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Abstract— A major issue that arises from mass visual media
distribution in modern video sharing, social media and cloud
services, is the issue of privacy. Malicious users can use these
services to track the actions of certain individuals and/or groups
thus violating their privacy. As a result the need to hinder
automatic facial image identification in images and videos
arises. In this paper we propose a method for de-identifying
facial images. Contrary to most de-identification methods, this
method manipulates facial images so that humans can still
recognize the individual or individuals in an image or video
frame, but at the same time common automatic identification
algorithms fail to do so. This is achieved by projecting the facial
images on a hypersphere. From the conducted experiments
it can be verified that this method is effective in reducing
the classification accuracy under 10%. Furthermore, in the
resulting images the subject can be identified by human viewers.

I. INTRODUCTION

Media sharing has become mainstream in modern times

and its volume increases daily. This inconceivable amount

of information includes a large amount of visual media

that contain information about the actions of the individuals

depicted as well as the creators of these media. Large

scale sharing, viewing and storing of these media introduces

concerns for the privacy of the above mentioned participants.

As is usually the case, this visual information is freely

available to all Internet users and, as a consequence, dangers

arise concerning the privacy of these media creators and

the subjects depicted. Face recognition algorithms are able

to recognize faces in images and video frames efficiently

threatening the privacy of the subjects. Malicious users

can utilize video sharing sites and social media to collect

information regarding specific individuals and groups fast,

freely and without much effort. Another concern for privacy

arises from the wide use of video surveillance in public

places, which in junction with face identification software

allows identification of all persons regardless of suspicion

level. Examples of privacy violation can be found in the cases

of Google Street View and EverySpace, which among others

use visual data to provide services and inevitably invade our

everyday privacy, although not intentionally. To tackle this

issue new methods must be developed that protect the privacy

of the subjects, while maintaining a certain level of image

quality. The quality of the final product must allow human

viewers to recognize the individuals in a scene.

The proposed method is developed under the following

scope. Suppose that a malicious user has trained a classifier

to identify certain individuals in a series of images or video
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frames. With this classifier the malicious user can search for

information in visual media about the targeted individuals.

If new images shared by these users have been modified by

a certain method the trained classifier will fail to recognize

the targeted individuals, thus rendering future actions of the

targets safe. So the proposed method aims to do just that

while at the same time preserving enough visual quality to

characterize the end product acceptable for everyday use.

Most face de-identification methods attempt to deceive

automatic face recognition methods by also hindering iden-

tification by human viewers. These methods aim to destroy

the majority, if not all, of the data concerning the depicted

individual. Ad-hoc solutions [1] include the use of simple

methods such as applying a black mask on parts of the face.

Black bars are used in order to cover the eyes, while T-shaped

masks cover both the eyes and the nose. Other masks reveal

only the mouth and, finally, a black mask can be applied

to the entire face, destroying all visual information of the

facial image [1]. Additional simple methods include methods

that blur the face area using low-pass filters [1], methods

that add random noise with a predetermined distribution,

methods that use the negative image and methods that swap

facial areas, such as eyes, nose, mouth, between images that

belong to different individuals [3]. Finally, simple methods

also exist that subsample an image leading to pixelation, or

that threshold the pixel values [1]. Moreover, more advanced

methods exist that implement the k-anonymity model [2], so

that all of the de-identified images indiscriminately relate to

at least k elements of the initial image set. Other methods

explloit characteristics of identification methods such as

eigenface-based algorithms, k-anonymity models and PCA

or LDA face recognition methods in order to defeat them

[4]. Finally, another method exists that reduces the number

of eigenvectors used in constructing the final images from

basis vectors [5].

A common characteristic of the above methods is hin-

dering recognition by both human viewers and automatic

classifiers. In this paper a novel approach is proposed that

utilizes projections on hyperspheres in order to defeat clas-

sifiers while preserving enough visual information so that

human viewers can identify the depicted individuals, contrary

to the methods mentioned above.

The rest of the paper is organized as follows. An in-

troduction on hyperspheres is presented in Section II. The

proposed de-identification method is described in Section III.

The experimental setup and results are presented in Section

V. Section VI analyzes a potential attack against this method.

Finally the conclusions are drawn in Section VII.



Fig. 1. Left: Original Image,Center: Projection on hypersphere centered at
the origin, Right: Projection on hypersphere centered at the image whose
pixels contained the maximum allowed value

Fig. 2. Left: Original Image,Center: Projection on hypersphere with
noise center following the normal distribution with a mean of 0.5 and
standard deviation of 0.1, Right: Projection on hypersphere with noise center
following the uniform distribution

II. PROJECTION ON HYPERSHPERES

A hypersphere [6][7] is a generalization of the ordinary

circle in 1 dimension and the ordinary sphere in 2 dimen-

sions to dimensions n ≥ 3. For any natural number n, a

hypersphere S(n−1) with radius R is defined as:

x2
1 + x2

2 + . . .+ x2
n = R2, (1)

where x1, x2, . . . , xn are n-tuples of points and R is the

radius of the hypersphere, which is a positive real number.

A hypersphere Sn−1 can also be defined as the set of points

in the n-dimensional space, which are at distance R from a

center point. A hypersphere Sn−1 centered at some origin is

defined as:

Sn−1 = {x ∈ Rn : ||x|| = R}. (2)

where x is a point in the n-dimensional space. The projection

of a point x ∈ R
n onto Sn−1 is given by the following

equation [9]:

PSn−1(x) =
R

||x||
x, (3)

where PSn−1(x) denotes the projection of point x onto the

hypersphere Sn−1.

III. DE-IDENTIFICATION OF FACIAL IMAGES BASED ON

PROJECTION ON HYPERSPHERES

Each image occupies a position in the n-dimensional

space, where the dimensionality n of the image is equal to

the number of pixels. Intuitively it is expected that images

depicting the same individual with the same pose are bound

to lie close together in space forming local clusters, while

images depicting different individuals are bound to lie farther

apart.

The general idea is to bring images of different individuals

closer together in order to prevent classifiers from correctly

identifying a subject in an image. The most simplistic

approach is to replace the initial image with the average

of all the images, or with another image. The purpose

of this method however is to preserve enough information

from the first image so that human viewers can identify the

depicted individual. So instead of replacing the images with

the average image we project the images on a hypersphere

with radius R centered at the origin.

The structure of the data allows trained classifiers to

accurately identify the individual in an image. A way to

impair this ability of the classifiers is to undermine this

structure. This can be achieved by projecting the images on

a hypersphere. This projection distorts the images in such

a way that, the new architecture of the data does not allow

trained classifiers from discerning between the individuals.

Bringing all images near to the center of the hypersphere,

image clusters of different individuals are driven closer

together. This clashes with the initial idea that the distance

between the clusters allows classifiers to correctly classify

a subject. Consequently it is expected that this projection

method will hinder classifiers from accurately identifying a

subject.

A. Selecting a Center for the Hypersphere

In order to project the images a hypersphere must first

be defined. As mentioned in Section II a hypersphere can

be defined with a center and a radius. For a center, several

alternatives where considered. At first abstract centers where

selected such as the origin of the n-dimensional space

in which the images reside as well as the image whose

pixels contained the maximum allowed value e.g. 255 for

8-bit images. These two centers did provide de-identification

which can be easily defeated, since the effects that they

introduced where darkening and brightening of the input

images respectively. This can be easily defeated by applying

the inverse effect on the output images. Despite this fact the

origin was used in combination with the mean image as is

described below. The output of using the above centers can

be viewed in Figure 1. Another abstract center considered

was an image of random noise whose values where in

the same range as the input images e.g. [0,255] for 8-

bit images. Visual results for these centers can be seen in

Figure 2. Although the de-identification rates where high,

visual quality suffered and as such these centers where not

considered any further.

In order to deviate from abstract centers the train dataset

image closest to the mean image was selected as a center for

the hypersphere. Since this is an actual image, all images that

depict the same individual as the median are not de-identified

as was found through experiments. A better hypersphere

would be one that is closer to the initial images and also

includes information from other images in order to deceive

face recognition algorithms. Such a center would be the mean

image of the dataset.

The mean image is computed using the following equa-

tion:

Ī =
1

Nim

Nim
∑

i=1

Ii (4)



where Ī is the average image, Nim is the number of images

in the given dataset and Ii is each individual image in the

dataset.

B. Selecting a Radius for the Hypersphere

Since the mean image was selected as the center for the

hypersphere a radius is needed in order to fully define the

hypersphere. It is possible to manually select the radius by

using arbitrary values and then assessing the visual quality

as well as the error rate of various face recognition methods.

This is however a simplistic approach and for each database

a new radius must be selected. As such it would be better if

a radius could be calculated depending on the database used.

This was achieved using the Support Vector Data Description

method or SVDD, which is described in Section IV.

C. Projections Used for De-Identiffication

Two different projections where used in order to de-

identify facial images. The first one is the average of the

projection on the origin and the mean image. The formula

used to calculate the de-identified version IDID of an image

I is the following:

IDID =
1

2

(

R

||I||
I+ Ī

)

. (5)

where Ī is the mean image, R denotes the radius of the hy-

persphere and ||I|| is the measure of image I. This projection

method will be referred to as Projection De-Deidentifiaction

on Origin or PDID-O for short.

The second projection used was the projection with a

hypersphere centered on the mean image. The de-identified

image can be calculated using the following formula:

IDID =

(

R ∗ (I− Ī)

||I− Ī||
+ Ī

)

. (6)

and as above Ī is the mean image, R denotes the radius

and ||I|| is the measure of image I. This projection method

will be referred to as Projection De-Deidentifiaction on Mean

Image or PDID-M for short.

Having defined the projections used to de-identify the

input images, now let us focus on the value of radius R

that should be used in the following section.

IV. AUTOMATIC SELECTION OF RADIUS R

Choosing a small value for radius R allows us to project

the initial images close to the center, and subsequently close

to each other. This means that images of different individuals

will also be close to images from other individuals. Choosing

a large value for R, it is possible to project the initial

images farther from the center, closer to the initial locations.

Therefore the output images will be farther away from each

other, and subsequently the clusters of different images will

also be farther away. It is suspected that for small values

of R the error rates of the classifiers will be high, since the

classifiers will be unable to discern between the images from

different individuals and as a result will classify them falsely.

The value of R will also be responsible for preserving the

quality of the initial images. For small values of R the image

quality will suffer, while for large values of R the quality of

the output images will be closer to that of the initial image.

These observations can hint to the choice for the value of

parameter R.

It would be preferable though if radius R was calculated

based on the images in each dataset. This can be achieved

using the Support Vector Data Description method.

The Support Vector Data Description or SVDD [11] is

a method for defining the minimum bounding sphere that

encompasses most of or all of the training vectors xi where

i = 1, 2, . . . , N and N denotes the number of training

vectors. This sphere S can be defined by a center u and

a radius R, which can be computed by optimizing:

min
R,ξ,u

R2 + c

N
∑

i

ξi (7)

s.t. ||xi − u||22 ≤ R2 + ξi (8)

ξi ≥ 0, i = 1, 2, . . . , N (9)

where ξi are the slack variables and c is a parameter that

describes the importance of the error in the optimization

problem.

Using the Karush-Kuhn-Tucker (KKT) theorem [10] the

optimization problem mentioned above can be solved by

finding the saddle point of the Lagrangian:

L(R, ξi,u,α,β) = R2 + c

N
∑

i

ξi −
N
∑

i=1

βiξi

−
N
∑

i=1

ai
(

R2 + ξi − ||xi − u||22
)

.

(10)

This leads to the following optimality conditions:

ϑL

ϑu
= 0 ⇒

N
∑

i=1

aiu =
N
∑

i=1

aixi, (11)

ϑL

ϑR
= 0 ⇒

N
∑

i=1

ai = 1 (12)

ϑL

ϑξi
= 0 ⇒ ai = c− βi (13)

From (11) and (12) the center u is given by:

u =
N
∑

i=1

aixi (14)

Replacing (11), (12) and (13) in L(R, ξi, α, β) and using

the KKT conditions, optimization problem (7) can be for-

mulated to its dual from:

max
α

N
∑

j=1

aix
T
i xi −

N
∑

i=1

N
∑

j=1

aiajx
T
i xi, (15)



under the condition 0 ≤ ai ≤ c and
∑

i ai = 1.

After solving 15 radius R can be calculated as:

R2 = {min ||xi − u||22,xi is a support vector or ai > 0}
(16)

With the above approach it is possible to calculate a good

estimate of radius R that will provide with the required

distortion to de-identify the input facial images.

V. EXPERIMENTAL RESULTS

A. Database Description, Classifiers and Metric Used

Experiments to test the effectiveness of the Projection-DID

method where run on the XM2VTS [13] and the Extended

Yale B [12] databases. From the XM2VTS database 16

individuals from the first recording where selected and used

in the experimental process. The individuals face the camera

on a neutral background. The frontal images where isolated

and subsequently where cropped to the face area. Finally the

images where converted to 8-bit grayscale images. This pro-

cess resulted in a dataset with 388 train samples and 265 test

samples from the 16 videos. Each sample of the above dataset

has 128721 dimensions (401×321), with both train and test

samples converted into vectors with dimensions 128721× 1.

The Extended Yale B database contains images from 38

individuals under different lighting conditions. Train and test

sets contain 1209 and 1205 samples respectively. These sets

where defined by randomly selecting half the images from

each individual. Each image has 1200 dimensions (40× 30)

and was used in vector form with dimensions 1200× 1. The

train sets mentioned above where used to train classifiers

and then the test data where used to measure the efficiency

of the proposed method. The three classifiers used in the

process where the K-Nearest Neighbour Classifier (KNN)

with 1 nearest neighbour, the Nearest Centroid Classifier and

the Naive Bayes Classifier. In the case of the KNN classifier

varying the number of nearest neighbours to 3 and 5 yielded

similar results.

In order to calculate the difference between the initial

and de-identified images and to measure the degradation of

quality introduced by the Projection-DID method, the mean

Mean Square Error (mMSE) metric was used. To calculate

the mMSE the images must be in vector form np×1, where

np is the number of pixels in each image. As such the

formula that is used to calculate the mMSE is:

mMSE =
1

Nim

Nim
∑

i=1





1

np

np
∑

j=1

(

Ii(j)− Îi(j)
)2



 (17)

where Nim is the total number of images, np is the number

of image pixels, Ii is the ith original image and finally Îi is

the ith output image of the applied method. All calculations

for the mMSE are done with the images having values in the

range [0, 1], after they where divided by 255.

These two datasets contain only a small number of in-

dividuals compared to the datasets that an attacker would

use to identify a target. It is intuitively expected that if

the Projection-DID methods succeed in protecting privacy

in these small datasets it will achieve even higher levels of

privacy protection in large datasets.

B. Results for the PDID-O Method

This method uses formula 5 to de-identify the input

images. The radius used for the PDID-O was calculated using

the SVDD method. For the XM2VTS dataset the calculated

radius was R = 67.4034 and for the Yale B dataset the value

for radius R was calculated to be R = 17.4241.

In order to test the above radii in respect to error rates

and visual quality, other values where also used in the

experimental process. For the XM2VTS dataset Table I

summarizes the results for different radii and classifiers. As

it can be seen more values where selected near the calculated

radius in order to assess the effectiveness of the calculated

radius. Visual results can be seen in Figure 3 and Figure 4.

For the XM2VTS dataset the results are presented in Table

I from which we can conclude that parameter R plays a large

role in the error rates that are displayed by the error rates, as

well as the mMSE. As suspected increasing radius R reduces

the error rates displayed by the classifiers. For a radius of 10
very high error rates are observed reaching 97.36% for the

NBC classifier and with an mMSE of 0.06046. Increasing

the radius leads to a decline of the mMSE while error rates

remain almost the same for a radius R = 30 and slightly

falling by about 3% for radii R = 50 and 70. For a radius

with a value of R = 100 error rates fall sharply to 49.06%
for the KNN classifier and for R = 120 the same error

rate is 26.04%. The mMSE is also reduced from 0.06046
for R = 10, to 0.02829 for R = 70 and reaches 0.01216
for a radius R = 120.Focusing on the values near the

calculated value of R = 67.4034 and more specifically from

50 to 80 it can be observed that although the mMSE varies,

the error rates remain stable for all three classifiers. The

error rate is 90.57% for the KNN and NC classifiers, while

slightly higher for the NBC classifier at 93.58%, both being

high enough to offer privacy protection. From the results

in Table I we can conclude that the calculated radius R by

the SVDD method is a really good choice for de-identifying

facial images and retaining an acceptable level of quality

for this dataset and the PDID-O method. From these results,

we propose the value of 70 for radius R for the XM2VTS

dataset since R = 70 provides high error rates and acceptable

image quality. Finally it can be verified from the results that

increasing radius R causes a decline in error rates for all

classifiers also for the mMSE, as we approach the initial

image by increasing the radius R of the hypersphere.

For the Yale B dataset the radius R that was calculated

using the SVDD method has the value R = 17.4241. For this

R and radii in the same area, the error rates are shown in

Table II. As can be seen for a small radius R = 10, error rates

for all classifiers are high. Increasing the radius leads to low

error rates for the KNN classifier, while the NBC and NC

classifiers display high error rates. This observation mean

that the radius that is computed using the SVDD method



Fig. 3. Results for PDID-O with Left: R = 10, Middle: R = 30, Right:
R = 50

Fig. 4. Results for PDID-O with Left: R = 70, Middle: R = 100, Right:
R = 120

TABLE I

ERROR RATES FOR PDID-O (XM2VTS)

Classifiers mMSE

Radius KNN NC NBC

10 93.21 % 93.21 % 97.36 % 0.06046

30 93.21 % 93.21 % 93.58 % 0.04818

50 90.57 % 90.57 % 93.58 % 0.03746

60 90.57 % 90.57 % 93.58 % 0.03268

67.4034 90.57 % 90.57 % 93.58 % 0.02939

70 90.57 % 90.57 % 93.58 % 0.02829

80 90.57 % 90.57 % 93.58 % 0.02428

100 49.06 % 48.30 % 61.89 % 0.01745

120 26.04 % 26.04 % 54.72 % 0.01216

is a good estimate of the radius that should be used in

order to de-identify the images sufficiently. For the selected

radii the mMSE displays at first a decline from R = 10 to

R = 17.4241 and then increases. In this case the estimate by

the SVDD method is not ideal and a smaller radius should

be used to attain high de-identification rates. As such we

propose a value of R = 10 for the Yale B dataset.

In both datasets apart from simply using the original

images the LDA method was applied. The results gave

varying error rates that where either slightly higher than

the ones with the original images and some where lower. In

the case of the XM2VTS dataset the images where resized

to 40 × 30. In this case the radius R calculated with the

SVDD method was R = 0.9819. For this radius the NBC

and NC classifiers gave the same error rates at with the

original images and the ones with LDA giving 96.23% and

93.21% respectively. The KNN classifier showed error rates

at 93.21% for the initial images and 91.32% for the LDA. For

the Yale B dataset and a radius of R = 10 the NC classifier

displays the same error rates at 79.17%. In the case of the

NBC classifier the error rate increases if LDA is used from

72.61% to 87.14%. Finally for the KNN classifier there is

a drop from 89.96% to 79.50% which is still an acceptable

de-identification rate.

TABLE II

ERROR RATES FOR PDID-O (YALE B)

Classifiers mMSE

Radius KNN NC NBC

5 94.94 % 94.19 % 92.94 % 0.04760

10 89.96 % 79.92 % 72.61 % 0.02878

15 60.83 % 88.13 % 82.57 % 0.02038

17.4241 48.30 % 90.37 % 86.14 % 0.02005

20 38.67 % 91.95 % 89.38 % 0.02239

C. Results for the PDID-M Method

This method projects the input image on a hypersphere

centered on the mean image using formula 6. The radius

calculated using the SVDD method did not provide adequate

de-identification with the PDID-M method and the radii used

here found empirically. For the XM2VTS dataset the radius

proposed is R = 10 and for the Yale B dataset R = 2.

This is a drawback of this method, since the radii cannot be

calculated automatically. Error rates for the XM2VTS dataset

can be are displayed in Table III and visual results can be

seen in Figure 5 and Figure 6. From the results in Table

III it can be seen that the PDID-M method gives high error

rates with lower mMSE compared to the PDID-O method.

From a R = 4 with error rates at 96.23% for all classifiers a

slight drop is displayed up to a radius of R = 10 for which

value the error rates are 90.19% for the three classifiers used.

Beyond this value the error rates drop sharply and for a

radius of R = 14 the KNN classifier displays an error rate

of 53.21%.

The error rates for the Yale B dataset are displayed in

Table IV. For a radius R = 1 the KNN classifier displays

an error rate at 96.21% while the NBC a much lower error

rate at 88.13%. For R = 2 both the previous classifiers drop

to 95.02% and 83.32% respectively. The NC also displays

a drop in error rate from 92.61% for a radius of R = 1 to

89.21% for R = 2. The mMSE is at 0.04384 for R = 1 and

for R = 2 the mMSE value drops to 0.03307. The values

for the mMSE in the case of the Yale B dataset are close for

both the PDID-O and PDID-M method, unlike the case of the

XM2VTS dataset as mentioned above. For higher values for

radius R all error rates drop below 90%. For R = 3 the KNN

and NC classifiers display a difference of 1% at 88.71% and

89.71% respectively, while the NBC remains almost stable

in comparison with a radius R = 2 at 83.14% and the mMSe

dropping to 0.02396. For values beyond R = 3 error rates

drop sharply with a minimum of 76.51% for R = 4 and to

a minimum of 66.14% for R = 66.14% both displayed by

the KNN classifier.

As in the PDID-O method the LDA method was applied

to the initial images. The results gave varying error rates

that where either slightly higher than the ones with the

original images and some where lower. As mentioned above

the XM2VTS dataset images where resized to 40 × 30. In

this case the radius used was R = 0.8. For this radius

the NBC and NC classifiers displayed equal error rates for

the original images and the ones with LDA giving 96.23%



TABLE III

ERROR RATES FOR PDID-M (XM2VTS)

Classifiers mMSE

Radius KNN NC NBC

4 96.23 % 96.23 % 96.23 % 0.01954

6 90.19 % 94.72 % 96.23 % 0.01804

8 90.19 % 90.19 % 90.19 % 0.01660

10 90.19 % 90.19 % 90.19 % 0.01522

12 66.04 % 71.70 % 90.19 % 0.01390

14 53.21 % 53.58 % 73.58 % 0.01265

TABLE IV

ERROR RATES FOR PDID-M (YALE B)

Classifiers mMSE

Radius KNN NC NBC

1 96.76 % 92.61 % 88.13 % 0.04384

2 95.02 % 89.21 % 83.32 % 0.03307

3 88.71 % 89.71 % 83.15 % 0.02396

4 76.51 % 89.96 % 81.74 % 0.01652

5 66.14 % 90.54 % 81.41 % 0.01075

Fig. 5. Results for PDID-M with Left: R = 4, Middle: R = 6, Right:
R = 8

and 90.19% respectively. The KNN classifier displayed error

rates at 90.19% for the initial images and 96.60% for the

LDA. In the case of the Yale B dataset a radius of R = 2
was used. The NC classifier displays the same error rates

at 85.89%. Error rates of the NBC classifier the error rate

increases with LDA from 82.49% to 89.79%. Finally for the

KNN classifier error rates from 94.52% to 89.21%.

VI. POSSIBLE ATTACK AGAINST THE PROJECTION-DID

METHODS

As can be seen in the above figures a malicious user trying

to defeat the Projection-DID methods could use an averaging

filter in order to reduce the ghosting effects introduced by

this method and then use a sharpening method in order to

increase the correct classification of the classifiers, bringing

the output image closer to the initial image. Various low

pass filter sizes were used and sharpening filters and the

error rates of the classifiers did not diverge from the high

error rates reported above. As a result such an attack does

not defeat the proposed methods.

VII. CONCLUSIONS

In this paper we proposes two methods that de-identify

facial images using projections on hyperspheres. In order

to calculate a good radius R for the PDID-O method to

define the hypersphere the SVDD method was used. The

radii given by the SVDD gave radii values that provided

high error rates and at the same time acceptable image

Fig. 6. Results for PDID-M with Left: R = 10, Middle: R = 12, Right:
R = 14

quality. Error rates where high, attaining 93.58% for the

XM2VTS dataset using the Naive Bayes Classifier and the

radius R = 67.4034. For the Yale B dataset the highest error

rate was 92.12% with the Nearest Centroid Classifier and a

radius R = 17.4241. In the case of the PDID-M method,

the radii given by the SVDD did not provide adequate de-

identification so the values where selected empirically. The

highest error rates with the proposed radii where 90.19%
for R = 10 for the XM2VTS dataset and 95.02% for

R = 2 for the Yale B dataset. Comparing the two proposed

methods it can be seen that the PDID-M method performs

better compared to the PDID-O method. For simlar values of

mMSE (about 0.012) the minimum error rate is 26.04% for

the PDID-O method and 53.21% for the PDID-M method

which is more than double the error rate for PDID-O. To

summarize, from the above results it can be concluded that

the two proposed Projection-DID methods serve the purpose

of providing privacy protection by attaining high error rates

from classifiers and providing an end image that can be

characterized as acceptable for everyday use.
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