.0507 0.0459

1 76.60 % 87.55 % 93.21 % 93.21 % 0.0508 0.0520

2 90.57 % 90.57 % 93.21 % 93.21 % 0.0539 0.0546

4 93.21 % 93.21 % 93.21 % 93.21 % 0.0562 0.0566

TABLE XII
ERROR RATE COMPARISON FOR SVD-DID AND SVD-SDID (YALEB)

Zeroed KNN NBC mMSE

Coefficients SVD-DID SVD-SDID SVD-DID SVD-SDID SVD-DID SVD-SDID

0 89.21 % 90.37 % 97.51 % 97.51 % 1.5260 e-4 6.4498 e-4

1 97.01 % 97.34 % 97.18 % 97.51 % 1.2868 e-4 6.3664 e-4

2 97.34 % 97.34 % 97.51 % 97.51 % 1.3655 e-4 6.6453 e-4

4 97.34 % 97.34 % 97.51 % 97.51 % 1.4075 e-4 6.7919 e-4

Fig. 14. Images de-identified using Left: the SVD-DID method, Right: the
SVD-SDID method

(a) (b) (c)

Fig. 15. SVD-SDID with (a) γ = 1.0, (b) γ = 0.8, (c) γ = 0.7

(a) (b) (c)

Fig. 16. SVD-SDID with (a) γ = 0.5, (b) γ = 0.3, (c) γ = 0.2

of STD, that differentiates subjects from one another, also

decreases. The value of 0.8 is preferred since it provides a

good increase in error rate and low image quality deterioration.

From Table XIII the error rate increases as parameter γ

decreases for the KNN classifier but levels off at γ = 0.3. The

NBC classifier does not display any increase for the parameters

TABLE XIII
ERROR RATES FOR SVD-SDID (XM2VTS)

Param. α KNN (K=3) Naive Bayes mMSE

γ = 1.0 76.60 % 93.21 % 0.0508

γ = 0.8 87.55 % 93.21 % 0.0520

γ = 0.7 90.56 % 93.21 % 0.0526

γ = 0.5 90.56 % 93.21 % 0.0542

γ = 0.3 93.21 % 93.21 % 0.0559

γ = 0.2 93.21 % 93.21 % 0.0569

selected. The mMSE displays a steady increase as parameter

γ decreases, which is consistent with the increased error rates

displayed by the classifiers.

As can be concluded from the above discussion, this exten-

sion of the SVD-DID method increases error rates in several

cases and also retains visual quality, thus making this method

more effective in protecting the privacy of individuals while

retaining an acceptable image quality.

Having fully analyzed the results give by the SVD-DID

method and used the initial results to extend this method it

is time to move on the results for the Projection-DID method

which are presented in the following section.

C. Results for Projection-DID

1) Results for the PDID-O Method: This method uses

formula 19 to de-identify the input images. The radius used for

the PDID-O was calculated using the SVDD method. For the

XM2VTS dataset the calculated radius was R = 67.4034 and

for the Yale B dataset the value for radius R was calculated

to be R = 17.4241.

In order to test the above radii in respect to error rates and

visual quality, other values where also used in the experimental

process. For the XM2VTS dataset Table XIV summarizes the

results for different radii and classifiers. As it can be seen more

values where selected near the calculated radius in order to

assess the effectiveness of the calculated radius. Visual results

can be seen in Figure 17 and Figure 18.

For the XM2VTS dataset the results are presented in Table

XIV from which we can conclude that parameter R plays a

large role in the error rates that are displayed by the error



10

rates, as well as the mMSE. As suspected increasing radius R

reduces the error rates displayed by the classifiers. For a radius

of 10 very high error rates are observed reaching 97.36% for

the NBC classifier and with an mMSE of 0.06046. Increasing

the radius leads to a decline of the mMSE while error rates

remain almost the same for a radius R = 30 and slightly

falling by about 3% for radii R = 50 and 70. For a radius

with a value of R = 100 error rates fall sharply to 49.06%
for the KNN classifier and for R = 120 the same error rate

is 26.04%. The mMSE is also reduced from 0.06046 for R =
10, to 0.02829 for R = 70 and reaches 0.01216 for a radius

R = 120.Focusing on the values near the calculated value of

R = 67.4034 and more specifically from 50 to 80 it can be

observed that although the mMSE varies, the error rates remain

stable for all three classifiers. The error rate is 90.57% for the

KNN and NC classifiers, while slightly higher for the NBC

classifier at 93.58%, both being high enough to offer privacy

protection. From the results in Table XIV we can conclude

that the calculated radius R by the SVDD method is a really

good choice for de-identifying facial images and retaining an

acceptable level of quality for this dataset and the PDID-O

method. From these results, we propose the value of 70 for

radius R for the XM2VTS dataset since R = 70 provides

high error rates and acceptable image quality. Finally it can

be verified from the results that increasing radius R causes a

decline in error rates for all classifiers also for the mMSE, as

we approach the initial image by increasing the radius R of

the hypersphere.

Fig. 17. Results for PDID-O with Left: R = 10, Middle: R = 30, Right:
R = 50

Fig. 18. Results for PDID-O with Left: R = 70, Middle: R = 100, Right:
R = 120

For the Yale B dataset the radius R that was calculated using

the SVDD method has the value R = 17.4241. For this R and

radii in the same area, the error rates are shown in Table XV.

As can be seen for a small radius R = 10, error rates for

all classifiers are high. Increasing the radius leads to low error

rates for the KNN classifier, while the NBC and NC classifiers

display high error rates. This observation mean that the radius

that is computed using the SVDD method is a good estimate

of the radius that should be used in order to de-identify the

TABLE XIV
ERROR RATES FOR PDID-O (XM2VTS)

Classifiers mMSE

Radius KNN NBC

10 93.21 % 97.36 % 0.06046

30 93.21 % 93.58 % 0.04818

50 90.57 % 93.58 % 0.03746

60 90.57 % 93.58 % 0.03268

67.4034 90.57 % 93.58 % 0.02939

70 90.57 % 93.58 % 0.02829

80 90.57 % 93.58 % 0.02428

100 49.06 % 61.89 % 0.01745

120 26.04 % 54.72 % 0.01216

TABLE XV
ERROR RATES FOR PDID-O (YALE B)

Classifiers mMSE

Radius KNN NBC

5 94.94 % 92.94 % 0.04760

10 89.96 % 72.61 % 0.02878

15 60.83 % 82.57 % 0.02038

17.4241 48.30 % 86.14 % 0.02005

20 38.67 % 89.38 % 0.02239

images sufficiently. For the selected radii the mMSE displays

at first a decline from R = 10 to R = 17.4241 and then

increases. In this case the estimate by the SVDD method is

not ideal and a smaller radius should be used to attain high

de-identification rates. As such we propose a value of R = 10
for the Yale B dataset.

In both datasets apart from simply using the original images

the LDA method was applied. The results gave varying error

rates that where either slightly higher than the ones with the

original images and some where lower. In the case of the

XM2VTS dataset the images where resized to 40 × 30. In

this case the radius R calculated with the SVDD method was

R = 0.9819. For this radius the NBC and NC classifiers gave

the same error rates at with the original images and the ones

with LDA giving 96.23% and 93.21% respectively. The KNN

classifier showed error rates at 93.21% for the initial images

and 91.32% for the LDA. For the Yale B dataset and a radius

of R = 10 the NC classifier displays the same error rates

at 79.17%. In the case of the NBC classifier the error rate

increases if LDA is used from 72.61% to 87.14%. Finally for

the KNN classifier there is a drop from 89.96% to 79.50%
which is still an acceptable de-identification rate.

2) Results for the PDID-M Method: This method projects

the input image on a hypersphere centered on the mean image

using formula 21. The radius calculated using the SVDD

method did not provide adequate de-identification with the

PDID-M method and the radii used here found empirically. For

the XM2VTS dataset the radius proposed is R = 10 and for

the Yale B dataset R = 2. This is a drawback of this method,
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Fig. 19. Results for PDID-M with Left: R = 4, Middle: R = 6, Right:
R = 8

since the radii cannot be calculated automatically. Error rates

for the XM2VTS dataset can be are displayed in Table XVI

and visual results can be seen in Figure 19 and Figure 20.

From the results in Table XVI it can be seen that the PDID-M

method gives high error rates with lower mMSE compared to

the PDID-O method. From a R = 4 with error rates at 96.23%
for all classifiers a slight drop is displayed up to a radius of

R = 10 for which value the error rates are 90.19% for the

three classifiers used. Beyond this value the error rates drop

sharply and for a radius of R = 14 the KNN classifier displays

an error rate of 53.21%.

The error rates for the Yale B dataset are displayed in Table

XVII. For a radius R = 1 the KNN classifier displays an

error rate at 96.21% while the NBC a much lower error rate

at 88.13%. For R = 2 both the previous classifiers drop to

95.02% and 83.32% respectively. The NC also displays a drop

in error rate from 92.61% for a radius of R = 1 to 89.21%
for R = 2. The mMSE is at 0.04384 for R = 1 and for

R = 2 the mMSE value drops to 0.03307. The values for

the mMSE in the case of the Yale B dataset are close for

both the PDID-O and PDID-M method, unlike the case of the

XM2VTS dataset as mentioned above. For higher values for

radius R all error rates drop below 90%. For R = 3 the KNN

and NC classifiers display a difference of 1% at 88.71% and

89.71% respectively, while the NBC remains almost stable in

comparison with a radius R = 2 at 83.14% and the mMSe

dropping to 0.02396. For values beyond R = 3 error rates

drop sharply with a minimum of 76.51% for R = 4 and to a

minimum of 66.14% for R = 66.14% both displayed by the

KNN classifier.

As in the PDID-O method the LDA method was applied

to the initial images. The results gave varying error rates

that where either slightly higher than the ones with the

original images and some where lower. As mentioned above

the XM2VTS dataset images where resized to 40 × 30. In

this case the radius used was R = 0.8. For this radius the

NBC and NC classifiers displayed equal error rates for the

original images and the ones with LDA giving 96.23% and

90.19% respectively. The KNN classifier displayed error rates

at 90.19% for the initial images and 96.60% for the LDA. In

the case of the Yale B dataset a radius of R = 2 was used. The

NC classifier displays the same error rates at 85.89%. Error

rates of the NBC classifier the error rate increases with LDA

from 82.49% to 89.79%. Finally for the KNN classifier error

rates from 94.52% to 89.21%.

Fig. 20. Results for PDID-M with Left: R = 10, Middle: R = 12, Right:
R = 14

TABLE XVI
ERROR RATES FOR PDID-M (XM2VTS)

Classifiers mMSE

Radius KNN NBC

4 96.23 % 96.23 % 0.01954

6 90.19 % 96.23 % 0.01804

8 90.19 % 90.19 % 0.01660

10 90.19 % 90.19 % 0.01522

12 66.04 % 90.19 % 0.01390

14 53.21 % 73.58 % 0.01265

IV. METHOD COMPARISON

In this section the methods that where analyzed in the main

part of the article will be compared. Firstly we will take a

look at the highest error rates attained by each method as they

are presented in the tables in each section. These error rates

provide a high level of privacy but at the same time degrade the

output image, which may not be acceptable for viewers. The

highest error rates attained are presented in Tables XVIIIand

Table XVIII. From the previous tables it can be seen that very

high error rates can be achieved with all methods with the

correct selection of each method’s parameters. It may seem

that the SVD-SDID method does not achieve higher error

rates in comparison with the SVD-DID method, but as it is

discussed in an above section the SVD-SDID method increases

the error rates for specific parameters, with an increase of over

10% in one case. In the case of the Projection-DID methods,

the PDID-M method achieves an error rate of 96.23 % for

both classifiers while the PDID-O method achieves a higher

error rate in the case of the NBC classifier. The highest error

rate however heavily degrade the final quality of the output

image which is not acceptable. As such we will now take a

look at the error rates of each method and classifier for the

TABLE XVII
ERROR RATES FOR PDID-M (YALE B)

Classifiers mMSE

Radius KNN NBC

1 96.76 % 88.13 % 0.04384

2 95.02 % 83.32 % 0.03307

3 88.71 % 83.15 % 0.02396

4 76.51 % 81.74 % 0.01652

5 66.14 % 81.41 % 0.01075
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TABLE XVIII
HIGHEST ERROR RATES FOR THE DE-IDENTIFICATION METHODS

(XM2VTS)

Method KNN NBC

SVD-DID 93.71 % 97.36 %

SVD-SDID 93.21 % 93.21 %

PDID-O 93.21 % 97.36 %

PDID-M 96.23 % 96.23 %

TABLE XIX
HIGHEST ERROR RATES FOR THE DE-IDENTIFICATION METHODS

(YALEB)

Method KNN NBC

SVD-DID 97.34 % 97.51 %

SVD-SDID 97.34 % 97.51 %

PDID-O 94.94 % 92.94 %

PDID-M 96.76 % 88.13 %

TABLE XX
RECOMMENDED PARAMETER ERROR RATES FOR THE

DE-IDENTIFICATION METHODS (XM2VTS)

Method KNN NBC

SVD-DID 90.57 % 93.21 %

SVD-SDID 90.57 % 93.21 %

PDID-O 90.57 % 93.58 %

PDID-M 90.19 % 90.19 %

recommended values of the parameters in each method.

Beginning with the SVD-DID and SVD-SDID methods the

recommended parameters are N = 2, r = 10, d = 0.5 and

α = 0.5. In the case of the PDID-O method the radius has a

value of R = 70 in the XM2VTS database and R = 10 in the

YaleB database. Finally for the PDID-M method R = 10 for

XM2VTS and R = 2 for the YaleB database. These parameter

values provide an acceptable visual result and at the same

time a high level of privacy protection. The error rates for

these parameter values are presented in Table XX and Table

XXI and the visual results can be compared in Figure 21 and

Figure 22. From these results it is evident for the recommended

parameters high levels of privacy can be attained. In the case of

the XM2VTS database in Table XX there is a small variation

in the error rates, all of which are above 90%. This does

not apply in the case of the YaleB database where there is

greater variation between the error rates. In Table XXI the

error rates vary from 72.61% for the PDID-O method and the

NBC classifier to 97.51% For the two SVD-DID methods and

the same classification algorithm.

From the above discussion it can be inferred that both

approaches in facial image de-identification can provide a high

level of privacy. Visually from Figures 21 and 22 it can be seen

TABLE XXI
RECOMMENDED PARAMETER ERROR RATES FOR THE

DE-IDENTIFICATION METHODS (YALEB)

Method KNN NBC

SVD-DID 97.34 % 97.51 %

SVD-SDID 97.34 % 97.51 %

PDID-O 89.96 % 72.61 %

PDID-M 95.02 % 93.32 %

Fig. 21. Images de-identified using Left: the SVD-DID method, Right: the
SVD-SDID method

Fig. 22. Images de-identified using Left: the PDID-M method, Right: the
PDID-O method

that in all cases artifacts are introduced in the output images,

while there is also a variation in the luminosity of each pixel.

The visual artifacts are introduced due to the filtering steps

for the SVD-DID methods and especially during the SVD-

MSF step where all parts of the image are sharpened. In the

case of the Projection-DID methods artifacts are introduced

in the averaging with the mean image in the case of PDID-

O method and in the PDID-M method from the center of

the hypersphere on which the input images are projected.

The drop in luminosity is caused from the reduction of the

highest singular values to zero in step SVD-CZ for the SVD-

DID methods and from the projection in the Projection-DID

methods. These effects can be observed in both figures, where

the left image appears to be brighter that the one on the right

and perhaps slightly more clear due to the differences between

the methods. Depending on whether privacy is vital or not and

whether the aim is to preserve the majority of the visual data

the right combination of parameter values can be selected.

This means that in order to achieve high error rates from the

classifiers a compromise must be made in the image quality

which will suffer. If privacy is not a concern a higher image

quality can be attained leading to lower error rates.
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V. CONCLUSIONS

In this article we have described and analyzed two methods

for de-identifying facial images. These methods aim to limit

the effectiveness of face identification methods, while retaining

part of the initial visual quality. From the results above, it

can be deducted that using the appropriate parameter values,

a high level of privacy can be attained. For the SVD-DID

method in the case of the YaleB database, the highest error

rate achieved was 97.51% and the highest error rate for the

XM2VTS database was 93.71%. Despite the high error rate,

the end product of these methods can be characterized as

acceptable for everyday use. This method, when applied to

the initial images, tend to have a smoothing effect on the

image, while introducing visual artifacts. Also, by applying the

various methods and filters there exists the tendency to darken

the image, which is counterbalanced, by adding a constant

value to the output image, in order to preserve adequate

visual information so that the faces can be identified by

human viewers. The combination of these effects reduces the

identification accuracy of automatic face identity classifiers.

From the error rates and visual results we can conclude that the

proposed SVD-DID method serves the purpose of protecting

privacy and providing a visually acceptable output.

The second method that is based on projections on hy-

perspheres a good radius R for the PDID-O method was

calculated using the SVDD method was used. The radii given

by the SVDD gave radii values that provided high error rates

and at the same time acceptable image quality. Error rates

where high, attaining 93.58% for the XM2VTS dataset using

the Naive Bayes Classifier and the radius R = 67.4034. For

the Yale B dataset the highest error rate was 92.12% with

the Nearest Centroid Classifier and a radius R = 17.4241.

For the PDID-M method, the radii given by the SVDD did

not provide adequate de-identification so the values where

selected empirically. The highest error rates with the proposed

radii where 90.19% for R = 10 for the XM2VTS dataset and

95.02% for R = 2 for the Yale B dataset. Comparing the two

proposed methods it can be seen that the PDID-M method

performs better compared to the PDID-O method. For similar

values of mMSE (about 0.012) the minimum error rate is

26.04% for the PDID-O method and 53.21% for the PDID-M

method which is more than double the error rate for PDID-O.

To summarize, from the above results it can be concluded

that the SVD-DID and Projection-DID methods serve the

purpose of providing privacy protection by attaining high error

rates from classifiers and providing an end image that can be

characterized as acceptable for everyday use.
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